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Abstract

Epilepsy  is  a  chronic  neurological  disorder  that  affects  the  function  of  the  brain  in  people  of  all  ages.  It
manifests  in  the  electroencephalogram  (EEG)  signal  which  records  the  electrical  activity  of  the  brain.  Various
image  processing,  signal  processing,  and  machine-learning  based  techniques  are  employed  to  analyze  epilepsy,
using spatial and temporal features. The nervous system that generates the EEG signal is considered nonlinear and
the  EEG  signals  exhibit  chaotic  behavior.  In  order  to  capture  these  nonlinear  dynamics,  we  use  reconstructed
phase  space  (RPS)  representation  of  the  signal.  Earlier  studies  have  primarily  addressed  seizure  detection  as  a
binary  classification  (normal vs.  ictal)  problem  and  rarely  as  a  ternary  class  (normal vs.  interictal vs.  ictal)
problem.  We  employ  transfer  learning  on  a  pre-trained  deep  neural  network  model  and  retrain  it  using  RPS
images  of  the  EEG  signal.  The  classification  accuracy  of  the  model  for  the  binary  classes  is  (98.5±1.5)% and
(95±2)% for the ternary classes. The performance of the convolution neural network (CNN) model is better than
the other existing statistical approach for all performance indicators such as accuracy, sensitivity, and specificity.
The  result  of  the  proposed  approach  shows  the  prospect  of  employing  RPS  images  with  CNN  for  predicting
epileptic seizures.
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Introduction

Epilepsy  is  a  common  neurological  condition  that
causes recurrent and unprovoked seizures. Epilepsy is
a central nervous system disease that causes abnormal
behavior  and  sometimes  even  loss  of  awareness  in  a
patient. About seventy million people in the world are
affected  by  epilepsy.  The  epileptic  seizure  may  be
related to brain damage or hereditary, in which the cause

is  often  completely  unknown.  Electroencephalogram
(EEG)  signals  which  monitor  brain  activity  are
generally  analyzed  by  neurologists  and  specialists  to
detect  and  categorize  various  types  of  disease  and  to
identify  regions  indicative  of  pre-ictal  spikes  and
seizures. The presence of numerous spikes in the EEG
signals is an indication of epileptic seizure activity in
the brain.

Normally  in  clinical  environments,  diagnosis  of
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seizure  in  patients  involves  continuous  monitoring
using  video  and  EEG  signals  recorded  over  long
periods. Human experts are then required to manually
review  the  data  based  on  the  visual  inspection  to
arrive  at  a  clinical  interpretation.  This  is  time-
consuming and there  is  a  lack  of  sufficient  expertise.
Hence  automation  of  seizure  detection  is  essential.
Automation  systems  require  features  extracted  from
the  signal.  Several  techniques  exist  for  extracting  the
feature  either  in  the  time,  frequency,  or  time-
frequency  domains.  Due  to  the  nonlinear  and  non-
stationary nature of the EEG signals, features based on
the  time-frequency  domain  are  used  for  detecting
epileptic  signals[1–3].  Empirical  mode  decomposition
technique  and  Fourier-Bessel  expansion  are  used  for
computing  the  mean  frequency  of  intrinsic  mode
functions  (IMFs)  to  discriminate  ictal  from  interictal
EEG  signals[4].  Recurrence  quantification  analysis
(RQA)[5],  wavelet  transform  and  multi-wavelet
transform are used for classification of the EEG signal
into  three  classes  such  as  normal,  interictal  and  ictal
in[6]. Alternatively, a pattern recognition approach that
recognizes  the  recorded  EEG  signals  on  cognitive
conditions  focusing  more  on  improving  classification
accuracy  is  proposed[7].  Numerous  machine  learning
algorithms  like k-nearest  neighbor  (k-NN),  naive
Bayes (NB),  random forest,  artificial  neural  networks
(ANN),  support  vector  machine  (SVM),  decision
trees, least square-support vector machine (LS-SVM),
general  regression  neural  network  (GRNN)  and
mixture  of  expert  model  have  been  proposed  to
classify the abnormality from the EEG data.

