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Abstract

Average human behavior in cue combination tasks is well predicted by Bayesian inference models. As this capability is
acquired over developmental timescales, the question arises, how it is learned. Here we investigated whether reward
dependent learning, that is well established at the computational, behavioral, and neuronal levels, could contribute to this
development. It is shown that a model free reinforcement learning algorithm can indeed learn to do cue integration, i.e.
weight uncertain cues according to their respective reliabilities and even do so if reliabilities are changing. We also consider
the case of causal inference where multimodal signals can originate from one or multiple separate objects and should not
always be integrated. In this case, the learner is shown to develop a behavior that is closest to Bayesian model averaging.
We conclude that reward mediated learning could be a driving force for the development of cue integration and causal
inference.
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Introduction

Empirical studies have provided convincing evidence that

humans combine sensory signals into percepts so as to reduce

the uncertainty about their causes. Such studies, as reviewed in [1–

6], have commonly used the cue integration paradigm, in which

human observers are asked to infer a certain quantity based on the

observations of a bi– or multisensory signal. These experiments

may use stimuli across modalities such as in the judgment of the

position of an object based on visual and auditory cues [7,8] or

object size given visual and haptic cues [9]. Similarly, experiments

have considered cues within the same modality as in inferring

surface slant from stereo and texture cues [10] or depth from

texture and motion cues [11]. The overwhelming majority of these

studies has shown that humans combine these cues by weighting

them according to their relative reliabilities.

This empirical behavior has been modeled as inference of the

most likely cause of the observation given the sensory cues

and prior knowledge using the Bayesian framework. Bayesian

inference represents the uncertainty about parameters in the

inferential task explicitly as probability distributions. The variance

of the distribution resulting from optimally combining the different

sources of information is smaller than that of the individual sensory

distributions which reflects the reduction in uncertainty.

The Bayesian inference framework has recently been extended to

cases in which the observed sensory signals are caused by one of two

different scene configurations [12,13]. As an example, consider the

case in which a visual and an auditory cue are sensed. Whether

these cues should be integrated or not may depend on the

assumptions about the causes for these signals. If two separate

objects caused them, they should not be combined, whereas if the

two signals are likely to be caused by a single object in the scene,

they should be integrated. By representing the uncertainty about the

two possible scene configurations, the Bayesian framework can be

used to compute a posterior probability distribution over the two

scene layouts, a process that has been termed causal inference

[13,14]. Instead of inferring the scene layout, the task may be to

compute a posterior probability of the positions of the signal source

by weighting the likelihoods of the two scene layouts. While model

selection is the optimal strategy for the former task, the latter task

favors Bayesian model averaging. In most experimental setups

however, it is difficult to distinguish which of these strategies best

matches human behaviour or whether humans use a fixed single

strategy at all [15].

Despite the aforementioned successes in applying the Bayesian

framework to sensory perception, a wide variety of questions

remain open at the computational, algorithmic, and implementa-

tion levels, see e.g. [6,16]. The most central issue is how cue

integration and causal inference are learned on developmental

timescales [17–20]. A recent empirical study by Gori and

colleagues [17] showed that children under 10 years of age did

not integrate cues by taking their uncertainties into account.

Instead, these children were shown to almost exclusively use haptic

cues in a size discrimination task and visual cues in an orientation

discrimination task independently of their reliability. This suggests

that the abilities for cue integration and causal inference are
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acquired through development. This result is particularly

challenging for some current theoretical models at the implemen-

tational level suggesting that cue integration is mediated simply by

the Poisson-like trial to trial variability in neuronal populations

[21,22]. These so called probabilistic population codes were shown

to be able to integrate probability distributions, represented by

probabilistic activity within specific neuronal populations, using

simple biologically plausible computations. However, it is unclear

how such a mechanism could be learned over developmental

timescales. It is an open question then, why infants and children do

not integrate cues optimally and how learning could proceed [16].

Further evidence for the role of learning in the development of

sensory integration and causal inference comes from a study by

Putzar et al. [23] in which the authors show that early deprivation

of one modality during the first month of life impaired

multisensory integration including this sense even after complete

recovery (see also [24]). This matches neurophysiological findings

in cats and monkeys suggesting a critical period of high plasticity

and large changes in receptive fields of multisensory neurons

during early development [25,26]. Neurons in superior colliculus

of newborn kittens and monkeys show little or no multisensory

responses, but the number of multisensory neurons grows and

their tuning gets sharper with age.

There is also initial evidence, that the mechanisms involved in

causal inference are not fully developed at birth, at least in cats

[27]. Cats were raised in an artificial environment, in which

auditory and visual signals were always shown at the same time but

at differing spatial positions. Subsequent behavioral as well as

neurophysiological tests revealed that the animals did not integrate

multisensory stimuli from a common location, as seen in animals

raised in natural environments, but instead integrated only signals

with the distinct spatial separation present in the artificial

environment. For similar results in owls see [28].