Based on information from magnetoencephalogram,
electromyogram, electrooculogram, electrocardiogram
and  EEG,  nonlinear  dynamic  techniques  are
effectively  used  in  biomedical  applications[2–8].  This
study focuses on modeling the nonlinear dynamics of
the  brain.  As  universally  accepted,  the  brain  is
regarded as a chaotic dynamic system, and it produces

EEG  signals  that  are  usually  chaotic[9].  In  another
sense,  an  EEG  signal  is  chaotic,  as  its  amplitude
changes randomly over time. These chaotic signals are
characterized  by  long-term  unpredictability,  which
makes  classical  signal  processing  techniques  less
helpful.  Modeling  the  dynamics  is  a  challenge  when
using  conventional  features/models.  We  use
reconstructed  phase  space  (RPS)  techniques
developed  for  chaotic  signal  analysis  on  the  epilepsy
dataset from the University of Bonn (UoB) and show
improved classification accuracy for 22 different class
combinations.

The  use  of  RPS  trajectory  images  as  input  to  a
convolution  neural  network  helps  to  model  the
dynamics.  Further,  the deep neural  network results  in
an  end-to-end  system,  eliminating  the  need  to
handcraft  features  for  modeling.  The  end-to-end
system proposed  performs  at  par  or  better  than  other
state-of-the-art  systems  reported  in  literature.  A  pre-
trained  convolutional  neural  network  of  the  AlexNet
architecture  is  retrained  with  RPS  images  extracted
from  the  dataset  to  classify  the  data  into  different
classes.  Representative  RPS  images  for  each  of  the
five classes of UoB dataset are shown in Fig. 1.

Due to the tedious nature of observing EEG signals
in  clinical  settings,  researchers  have  employed
machine  learning  approaches  for  automating  the
detection of seizure classification of EEG signals with
promising  results.  In  1979,  Gotman et  al[10] is  one  of
the  pioneers  who  helped  open  up  the  research  in
seizure  detection,  used  sharp  and  spike  waves  for  an
automatic  recognition  system  that  used  prolonged
EEG  recordings  to  detect  interictal  epileptic  activity.
Later  on,  he  focused  on  using  functional  magnetic
resonance  imaging  to  examine  automatic  seizure
detection with high-frequency activities in the wavelet
domain[11].

Using  UoB  dataset,  researchers  have  examined
several  techniques  for  the  automatic  detection  of
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Fig. 1   Representative RPS images of set A, B, C, D, and E of UoB dataset.
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epilepsy[12].  SVMs  have  commonly  been  used  as  a
classifier  to  distinguish  seizure vs. non-seizure[13]

using  features  based  on  discrete  wavelet  transform
(DWT)[14],  tunable  Q-wavelet  transform[15] and
recurrence quantification analysis[16] with an accuracy
of  96.3%,  98.6%,  and  94.4%,  respectively.  Shoeb[17]

used  SVM  for  patient-specific  prediction  which
resulted  in  96% accuracy.  Gandhi et  al[18] utilized  a
probabilistic  neural  network  (PNN)  in  combination
with  SVM  which  resulted  in  an  accuracy  of  95.44%
for  classifying  class  combination  ABCD-E.  Sharmila
et  al[7] studied  fourteen  different  combinations  of
classes  using  statistical  features  extracted  from DWT
coefficients  and  applied  naive  Bayes  and k-NN
classifiers.  A  GRNN  was  employed  for  the
classification  of  ictal  and  non-ictal  states  in[19].  Both
the  studies[7,19] achieved  maximum accuracy  of  100%
for  A-E  (normal vs. seizure)  cases.  In  a  study  by
Nicolaou et  al[20],  where  entropy-based  features  were
employed an accuracy of 93.55% was attained for A-E
cases and 86.1% for ABCD-E.

A  probabilistic  approach  to  modeling  the
distribution  of  the  classes  using  Gaussian  mixture
model  (GMM)  by  Chua et  al[21] resulted  in  an
accuracy  of  93.11% for  three  classes  (normal,
interictal  and  ictal)  when  using  higher  order  spectra
(HOS)  features[22] and  93.1% classification  accuracy
when using power spectral density features[23].

Deep  learning  approaches  in  machine  learning  are
currently  outperforming  the  state-of-art  performance
of  conventional  machine  learning  algorithms  in
numerous  domains.  Employing  deep  learning
methods,  Ishan  Ullah et  al[24] used  pyramidal  one-
dimensional convolution neural network (P-1D-CNN)
and achieved the maximum accuracy of 100% for A-E
class  combination.  In  the  P-1D-CNN,  novel  data
augmentation  schemes  and  an  effective  deep  CNN
model were used for the classification of UoB dataset.
Rajendra  Acharya et  al[25] reported  accuracy  of
88.67% using  a  CNN  with  thirteen  deep  convolution
layers. Table  1 reviews  selected  studies  on  EEG
classification using the UoB dataset with the features,
classifiers used and their accuracies.