Based on these results, the present study asks, whether cue

integration and causal inference in sensory perception could

develop mediated by reward dependent learning. There are ample

data demonstrating reward dependent learning related to

orienting movements [29–31]. Furthermore, there has been

considerable work relating this type of learning to theoretical

models of reinforcement learning (RL), see e.g. [32]. Various

studies were able to localize areas in the human and monkey brain

potentially implementing RL mechanisms by looking for correla-

tions between RL model variables and single cell [32,33] or

BOLD activities [34–40]. Those studies show the relevance of RL

for learning in many different tasks and environments both on the

behavioral as well as the computational level. Thus it is interesting

to also consider it as one potential driving force, on the

computational level, for the development of cue integration and

causal inference.

Results

We use a multimodal localization task similar to the one used by

Neil and colleagues [20] and Körding et al [13] (see Fig. 1 for a

schematic depiction). The learner obtains noisy visual and

auditory signals and carries out horizontal orienting movements,

obtaining a varying amount of reward dependending on the

accuracy of the movement (see Methods). We interpret the reward

as an intrinsic signal for bringing a relevant stimulus into the

center of attention.

The agent learns to solve this task based only on its sensory

inputs, orienting actions, and observed rewards. To this end, it

learns to predict how much reward to expect when performing

each action in a given situation. The learner represents its reward

estimates for particular state and action pairs as so called Q-values

[41]. Support for the representation of such variables in the

human and monkey brain comes from several studies [33,42]. In

our case this Q-function is approximated by a neural network (see

Methods). Based on these reward expectations, the agent will

probabilistically pick an action using a softmax function, which

also has been shown to match human action selection for some

tasks [43,44]. The reward prediction of the winning action will be

adapted depending on the difference between predicted and

obtained reward by changing all synaptic weights via a gradient

descent learning algorithm (see Methods).

In the following we will test this model on cue integration and

causal inference tasks and compare it to human behavior and four

different Bayesian models.

Cue Integration
We start with a simple cue integration paradigm, where noisy

auditory and visual signals from a common source have to be

Figure 1. Scene layout of orienting tasks and generative models. Top: Sketch of the orienting task used in this study. The learner receives an
auditory (za) and a visual (zv) signal, which are probabilistically related to the true position x. The task is to orient towards this true position. Left: A
case where the visual and auditory signals have a common cause. Right: The signals originate from different locations. Bottom: The generative
models for the task. The noisy sensory signals (za and zv) are either generated by a single (C~1) or two independent causes (C~2) having different
spatial positions.
doi:10.1371/journal.pone.0021575.g001

Cue Integration as Outcome of Reward Learning
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combined. If the noise of the two cues is independent, the variance

of the error produced by optimally integrating the two stimuli is

always smaller or equal to the error variance resulting from using

either cue alone. Figure 2 shows the distribution of errors the RL

based model produces after training. This result matches well with

the predictions of the optimal Bayesian model for this situation.

To compare the model with human behavior, we test the fully

trained model on a two-alternative forced choice (2-AFC) task.

This task allows us to test the behavior of the learner for changes in

relative reliabilities between the cues. The setup is similar to the

one used by Ernst and Banks [9], where human subjects were

asked to perform a 2-AFC visuo-haptic size discrimination task.

Ernst and Banks could show that in this task the point of subjective

equality (PSE) of adults is well predicted by Bayesian cue

integration and shifts when additional visual noise is introduced.

The first input to the agent is the size of a standard bar with

constant position, the second is the size of a probe which varies

and is to be estimated as ‘left’ or ‘right’ of the standard

(respectively ‘taller’ or ‘smaller’ in [9]). Both stimuli are bimodal,

but for the probe the cues are always consistent, whereas for the

standard they are set to be in conflict with each other. Figure 3A

shows the proportion of ‘right’ estimates for all possible positions of

the probe based on the decisions taken by the reinforcement

learner after training as psychometric curves. Each curve

represents training and testing with a different visual noise

variance. We can compare it with the data from of Ernst and

Banks [9] (Figure 3B) which is reproduced in our Figure 3B. It

shows the equivalent data for the average of four human subjects.

Both plots show a similar pattern in that the psychometric curves

get steeper and the PSE moves more towards the visual stimulus

position for decreasing visual noise levels. Figure S2 compares the

PSEs of the RL model (crosses) with that of the optimal Bayesian

observer (circles) for different visual reliabilities. It can be seen that

they match quite well, as was true for the human subjects in [9]

(Fig 3c in their paper). Note that there is variability in both the

PSEs of the learner and the Bayesian observer due to the limited

number of test stimuli.