The  PSR  signal  provides  a  visualization  of  the
signal's dynamic behavior over time which is useful to
guide  model  specification.  In  some  studies,  two
dimensional (2D) and three-dimensional (3D) PSRs of
the  IMFs  are  used  for  the  classification  of  EEG
signals[30].  Using  dataset  of  Graz  University  of
Technology, the PSR technique has been used for the
three-class  combination  of  motor  imagery
classification[35].  Based  on  2D  RPS  plot,  from
Physionet  CHB  MIT  database,  central  tendency
measure (CTM) was used to compute the region of 2D
RPS plots to differentiate between seizure and seizure-
free EEG signals[36].

The rest of the paper describes in detail the process
involved  and  discusses  the  basic  details  about  RPS,
convolution  neural  network,  its  layers  and  transfer
learning.  Next,  it  describes  the  Bonn  Dataset,  the
design of the proposed system to classify EEG signals
based  on  RPS  images,  and  finally  deals  with  the
experimental results and performance of the system.

Materials and methods

Reconstructed phase space (RPS)

RPS is a method used to construct the phase space
of a dynamical system which is a space where various
possible  states  of  a  system  are  represented.  At  any
given time, the state of the system is represented. The
state  of  the  system  changes  with  time.  Thus  the
dynamics  of  the  system  are  captured  by  the  vector
describing  the  state  change  over  time  in  the  phase
space.  The  shape  of  the  trajectories  gives  insights
about the periodic/chaotic nature of the system. From
Takens embedding theorem[37], the phase space can be
reconstructed  using  a  single  observation  and
employing a  small  time delay embedding.  For  a  time
series S[ti], i=1, 2,...N, the phase space can be denoted
at time ti as:

S [ti] = S [ti] ,S [ti+τ] ,S [ti+2τ] , . . .S [ti+ (m−1)τ]
(1)

where i=1, 2, …N–(m–1)τ. Here time delay is denoted
by τ and m is the phase space dimension.

Time delay embedding is  the most  frequently used
method of RPS. It is essential to determine the optimal
values  of  time  delay τ and  the  embedding  dimension
m.  The  choice  of  both  parameters τ and m are  key
factors  in  nonlinear  analysis.  Using  average  mutual
information we can select a suitable time delay and by
applying  false  nearest  neighbor  (FNN)  method  one
can  identify  the  dimension  of  RPS.  In  this  study  we
use a time delay of τ=6 and embedding dimension of
m=2 explained under proposed model, to construct the
RPS portraits for the given EEG time series data.

Convolution neural network (CNN)

CNN  is  a  deep  neural  network  architecture
conventionally  employed  to  analyze  images.  CNN  is
composed  of  multiple  convolution  layers  and  each
layer  generates  a  feature  map  to  preserve  unique
information  about  the  input  images[38].  Convolution
operations are applied by the convolution layer to the
input  image  and  transfer  the  result  to  the  succeeding
layer. Next, the pooling layer is used in the middle of
the  convolution layer  for  reducing the  dimensionality
of  the  feature  map  while  preserving  the  relevant
features.  It  limits  the  number  of  trainable  parameters
by  reducing  the  size.  The  max  pool  operation  selects
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the  most  dominant  features  in  the  map.  Fully
connected  (FC)  layers  are  typically  applied  after  the
convolution layers for classification purposes. The last
fully  connected  layer  is  a  softmax  layer  used  to
normalize the output and predict the class of the input
image.  In  this  study,  we  use  the  AlexNet  model  and
experiment  with  different  class  combinations,
achieving the best results using RPS portraits.