Causal Inference
In the following tasks we will add a second layer of complexity

to the task by randomly presenting trials that were generated by

different scene layouts, i.e. under either the common or the

separate cue condition. We will compare our learned model with

four Bayesian observers. One observer always integrates the

information from the two stimuli (we will call that one AI). A

second always acts as if both stimuli originate from different

objects and discards information from the less reliable modality

(‘‘Never Integrating’’ – NI). A third, more advanced, observer

computes the probability of one vs. two objects in each trial and

uses the optimal action for the more probable model (‘‘Model

Selection’’ – MS). The fully optimal fourth observer though makes

use of all information available by selecting an action under the

weighted evidence for each generative model, with the weights

proportional to the respective probabilities (‘‘Model Averaging’’ –

MA). All Bayesian observers, contrary to the RL model, have

explicit knowledge of position priors, sensory noise distributions

Figure 2. Distribution of position estimation errors. The
distribution of errors over 100,000 orienting actions carried out by
the RL model after 10 runs with each 100,000 training steps (black),
compared with Bayesian optimal integration (red) and the best single
cue predictions (dashed) for a single audio-visual object. Errorbars show
standart deviation of 10 runs. (s2

a~5, s2
v~5).

doi:10.1371/journal.pone.0021575.g002

Figure 3. Psychometric curves for 2-AFC task in comparison to human psychophysics. A: Psychometric curves for the proportion of ‘right’-
actions in an audio-visual 2-AFC position estimation task. The input positions of the standard were mismatched, with the auditory signal positioned
at 12 and the visual signal at 18. Probe inputs were matched and tested 1,000 times at each position (0–30). The point at which the curves cross the
black vertical line is the PSE. The curves differ in the variance of the visual noise (see legend), auditory noise was kept constant with s2

a~5. B: Plot
using data from a psychophysical experiment by Ernst and Banks [9]. They used a visuo-haptic 2-AFC size discrimination task and count the
proportion of ‘taller’-actions. The standard inputs were mismatched (haptic at 50, visual at 60), probe inputs were matched and varied between 45
and 65. The visual reliability was varied by adding external noise to the display.
doi:10.1371/journal.pone.0021575.g003
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and the reward rule. The mathematical formulation of these

decision rules as well as the reward expectations of the observer

models can be found in the Methods section.

To show the learning process of the RL learner, we can look at

the development of the potential reward received with a greedy

policy (always selecting the action which predicts the highest

reward). In Figure 4 one can see that the average reward earned

by the learner increases until it reaches a level similar to what the

MA and MS models show (see also Table 1 1A). Comparing it

with the simpler instances of Bayesian observers, the learner is

clearly better than AI and NI, that is, it implicitly incorporates the

existence of two different conditions. But it is hard to tell apart the

Bayesian MA and MS observers. Both are similar to the agent’s

performance in this task.

A different way of assessing the behavior of the RL agent is to

directly consider the expected total discounted reward obtainable

for a particular state-action pair, the Q-values. Figure 5 shows

subsections of two learned Q-value function approximations for all

inputs, a given action nd two different reliability ratios. The

highest reward is expected if both input signals are close together,

resulting in a high probability for a single cause, and close to the

target of the given action, resulting in a high probability for the

action being correct (Fig. 5 center of both plots). Importantly, if the

target of the given action can not possibly be a result of a weighted

average of the input positions – because the cues favour both a

higher or both a lower position, this action predicts little reward

(Asterisks in Fig. 5). For this reason the plots show an asymmetric

reward landscape. The slant of the area of highest reward (dark

red) depends on the relative reliability of the two cues, as can be

seen when comparing A and B in Fig. 5. The left plot is a result of

inputs with a higher reliability in the visual modality, therefore the

area of highest reward lies more along the visual axis, whereas in

the right plot with equal reliabilities for both cues it lies along the

diagonal exactly between the auditory and visual axis. The width

of this area, as well as the maximum predicted reward, is

determined by the absolute values of the reliabilities (narrower and

darker red in the left plot due to higher visual reliability). A smaller

reward can be expected if the cues are far apart – resulting in a

high probability for two causes, but one of them is close to the

action target – resulting in a high probability for the action to be

correct for one of the objects (Middle of each of the four figure

boundaries in Fig. 5 – the ‘‘arms’’ of the cross). The height of these

expectations depends again on the reliability of the relevant cue.

In the experimental setup from [13] participants were asked to

report in each trial both the visual as well as the auditory location

of a stimulus. To mimic this condition, we change our task

accordingly and add a second output population to the neural

network (see Fig.S1). Each population now represents the actions

for one modality (representing the arrays of buttons for the

participants in [13]). The rewards and the prediction errors are

computed separately (according to (3)). Table 1 2A shows the

performance after learning as the sum of both rewards. The effects

are similar to the previous orienting task, in that we see a

performance thats is similar to the predictions of MA and MS.

Despite changing the task it is still difficult to distinguish these

two Bayesian observers (MA and MS) from each other by

comparing the collected reward. A better discriminator should be

the variance explained by each observer in relation to the total

variance of the orienting error of our model (generalized

coefficient of determination R2 [45]). The differences between

MA and MS over all inputs are nevertheless still small (Suppl.

Fig.S3). Fortunately, since we have the full observer models, we

can find the inputs for which the optimal actions differ between

MA and MS, and then test the RL model only on those. The R2

values for these inputs are shown in Fig. 6. We also include an

observer which does probability matching (PM) for model

selection, proposed to be the strategy used by many human

subjects in a recent experiment [15]. It can be seen that the

Bayesian observer with model averaging explains the error

variances best for both visual and auditory output (grey and black

bars). The values for the MS and NI observer are the same,

Figure 4. Performance of the RL model and Bayesian observers for a single output. Reward obtained by the learner when choosing the
action with highest predicted reward (black) compared to the different Bayesian observers. Signals can originate from one or two objects. Left:
Change of performance during learning. Each data point is the sliding average of 1000 trials. Right: Barplot of the mean reward over 100,000 trials
after learning. Standard error of the means is smaller than 0.5% for all bars. (s2

a~3, s2
v~2).

doi:10.1371/journal.pone.0021575.g004

Table 1. Model performance for different set-ups.

Setup
RL-
Model

Bayesian
MA

Bayesian
MS

Bayesian
MI

Bayesian
NI

1A 46.62% 47.9% 47.04% 37.87% 41.57%

1B 46.32% 47.9% 47.04% 37.87% 41.57%

1C 45.86% 47.06% 46.18% 37.28% 40.88%

2A 50.51% 51.81% 51.08% 41.63% 47.71%

2B 36.26% 37.37% 36.53% 33.87% 34.28%

2C 48.74% 50.52% 49.70% 40.32% 45.67%

Average fraction of maximum reward received in 100,000 steps after learning
(s2

a~3, s2
v~2) for different variation the task and the model. Results of the

different Bayesian observers for comparison.
doi:10.1371/journal.pone.0021575.t001

Cue Integration as Outcome of Reward Learning
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because the selected inputs represent those in which MS decides to

act according to the generating model with independent objects.

Complex Uncertainty Structures
While the presented system is certain to accommodate different

prior distributions of the relevant scene variable relevant for

obtaining rewards (see Table 1 1C for an example with a Gaussian

prior for the visual stimulus) because of the maximum total

discounted reward guarantees of RL, it is interesting to see

whether the system can handle different likelihood landscapes. In

many real-life situations, the uncertainty of a cue depends on a

number of factors. The following three experiments introduce

behaviorally plausible variations in uncertainty structure and

investigate how the RL agent can adjust to these.

Spatial Variation in Uncertainty Structure. Visual

estimates of spatial location should be more accurate in the

fovea than in the periphery of the visual field, given the human

acuity falloff (e.g. [46], see also [47] for an example in slant angle

space). Figure 7 shows the reward predictions for a set-up that

mimics this observation in the task that requires a single action.

The variance of the visual noise was low for stimuli in the center

and increased with eccentricity, whereas auditory reliability stayed

constant (Figure 7 shows results with linear increase of the

variance, but similar results are reached with other functions, e.g.

logarithmic decay). Training on this adapted task resulted in

reward predictions dominated by the visual estimate for actions

towards the center (Fig. 7 right) and dominated by audition for the

outer periphery (Fig. 7 left). In between these two extremes,

Figure 5. Exemplary subsections of two learned Q-value functions. Expected reward for visual signals (x-axis) and auditory signals (y-axis) for
the action of orienting towards the center. Red colors represent high, blue low predicted rewards. Left: Visual cue is more reliable (s2

a~3, s2
v~2);

Right: Both cues have the same variance (s2
a~s2

v~3). For a detailed explanation see main text.
doi:10.1371/journal.pone.0021575.g005

Figure 6. R2 values of different observers for the RL model with selected inputs. The black and gray bars show the results for the auditory
and the visual output for 50,000 trials with inputs that differ in the predicted action between MA and MS. Mean over 10 training sessions with s2

a~3,
s2

v~2, errorbars show standard deviation.
doi:10.1371/journal.pone.0021575.g006

Cue Integration as Outcome of Reward Learning
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integration of both cues predicted the highest reward. This can

also be seen in the distribution of input weights to the hidden layer

(Suppl. Fig.S4). The weights from the auditory part of the input

layer have similar shapes and width across all positions, whereas

the visual weights get narrower towards the central positions. This

shows that reward mediated learning results in behavior that varies

with context within a single task, which is in accordance with

predictions from a Bayesian model that explicitly takes into

account context when computing the data likelihood.