Transfer learning

The problem of classifying the signal as being from
an  epileptic  source  is  mapped  to  classifying  RPS
images  of  epileptic/non-epileptic  subjects  using  deep
learning.  Training  deep  learning  models  requires  a
large  dataset  of  images  and  numerous  iterations  for
convergence[39].  As  acquiring  a  large  dataset  is
challenging we adopt transfer learning for the task[40].
Transfer  learning  aims  to  use  the  knowledge  learned
from  the  source  domain  to  the  target  domains.  It
enables  us  to  create  accurate  models  without  training
an  entire  network  from  scratch  even  with  an
insufficient dataset. In place of learning from scratch,
we  begin  with  patterns  learned  when  solving  a
different  problem.  Thus  we gain  knowledge (features
and weights)  from previously learned models  to  train
new  models  and  avoid  proceeding  from  scratch[41].
Pre-trained  CNN  models  like  LeNet,  AlexNet,

VGGNet,  GoogLeNet,  ResNet, etc.,  can  be  used  for
the task.

Choosing  a  pre-trained  model  in  transfer  learning
indicates the specific categorization of the domain and
its  essential  features  are  shaped  by  (i)  the  input
quantity  of  the  images  and  (ii)  the  similitude  of  the
model's  domain  to  the  task  employed,  for  it  has  a
bearing  on  the  performance  of  the  system.  Epileptic/
non-epileptic is the domain specific class label.

Dataset description

The  University  of  Bonn,  Department  of
Epileptology,  Germany,  provides  an  open-source
epileptic  EEG  dataset[42].  Bonn  database  is  a  widely
used  benchmarking  dataset  for  validating  seizure
detection  models.  The  dataset  uses  the  10-20
international electrode placement system for acquiring
the  data.  This  experimental  dataset  includes  five  sets
of EEG data A, B, C, D, and E as shown in Table 2.
Sets  A  and  B  contain  normal  EEG  signals  recorded
from  five  healthy  subjects.  The  remaining  sets  of  C,
D,  and  E  were  recorded  from  epilepsy  patients.  The
sets  A  and  B  of  normal  subjects  were  relaxed  in  an
awaken state and represent EEG recordings with their
eyes in open and closed states respectively. Before an
epileptic  attack,  set  C  was  recorded  opposite  to  the
epileptogenic  zone,  while  set  D  was  recorded  in  the

Table 1   Seizure classification studies on the UoB dataset

Authors Methods used Accuracy (%) Classifiers

Sharmila et al[7] Conventional features from DWT 95.10–100.00 NB + k-NN

Guo et al[26] Genetic programming 93.50 k-NN

Tzallas et al[27] Time-frequency features 97.70–100.00
ANN

Guo et al[28] Line length features on wavelet transform 97.77–99.60

Kumar et al[29] DWT based approximate entropy 92.50–100.00 ANN + SVM

Sharma et al[30] 2D and 3D phase space representation of intrinsic mode functions 98.60
LS-SVM

Manish et al[31] Analytic time frequency – flexible wavelet transform 92.50–100.00

Bhattacharyya et al[15] Tunable Q-wavelet transform 98.60

SVM

Acharya et al[16] Recurrence quantification analysis 94.40

Nicolaou et al[20] Permutation entropy 79.94–93.55

Acharya et al[32] DWT 96.30

Subashi et al[33] DWT 98.75–100

Swami et al[19] Dual tree complex wavelet transform 93.30–100.00 GRNN

Chua et al[22] Higher order spectra features 93.10
GMM

Acharya et al[34]
Nonlinear parameters: approximate entropy, correlation dimension, Hurst
exponent, fractal dimension

95.00

Ullah et al[24] Data augmentation schemes 99.10–100.00 P-1D-CNN

Acharya et al[25] 13-layer deep CNN model 88.67 CNN
NB: naive Bayes; k-NN: k-nearest neighbor; ANN: artificial neural networks; SVM: support vector machine; LS-SVM: least square-support vector machine; GRNN:
general regression neural network; GMM: Gaussian mixture model; DWT: discrete wavelet transform; CNN: convolution neural network; P-1D-CNN: pyramidal one-
dimensional convolution neural network.
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epileptogenic zone. These two sets C, D represent the
interictal  state.  Set  E  was  recorded  during  an
occurrence  of  epileptic  seizure  (ictal)  signal  in  an
epileptogenic zone.

Each  set  of  data  recorded  with  a  128-channel
amplifier system comprises 100 files corresponding to
single-channel EEG segments and the duration of each
sample recording is 23.6 seconds with a sampling rate
of  173.61  Hz.  A  band-pass  filter  with  a  passband  of
0.53  Hz –40  Hz  (12  dB/oct)  was  used  to  select  the
EEG signal of the required band. As a result of visual
inspection  of  artifacts  (e.g.,  owing  to  a  pathological
activity  or  eye  movement),  these  artifacts  were
removed  from  the  continuous  multi-channel  EEG
recordings.  From  all  recording  locations  with  ictal
activity, the EEG segments were selected for set E[12].