Temporal Variation in Uncertainty Structure. In addi-

tion to a change in noise variance across space as discussed above,

in a natural environment the variance also changes over time. As

an example one may consider the change in the optimal

weighting of visual compared to auditory cues when stepping

out of a dim room into the bright sunlight. Due to higher

contrasts and thus smaller uncertainty, visual localization will

gain confidence in the latter condition. To simulate such

dynamics, we change the reliability of the visual cue at certain

timepoints during training (Fig. 8). The network quickly adjusts to

a change in visual reliability. The performance after a change

point (vertical lines in Fig. 8) quickly becomes similar to the

optimal predictions by the Bayesian observers. This is mostly due

to the generalization abilities of the function approximation. A

learner using a table with entries for every state-action-reward

mapping [48] has to effectively relearn its policy with every

change in conditions.

Shift in Uncertainty Structure. We can also adapt our

settings to simulate the conditions used in the experiment by

Wallace and Stein [27] to introduce mismatches in the spatial

alignment of stimuli from a common object. We ask whether

reinforcement mediated learning could also produce results similar

to the aberrant spatial integration found in their study. Therefore

we bias the auditory signal by setting the mean of its noise

distribution to a value different from zero.

Figure 9A shows contour plots of the Q-value function for one

particular action after normal (filled) and biased training (empty).

The area which favors integration (red) shifts by as many positions

on the auditory axis as are introduced by the bias. The same is true

for the unisensory tuning curves (Figure 9B), which were generated

by plotting the response of the same output neuron to sequential

single stimulation of each unisensory input neuron. These results

are qualitatively similar to the ones reported by Wallace and Stein

for the relationship between auditory and visual receptive fields of

single neurons in cat superior colliculus.

Discussion

The fact that cue integration in sensory inference can be well

matched by Bayesian models has led to the suggestion that such

computations are implemented in the brain by explicit computa-

tions with uncertainties. Accordingly, current research is looking

for ways in which populations of neurons could implement

Bayesian computations involving probability distributions [16,22].

This view has led to the often implicit and sometimes explicit

assumption, see e.g. [5,49,50], that reward dependent model free

learning does not mediate this behavior. Often these investigations

are accompanied by the implicit assumption, that a single

algorithm has to be attributed to the brain, despite the fact that

recent work by Daw and colleagues [51,52] has shown that

learning in certain tasks can be best explained by assuming that

multiple learning systems implementing different algorithms are

working together in the brain (see also [53–56]). Currently it is

unclear how cue integration and causal inference are learned over

developmental timescales, as experiments with both children and

animals suggest that cue integration abilities develop over time

[17–20,23,27,57,58].

Bayesian models of cue integration have been extended to cases

in which there is uncertainty about the underlying scene

configuration that generated the sensory stimuli [12,13]. In this

case of causal inference the observer has to judge how likely one of

the possible scene configurations may have caused the observed

sensory signals. There are two main ways how this could be done.

Either the observer decides on the more likely scene layout and

then interprets the signals according to this layout (model

selection), or the positions of the objects in the scene are judged

according to the likely positions according to both models and

then are weighted by how much evidence there is for either layout

(model averaging). Current empirical evidence is inconclusive

whether human performance in such tasks is better explained by

model selection, model averaging, probability matching or all of

those [13,15,59,60]. Similarly, it is unclear, whether any additional

contextual or task effects might affect the strategy used.

Here we investigated whether a reward based model free

learner using function approximation is able to learn an orienting

task requiring integration of cues. Furthermore, as the cues could

Figure 7. Exemplary subsections of the learned Q-value function for the foveation setup. Axes are the same as Fig. 5, but for three
different actions with constant auditory reliability (s2

a~2) and space varying visual reliability. L-R: Actions towards a peripheral(s2
v~3:25),

intermediate (s2
v~2) and central position (s2

v~0:25).
doi:10.1371/journal.pone.0021575.g007

Cue Integration as Outcome of Reward Learning
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either originate from different sources or a single one, it was

necessary to learn not to combine the estimates always, but to take

into account that at larger separations of the two cues it is more

likely that they originate from two different sources. The learner

was given two audio-visual orienting tasks to solve. In the first task

the learner was rewarded for orienting towards either one of the

two stimuli, whereas in the second task the learner was rewarded

separately for judging both the position of the visual and the

auditory sources.

Under both task conditions the learner was able to carry out

actions that combined cues according to their relative reliabilities.

The reward obtained when following the reinforcement learner is

higher than that obtained by the Bayesian learners that always or

never integrate. It was also shown that the behavior of the RL model

best matches that of a MA observer. This does not necessarily mean

that humans always use MA, but shows the general ability of RL to

approach optimal behavior. A recent paper by Wozny and

colleagues [15] found evidence for a majority of subjects acting

most similar to probability matching (at the causal inference level),

but also a significant number of people that were better fit by model

averaging. Further research is needed to clarify whether this is

generally true or depends on additional parameters.