Thus  each  recording  data  contains  4 097  samples
which  have  been  split  into  segments  of  510  samples
each  to  generate  many  instances  from  one  record.
These  segments  form  the  basis  for  all  further
processing.

Proposed model

The  proposed  system  uses  RPS  images  that  are
extracted from segments of the EEG signal in the UoB
dataset.  The RPS image is  used to  test  a  CNN of  the

AlexNet[43] architecture,  so  as  to  classify  the  RPS
image  into  epileptic  and  non-epileptic  classes.  The
functional flow diagram is shown in Fig. 2.

RPS image dataset

The observational dataset includes five sets of EEG
data A, B, C, D, and E. These sets pertain to normal,
seizure-free  (interictal)  and  epileptic  seizure  (ictal)
signals. The choice of segmenting each recording into
510 samples is because RPS portraits are too dense for
larger  samples  and  CNN  cannot  capture  the  intrinsic
feature the phase space depicts. Therefore, by trial and
error,  510  samples  are  found  to  be  the  most  suitable
segment  size  to  represent  RPS  portraits  as  well  as  to
generate  sufficient  images  to  retrain  the  CNN model.
Fig. 3 shows the process flow diagram for the dataset
creation.

Embedding dimension 'm'  and time delay 'τ'  are the
critical  parameters  of  the  RPS  portraits[44].  FNN  is
chosen  for  finding  embedding  dimension,  while
mutual  information  is  used  for  finding  the  time
delay[45].  The  embedding  dimension  is  based  on  the
FNN percentage where it  effectively drops to zero as
depicted  in Fig.  4A and  the  time  delay  is  based  on
mutual information at which the first minimum occurs
as  depicted  in Fig.  4B.  After  running  multiple
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Fig. 2   Functional flow diagram of the proposed system.
 

Signal
segm

 entation
EEG signal 

dataset
A, B, C, D, E

510 510 510 RPS
representation

m=2, τ=6

UoB DB

...... ......

RPS images
A, B, C,

 D, E

 

Fig. 3   RPS image acquisition.

Table 2   Description of the EEG database of UoB[12]

Dataset Subject details　 Patient status　 Electrode type　 Electrode placement　
No. of epochs and
duration (second)　

Set A Five healthy subjects
(normal)

Awaken state with eyes open Surface International 10-20 system 100 and 23.6

Set B Awaken state with eyes closed Surface International 10-20 system 100 and 23.6

Set C

Five epilepsy patients

Interictal (seizure-free) Intracranial Opposite to epileptogenic zone 100 and 23.6

Set D Interictal (seizure-free) Intracranial Within epileptogenic zone 100 and 23.6

Set E Ictal (seizure) Intracranial Within epileptogenic zone 100 and 23.6
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experiments we arrived at an appropriate delay of τ=6
as seen from Fig. 4B. Likewise Fig. 4A, it can be seen
that  the  ideal  embedding  dimension  would  be m=3,
but  since  we  are  working  on  two  dimensional  (2D)
CNN  we  restrict  our  dimension  to m=2.  Every
segment  is  transformed  into  a  RPS  image  and  these
images are extracted for the non-overlapping segments
with the dimension m=2 and time delay τ=6.

Pre-trained model: AlexNet

In  this  study,  a  pre-trained  AlexNet  model  is  used
as it shows better performance in classifying epileptic
seizure sets as compared to another state of the art of
CNN models namely LeNet and GoogLeNet as shown
in Table  3.  AlexNet  changed  all  the  records  of  pre-
existing non-deep learning-based techniques. AlexNet
contains  five  convolution  (Conv)  layers  and  three
fully  connected  (FC)  layers.  Each  convolution  layer
consists of 96 to 384 filters and the size of the filters
ranges from 3×3 to 11×11 with the feature map of 3 to
256  channels  each.  In  each  layer,  a  non-linear  ReLU
(Rectified  Linear  Unit)  activation  function  is  used.
ReLU  is  an  important  feature  of  AlexNet  instead  of
the tanh or sigmoid activation function used to train a
model  for  a  neural  network.  The  primary  reasons  for
using  ReLU  in  Convolution  layers  are  faster
convergence  owing  to  the  lack  of  vanishing  gradient
problem  and  inducing  sparsity  in  the  features.  3×3
Max pooling is applied to the outputs of layer 1, 2 and
5. In the first layer, a stride of 4 is used to reduce the
computation.