We could also show that the RL approach is able to deal with

more complex uncertainty structures in the input. Here, the

uncertainties are implicitly represented in the function approxi-

mation scheme of the value functions. Arguably, representing only

uncertainties that are relevant for obtaining rewards is more

economical than representing all potential distributions over all

available scene variables. Indeed, here the distributions over

sensory cues given relevant scene variables were not provided

beforehand to the system, as is common in the Bayesian cue

integration and causal inference setting. The proposed model was

able to also perform similarly to the Bayesian predictions when the

data likelihood was variable in time or space, when using non-

uniform priors, and for changes in the causal structure. Humans

were shown to be able to rapidly adapt to changes in cue reliability

[61–63] and causal layout [64]. Although we do not want to claim

that this is necessarily mediated by reward for the very early

adaptation, we show the potential of RL-mechanisms to react to

those changes. It would also be interesting to test children for the

developmental aspects of such rapid re-weighting [65], but more

experiments will be needed to clarify those results.

One feature that is missing in our approach is temporal relations

between signals, which in a natural environment provide an

important cue for causal inference (e.g. [66]). It was shown that

this influence is also plastic in children [20] and in adults [67], so it

would be interesting to see how reward mediated learning deals

with the incorporation of temporal information. The TD–learning

framework is in principle able to deal with delayed rewards. This

question will be addressed by future work.

All learning was done with immediate reward feedback to

individual actions using learning rules that have been well

established in conjunction with reward related learning and

orienting movements [31,32]. We are aware that using gradient

descent learning to update the weights of the neural network could

be considered problematic for a neural implementation [68]. In

Figure 8. Performance of the RL Model for two outputs and temporally changing reliabilities. Reward obtained by the learner when
choosing the action with highest predicted reward (black) compared to the different Bayesian observers. At each dotted vertical line visual reliability
changes. Each data point is the sliding average of 1000 trials. s2

a~3:
doi:10.1371/journal.pone.0021575.g008
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the recent past, attempts were made to relate this kind of learning

more closely to biology [69–71]. Future work will nevertheless try

to use alternative solutions for learning of the synaptic weights.

Unfortunately we were not able to identify meaningful

intermediate behavioral strategies while the model was still

learning. It would be interesting to compare the behavior of the

RL agent with recent empirical and theoretical work on the

learning of cue integration, which suggest potentially different

behavior such as calibration of a less reliable modality by a more

reliable one [17,28,72,73] or using the modalities alternatingly

[18] maybe according to the so called race model [19,20]. The

modality providing the basis for calibration could depend on the

relative reliabilities, could be innately determined or chosen

randomly. Consistent with the first option are results showing that

even unisensory performance in certain non–visual tasks can be

worse in early blind compared to sighted children [72].

To conclude, the RL algorithm with function approximation was

capable of learning near optimal performance in the Bayesian sense

for both cue integration and causal inference tasks (consistent with

previous results with tabular RL [48]). Importantly, despite not

performing explicit computations with uncertainties, the reinforce-

ment learner successfully changed actions depending on the

uncertainty in the stimulus. Considerable evidence about the neural

basis of such algorithms makes this approach appealing. Further-

more, it gives a direct way of accommodating learning of cue

integration and causal inference over developmental timescales.

Thus, even if RL algorithms may not be the only mechanisms

underlying the human development of cue integration and causal

inference they could definitely contribute to their development.

Methods

Task Setup
In our task each trial consists of the presentation of two stimuli

in the visual and auditory modalities. These stimuli either

originate from a single common source (Fig. 1 left) for the

auditory and visual cue or from two separate sources/objects

(Fig. 1 right). A position x along the spatial dimension is chosen

from a uniform distribution for each object in the scene (but

results if, e.g., visual prior is Gaussian around the central region

are not different – Table 1 1C). In the two objects case we call

their positions xa (for the object that emits only an auditory

signal) and xv (for the object that emits only a visual signal). Space

is discretized to xmax~30 positions for ease of computation. The

received sensory signals are noisy versions of the true source

locations. We use additive noise with normal distributions with

zero mean and variances s2
a and s2

v . Note that the RL model is

also able to deal with noise from different distributions since we

do not implement the learner based on a fixed distribution. See

Table 1 2B for a setup with auditory and visual noise drawn from

a logistic distribution with median 0. This noise is thought as

being of sensory and/or environmental origin, e.g. background

noise, neuronal firing stochasticities and tuning densities. Usually

the variance of the auditory estimate is set larger than the visual

one, in accordance with psychophysical observations for spatial

tasks [74]. We call this noisy signal position za and zv respectively.

If the noise makes a signal fall outside of the spatial range, the

stimulus is treated as not present, thus resulting in a unisensory

training trial. An important implication of this setting is that the

structure of observations is the same for both possible underlying

generative models.

We use two slightly different versions of this task. In the single

output task the learner has to orient towards a single location.

That means in the case of two objects the reward only depends on

the distance to the object closest to the estimated position. In the

two outputs task it is required to orient towards both the visual and

the auditory positions of their respective cause. In case of a

common cause this should result in both estimates being equal.

There are separate rewards for the visual and auditory action. The

inputs were the same for both experiments.

Figure 9. Responses of output neurons after training with auditory shift data. A: Overlay of contour plots of the Q-value functions for one
action after unbiased training (filled areas) and after training with a 3-position shift in the mean of the auditory noise (empty areas). The contours
include areas with predicted reward values higher than 10 (red) and 6 (yellow). B: Unisensory tuning curves of the same output neuron for biased
(red) and unbiased conditions. The maximum visual response (top) does not change, whereas it is shifted by 3 positions in the auditory domain
(bottom). (s2

a~s2
v~3).

doi:10.1371/journal.pone.0021575.g009
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Reinforcement Learning Model
An approximation of the function relating state-action pairs to

predicted reward is learned. A three-layered neural network (see

Fig. S1) is set up with an input unit for each position in every

modality (here 60 input neurons). It should be mentioned that the

yet unsolved problem of limited scalability of RL approaches for

very large numbers of inputs, does also apply to our model. The

input neurons i are all-to-all connected with weights vi,j to neurons

j in the hidden layer (here j = 0…29). Stimulus locations za and zv

are represented by the population activity of these input neurons

(see e.g. [75,76] for biological examples of population codes) in

each modality separately (the first half of the neuron coding for the

auditory input, the second for the visual one).

Each input neuron has a Gaussian receptive field, centered on

position za
i or respectively zv

i{xmax
for i§xmax. The variance of

these Gaussians is in the order of the noise of the input stimuli.

Overlapping receptive fields of the input neurons simply help the

network to discover a spatial relationship between the possible

input positions. We also tested the framework with simple binary

input units and found no difference in the final results besides an

increase in learning time (see Table 1 1B).

A sigmoidal transfer function on the sum of the weighted inputs

gi produces the activation yj of the hidden neurons. These are

again fully connected to the output neurons x’ with weights wj,x’.

For every action x’ there is one output unit, with its activation ox’ ,

given by the weighted sum of the hidden layer activity,

representing an approximation of the appropriate Q-value. All

weights are drawn from a uniform distribution, the v’s between

{0:1 and 0:1, the w’s between {1 and 1.

Based on the network’s outputs the learner chooses one of the

available actions. This is done with the softmax function:

P(x̂x~x’js)~
eQx’,s=tP
�aa eQ�aa,s=t

: ð1Þ

This probabilistic action selection rule chooses an action x’ with a

probability proportional to the relative predicted reward Qx’,s for

that action, given state s. We start with a high temperature

parameter t~t0, so that the learner chooses his actions only

weakly influenced by the initial reward expectations. t then

decreases exponentially with learning time (with t(t)~t
nt{t

nt
0 ),

passing 1 after a given number of steps nt. At smaller values of t
the selection favors more and more the action with highest

expected reward, thus exploiting the environment.

After performing the selected action x̂x, the learner receives the

true reward r(x̂x). We use a reward function that is maximal if x̂x
equals the true object position x, decaying quadratically with

increasing distance within a surrounding area (with radius r) and

zero otherwise.

For single output:

r(x̂xjxa,xv)~max(0,(r{min(jxa{x̂xj,jxv{x̂xj)))2 ð2Þ

For two outputs:

ra(x̂xajxa,xv)~max(0,(r{jxa{x̂xaj))2,

rv(x̂xvjxa,xv)~max(0,(r{jxv{x̂xvj))2
ð3Þ

If only one object is present, the two position are equal, i.e.

xa~xv. In the experiments shown above we used r~4. Changes

of of r other than setting it to zero (only rewarding correct actions)

only have an impact on the learning time. We also tested the

model with an asymmetric reward function, where a correct visual

action would only provide half the reward of a correct auditory

action (results see Table 1 2C).

Based on the true reward, the Q-values for the particular state-

action pair will be updated proportional to the difference between

prediction Qx̂x,s and r(x̂x). This difference can be seen as a temporal

difference (TD) error for a single timestep. TD learning in general

uses discounted future rewards for computing the prediction error:

The Q-value function will not only represent the expected reward

of a single state–action pair, but also include possible future

rewards that are expected from the new state. In the present work

the learner has to only perform a single action per trial and

receives only immediate reward.

To minimize the TD error we use gradient descent to change

the weights of the neural network by Dw=Dv [77] with:

Dwj,x’~
{e(rx̂x{ox̂x)({yj), if x’~x̂x

0, else

�
ð4Þ

Dvi,j~{e(rx̂x{ox̂x)({wj,x̂x)yj(1{yj)gi: ð5Þ

e is an exponentially decreasing learning rate: e(t)~10log(e0){ t
ne ,

with e0~0:05 and ne~100,000. The results did not change when

using an alternative function for the learning rate, e(t)~
e0

ceil(
t

ne
)
,

with ne~10,000.