Local Response Normalization (LRN) is used in the
first  and  second  layers  before  max  pooling.  When
compared  to  LeNet,  AlexNet  applies  larger  weights
and the shape varies from layer to layer[43]. To handle
overfitting,  dropout  is  used  instead  of  regularization.
The  training  time,  however,  is  doubled  by  a  0.5
dropout  rate.  AlexNet  model's  tensor  sizes  (images)

and  number  of  parameters  of  convolution  layers  are
shown in Fig. 5.

Training AlexNet

For  training  the  proposed  model,  90% of  epileptic
and  non-epileptic  RPS  images  of  the  dataset  (section
5.1)  are  utilized  (75% training  and  15% validation).
10% of  the  data  is  reserved  for  testing.  To  optimize
the  performance  stratified  10-fold  cross  validation
(CV) is  performed.  The 10-fold  CV splits  the  data  at
random  into  10-disjoint  sub-sets  called  folds.  The
stratified folds maintain the mean response value in all
folds,  which  is  approximately  equal.  Each  fold  holds
the same proportions of the two types of class labels,
namely epileptic (Set E) and non-epileptic (Sets A, B,
C, and D) classes.

Training  of  AlexNet  model  requires  the  weight
(Kernels)  to  be  learned  from  the  data.  We  use
backpropagation  with  cross  entropy  as  the  loss
function along with the stochastic gradient descent for
optimization  to  learn  these  parameters.  The  model  is
trained  for  image  classification  using  the  Caffe
framework. This model is trained for 200 epochs with
learning  rate  (0.01),  batch  size  (128),  weight  decay
(0.0001), gamma (0.1), and momentum (0.9) as hyper-
parameters.  The  outcome  is  that  the  model's  depth  is
significant  for  its  high  efficiency,  which  is
computationally  expensive  but  made  possible  using
graphics  processing  units  (GPUs).  Several  other
complicated  CNNs  can  perform  very  effectively  on
faster GPUs, even on large datasets. Using K80 GPU
machine, this step takes around 45 minutes for one run
of  training  for  computation  on  UoB  datasets.  As  the
model  complexity  increases,  the  computational
complexity during training and testing also increases.
The  retrained  AlexNet  model  in Fig.  6 shows  the
visualization of convolution filters of the CNN model
trained on RPS images of the UoB dataset.
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Results

In  this  work,  twenty-two different  combinations  of

classes  were  considered  for  classifying  the  segments
into  being  epileptic/non-epileptic  conditions.  To
evaluate  the  performance  of  the  proposed  RPS based
deep  learning  approach,  the  performance  was
evaluated based on standard metrics like classification
accuracy, sensitivity, specificity, precision and F-score
for  all  the  binary  and  ternary  classes  as  described
below.

Speci f icity (S pec) =
T N

T N +FP
(2)

Sensitivity (S ens) or Recall =
T P

T P+FN
(3)

Accuracy (Acc) =
T P+T N

T P+T N +FP+FN
(4)
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Fig. 6   Trained AlexNet with a representative feature map learned from RPS images.

Table 3   Comparison of AlexNet with LeNet and GoogLeNet
CNN model/Class
combinations

LeNet
(%)

GoogLeNet
(%)

AlexNet
(%)

A-E 99.44 96.67 100.00

B-E 99.44 96.67 99.44

C-E 50.00 98.33 98.89

D-E 96.67 97.78 97.22

AB-E 66.67 94.44 99.26

CD-E 66.67 97.41 99.63

ABCD-E 99.11 94.22 98.67

CNN: convolution neural network.
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Precision(Prec) =
T P

T P+FP
(5)

FScore =
2×Prec×S ens

Prec+S ens
(6)

Here,  TP  refers  to  the  number  of  images  that  are
actually  epileptic  and  predicted  as  epileptic  class,  FP
indicates  actually  non-epileptic  class  predicted  as
epileptic.  TN  refers  to  actually  non-epileptic  class
predicted  as  non-epileptic  class,  while  FN  indicates
actually epileptic and predicted as non-epileptic class.