Bayesian Observer Models
We compare the performance of our model with that of four

different Bayesian observers, inferring the position of the object

given the input and the generating model C (Fig. 1 bottom). With

Bayes’ theorem and the assumption that the noise of different

modalities is independent we can write the posterior probability as:

p(xjza,zv)~
p(za,zvjx)p(x)

p(za,zv)
~

p(zajx)p(zvjx)p(x)

p(za,zv)
: ð6Þ

where the last equality is only valid if the two cues are

conditionally independent given their cause. The likelihoods

p(zajx) and p(zvjx) include all information available from the

input. The reliability of a cue is inversely proportional to the

standard deviation of this distribution. In the experiments reported

in this paper the prior p(x) is always uniformly distributed. Other

priors were used in simulations not shown, and the RL algorithm

was able to adjust to these and still perform close to the Bayesian

predictions. Since we are interested in the performance of the

model in terms of reward, actions are not chosen only based on the

posterior probabilities, but on the utility function U(x̂xjza,zv),

which additionally takes into account the expected reward

r(x̂x½a,v�jxa,xv) (we write ½a,v� to cover both the one and two output

case) for a given action (see below). The use of different utility

functions can accommodate different tasks in a very direct way

and makes the behavioral goal explicit.

The Bayesian observers used here differ in the way they handle

the two different possible generative models (one vs. two causes;

Fig. 1 bottom). Model Averaging (MA) uses a utility function that

is a weighted average of the inference results of each model. The

weights are determined by the probability for one versus two
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objects p(Cjza,zv). This probability can again be computed from

known distributions using Bayes formula similar to (6).

U(x̂x½a,v�jza,zv)~
p(C~1jza,zv)

Ð
r(x̂x½a,v�jxa,xv)p(xjza,zv)dx

zp(C~2jza,zv)
Ð Ð

r(x̂x½a,v� jxa,xv)p(xajza)p(xvjzv)dxadxv

ð7Þ

.Model selection (MS) in contrast uses only the utility function of

the most probable model.

U(x̂x½a,v�jza,zv)~

Ð
r(x̂x½a,v� jxa,xv)p(xjza,zv)dx, if p(C~1jza,zv)w0:5Ð Ð

r(x̂x½a,v�,xa,xv)p(xajza)p(xvjzv)dxadxv, else

(
ð8Þ

We use a uniform prior over the number of objects in the scene

(P(C~1)~P(C~2)~0:5). Results of additional simulations not

shown here lead to similar results for asymmetric distributions.

We also consider two observers that only do inference on one

model, ignoring the second one – one always integrates the

information (AI) and the other always treats the inputs as

independent (NI). The utility functions of all observer models

are computed by numerical integration. For a given input we

choose the action with maximum utility.

Another possible observer model would compute the same

probability distributions as in MS and MA, but then select

stochastically from them instead of choosing the maximum. Such a

behavior is often called Probability Matching (PM). In our case it

could be used in two ways. A recent paper proposed PM at the

level of causal inference [15], an action will be chosen according to

one of the generating models with the probability for that model to

be the underlying cause (P(C)). Because this is an intermediate

between MA and MS we only consider it when computing the R2,

where we distinguish between those. The second possibility would

be to use PM for the action selection step, which was found in

various studies to be a strategy employed by human observers in

certain tasks [78,79]. This is actually implicitly assumed in our

model by using the softmax function to pick the action, thereby we

do not include this option in our analysis.

Supporting Information

Figure S1 Sketch of the neural network used for
approximation of the Q-value function. Setup for the

two–step orienting task, the setup for the simple orienting task

differs only in that the network has only half as many output

neurons, since only a single action is required.

(EPS)

Figure S2 PSEs of the model for the 2-AFC task. Plot of

the PSEs for each of 5 repetitions of training and 2-AFC testing

with different values for the variance of the visual noise s2
v . For all

trials s2
a~5. In the test trials the visual signal of the standard was

always at 18, the auditory at 12. PSEs of the RL model (black

crosses) and Bayesian integration (red circles).

(EPS)

Figure S3 R2 values of different observers for the re-
sponses of the RL model for all inputs. Same Plot as Fig. 6

but using inputs from the full space. The black and gray bars show

the results for the auditory and the visual output for 50,000 trials.

Mean over 10 training sessions with s2
a~3, s2

v~2, errorbars show

standard deviation.

(EPS)

Figure S4 Input weights of the NN for the foveation
setup. Input weights vi,j to representative hidden neurons. The

left plot shows the weights only from visual input neurons

(i~½0 : xmax{1�), the right only from the auditory input neurons

(i~½xmax : 2xmax{1�).
(EPS)
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