Table  4 shows  the  classification  accuracy,
sensitivity, and specificity for 15 different binary class
combinations.  The  corresponding  confusion  matrices
for  a  few  binary  classes  are  shown  in Table  5.
Likewise,  the  performance  of  the  system  for  ternary
class combinations is given in Table 6.

The  corresponding  confusion  matrices  for  selected
ternary  class  combinations  are  given  in Table  7.  The
results indicate that the proposed system performs best
for  the  case  A-E  with  100% accuracy.  The  system
performed  better  than  or  at  par  with  other  results
reported in the literature (Table 1).

The  performance  of  our  approach  was  compared
with  the  state-of-the-art  methods  of  earlier
investigations  for  all  twenty-two  class  combinations.
Sensitivity  scores  of  the  proposed  approach  indicate
that  the  percentage  of  correctly  identified  epileptic
patients for all  class combinations is always high and
for  nine  of  the  classes  100% is  achieved.  For
specificity,  the proposed approach achieves 100% for
case A-E and very high percentages for the rest of the
class combinations.

Table  8 reports  the  sensitivity  and  specificity  for

various class combinations in comparison with results
in the literature. To the best of the authors' knowledge,
the  performance  of  our  sensitivity  is  better  than
existing  approaches.  We  see  that  the  proposed
approach  of  using  RPS  based  CNN  models  perform
better  than  existing  approaches  for  all  binary  classes
with  an  accuracy  of  (98.5±1.5)%.  For  ternary  class
combinations, the proposed system has an accuracy of
(95±2)% except  for  the  C-D-E  case  where  the
accuracy is 84.44%.

Table 4   Performance measures of binary class combination

Class combination Accuracy (%) Sensitivity (%) Specificity (%)

A-E 100.00 100.00 100.00

B-E   99.44 100.00   98.90

C-E   98.89 100.00   97.83

D-E   97.22   97.75   96.70

AB-E   99.26 100.00   98.90

AC-E   99.63 100.00   99.45

BC-E   98.52 100.00   97.83

BD-E   97.78   98.84   97.28

CD-E   99.63 100.00   99.45

ABC-E   99.17   98.88   99.26

ACD-E   98.61   98.84   98.17

BCD-E   98.06 100.00   97.47

AB-CD   98.11   99.43   97.81

AB-CDE   97.33   97.43   97.19

ABCD-E   98.67 100.00   98.36

Table 5   Confusion matrices under various test conditions: binary class combinations

Class combination Positive and negative cases Predicted as non-epileptic Predicted as epileptic Accuracy (%)

A-E
Actually non-epileptic 90 0

100.00
Actually epileptic 0 90

B-E
Actually non-epileptic 90 0

99.44
Actually epileptic 1 89

C-E
Actually non-epileptic 90 0

98.89
Actually epileptic 2 88

D-E
Actually non-epileptic 88 2

97.22
Actually epileptic 3 87

AB-E
Actually non-epileptic 180 0

99.26
Actually epileptic 2 88

CD-E
Actually non-epileptic 180 0

99.63
Actually epileptic 1 89

ABCD-E
Actually non-epileptic 360 0

98.67
Actually epileptic 6 84
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Discussion

Chaotic  dynamical  systems  like  EEG  may  evolve
asymptotically  towards  lower  dimensional  attractors.
These attractors can be indirectly visualized using the
phase space reconstruction. We see from Fig. 1, more
so  for  the  ictal  case  (class  E),  that  such  lower
dimensional attractors exist for EEG signals. This was
reflected  in  earlier  studies  too[30, 35–36],  where  the  RPS

was  used  as  a  basis  to  manually  extract  features  and
then classify.

To reconstruct phase space and its chaotic features,
the choice of time delay and embedding dimension are
the critical  factors[46].  If  the range of τ is  too low, the
attractor  will  be  compressed  into  the  area  of  the
diagonal  line  of  the  coordinate  system;  on  the  other
hand,  if  the  range  of τ is  too  high,  the  data  point
trajectory  will  wrinkle  and  fold,  making  it  hard  to
achieve  clear  projection  relationships.  This  study  to
the  best  of  our  understanding  is  the  first  approach  to
use the RPS images as the basis to develop an end-to-
end CNN based system that  performs at  par  or  better
than  other  approaches  in  the  literature.  It  can
automatically extract features and detect the ictal case
with close to 100% accuracy.

The sensitivity of our model is 100% in most cases.
More significantly it is 99.43% for classes AB-CD as
seen  in Table  8.  This  signifies  the  model  can  clearly
distinguish between a normal signal and a signal from
seizure-free  intervals.  Considering  that  only  510
samples  are  required  to  make  an  accurate

Table  6   Performance  measures  of  ternary  class
combination　　　　　　　　　　　　　　　　　　   (%)

Class combination Accuracy Sensitivity Specificity

AB-CD-E 96.00 96.80 98.05

A-C-E 94.81 94.87 97.40

A-D-E 95.93 96.07 97.98

B-C-E 97.04 96.34 98.53

B-D-E 95.56 95.80 97.86

A-B-E 93.33 93.82 96.80

Table 7   Confusion matrices under various test conditions: ternary class combinations

Class combination Positive and negative cases Predicted as non-epileptic Predicted as non–epileptic Predicted as epileptic Accuracy(%)

AB-CD-E

Actually non-epileptic (AB) 179 1 0

96.00Actually non-epileptic (CD) 9 171 0

Actually epileptic 4 4 82

A-C-E

Actually non-epileptic (A) 85 5 0

94.81Actually non-epileptic (C) 7 83 0

Actually epileptic 0 2 88

B-D-E

Actually non-epileptic (B) 89 1 0

95.56Actually non-epileptic (D) 1 89 0

Actually epileptic (E) 4 6 80

Table 8   Comparison of performance measures: sensitivity and specificity of this work with those of earlier reported studies

Class combination
Best reported sensitivity

(%)
Sensitivity of proposed work

(%)
Best reported specificity

(%)
Specificity of proposed work

(%)

A-E 100.00[7,19,29,31] 100.00 100.00[7,19,31] 100.00

B-E 99.49[7], 100.00[29,31] 100.00 99.00[7,19], 100.00[31] 98.90

C-E 99.50[7], 99.30[19,29], 100.00[31] 100.00 99.74[7], 99.40[29], 98.00[31] 97.83

D-E 95.23[7], 96.30[19], 100.00[31] 97.75 95.01[7], 92.60[29], 97.00[31] 96.70

AB-E 98.02[7], 100.00[19,31] 100.00 99.74[7], 100.00[31] 98.90

CD-E 97.50[7], 100.00[31] 100.00 99.16[7], 96.00[31] 99.45

ACD-E 93.64[7], 98.20[29] 98.84 98.57[7], 94.40[29] 98.17

BCD-E 90.12[7], 98.00[29] 100.00 97.25[7], 93.70[29] 97.47

ABCD-E 89.92[7], 98.30[29], 100.00[31] 100.00 97.31[7], 93.50[29], 96.00[31] 98.36

AB-CD 90.50[31] 99.43 94.50[31] 97.81
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classification.  This  approach  may  be  feasible  for  use
in  real  time.  The  limitations  of  this  study  are  it  has
been used on the UoB dataset which is a clean dataset.
The  approach  needs  to  be  validated  on  a  more
challenging  dataset  like  Kaggle:  Melbourne
University  AES/MathWorks/NIH  Seizure  Prediction
or in the live environment.

In  conclusion,  the  brain  is  a  nonlinear  dynamic
system  and  the  EEG  signal  is  modeled  as  a  chaotic
system using RPS portraits. The novelty of this study
is  the  use  of  these  RPS  images  as  input  to  the  CNN
model.  We  further  employ  transfer  learning  on  the
standard  AlexNet  model  to  learn  the  RPS images  for
the seizure detection problem. We report  an accuracy
of  (98.5±1.5)% (epileptic vs. non-epileptic)  and
(95±2)% (normal vs. interictal vs. ictal)  which  is
higher than most existing results in the literature.  We
thus  see  that  the  proposed  approach  can  model  the
dynamic  nature  of  the  EEG  signal.  The  RPS  images
are  seen  to  be  valid  input  representations,  and  the
CNN model can accurately capture the features in the
RPS  image  and  perform  with  high  accuracy  for  22
different  class  combinations.  The  outcome  of  the
proposed  system using  RPS images  could  be  used  in
supporting  physicians  to  detect  epilepsy  and  may
serve  as  a  precursor  to  assist  the  neurologist  in
classifying the epileptic states of the patients.
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