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Abstract

We present a two-stage hybrid-resolution approach for rigid-body protein-protein docking. The first stage is carried out at
low-resolution (15u) angular sampling. In the second stage, we sample promising regions from the first stage at a higher
resolution of 6u. The hybrid-resolution approach produces the same results as a 6u uniform sampling docking run, but uses
only 17% of the computational time. We also show that the angular distance can be used successfully in clustering and
pruning algorithms, as well as the characterization of energy funnels. Traditionally the root-mean-square-distance is used in
these algorithms, but the evaluation is computationally expensive as it depends on both the rotational and translational
parameters of the docking solutions. In contrast, the angular distances only depend on the rotational parameters, which are
generally fixed for all docking runs. Hence the angular distances can be pre-computed, and do not add computational time
to the post-processing of rigid-body docking results.
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Introduction

Protein-protein interactions are important for many fundamen-

tal cellular processes, and high-throughput proteomics studies

have shown that most proteins interact with other proteins. The

experimental elucidation of the of protein-protein complexes

structures, however, is laborious and not always successful.

Starting from the unbound protein structures, computational

protein-protein docking attempts to determine the structures of the

bound complexes [1,2]. This challenging problem is usually

approached in a stepwise fashion. The first stage consists of a rigid-

body docking run, searching the 6-dimensional (6D) rotational and

translational space for binding orientations. The exhaustive search

of this 6D space is time consuming, and is usually carried out with

rapidly computable scoring functions and fast algorithms such as

Fast Fourier transform (FFT)[3–6] or geometric hashing [7]. The

first stage docking results may be further analyzed in a variety of

ways, such as re-ranking using more sophisticated scoring

functions [8–10], filtering [11], or clustering [12–14]. The second

stage accounts for conformational changes of the constituent

proteins upon complex formation. Such conformational changes

can involve only surface side chains, the backbones of surface

loops, or even entire domains [15–19].

We developed the ZDOCK series of programs for initial stage

docking [20–26]. ZDOCK performs an exhaustive rigid body

search in the 6D rotational and translational space. By default,

three Euler angles are sampled with 6u or 15u spacing, and the

three translational degrees of freedom are sampled with 1.2 Å

spacing [27,28]. For each set of rotational angles we retain only

the translation with the best score, which results in thousands to

tens of thousands predictions, depending on the angle spacing

used. The final predictions are ranked according the ZDOCK

score.

In order to cluster, prune, or post-process the large number of

predictions from the rigid-body docking run, we generally need to

measure the similarity between the predictions. The most common

measure is the root-mean-square distance (RMSD), which indicates the

distance between the corresponding Ca atoms (sum over k = 1 to

N) of two predicted ligand orientations (i and j), keeping the

receptor fixed in space:

RMSD(i,j)~ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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The drawback of using the RMSD as a similarity measure is

that it is computationally expensive as each pair of predictions

needs to be evaluated according to equation 1, which needs to be

done for each docking run. In this work we explore the angular

distance between predictions as an alternative for the RMSD. We

define the angular distance as the angle between the rotations

corresponding to two docking predictions, ignoring the transla-

tional degrees of freedom. The main advantage is that the angular

distance only depends on the Euler angles of the two predictions.

As rigid body docking algorithms typically sample a fixed set of

angles that do not depend on the monomers or docking solutions,

the angular distances can be pre-calculated and do not add

computational time. This is in contrast to the RMSD’s, which

need to be evaluated for each docking run. Using angular distance
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instead of RMSD may seem a crude approximation, as two

predictions with a small angular distance may have a large RMSD

and thus be very different. However, we reason that the

correlation between angular distance and RMSD is largest in

the local minima of well-defined energy funnels, which are the

predictions that we are most interested in.

In this work we developed a two-step hybrid-resolution

procedure for rigid-body docking, in which the angular distance

is used to select the orientations to be explored in the second step

that are in close proximity to the orientations predicted by the first

step. In addition, we show that the angular distance can be used

for pruning or clustering docking predictions, as well as the

analysis of energy funnels.

Methods

Rigid-body Docking
For the rigid-body docking we used ZDOCK3, which was

developed in our lab and includes the IFACE statistical pair

potential [22]. The most recent implementation ZDOCK3.0.2

[23] uses a recently developed 3D convolution library for the FFT

and requires an average running time per complex of about 20

minutes for the docking Benchmark 4.0, using 15u angular

sampling on a single 2.8 GHz 64-bit Opteron processor with 8 GB

available RAM. ZDOCK uses either a 6u or 15u angular spacing,

which explores 54,000 or 3,600 Euler angle sets, respectively. In

the current work, we adopted 68,760 and 4,392 angle sets for 6u
and 15u angular spacing respectively, in order to achieve a more

uniform coverage of the angular space [27,28]. The coordinates of

atom k of ligand prediction i are related to its Euler angles yi, hi,

and wi and the starting ligand coordinates (labeled as prediction 0)

through the rotation matrix T:
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Figure 1. Angular and RMSD distances between the first ZDOCK prediction of 1BJ1 and the top 1000 and bottom 1000 predictions.
The optimal clustering corresponds to 19u angular distance pruning and 6 Å RMSD pruning.
doi:10.1371/journal.pone.0056645.g001

Figure 2. Schematic overview of the hybrid-resolution ap-
proach.
doi:10.1371/journal.pone.0056645.g002
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Dataset
The complexes for testing and training were obtained from the

widely used protein-protein docking benchmark developed by our

lab (version 4.0) [29]. The benchmark contains 176 protein-

protein complexes of which both the bound and unbound

structures are available, and is non-redundant at the SCOP [30]

family-family pair level. According to biochemical function, 52

complexes are of the enzyme-inhibitor type, 25 are antibody-

antigen, and 99 ‘others’. In addition, the complexes are classified

according to expected docking difficulty.

We consider a docking prediction a hit when the interface Ca
atoms of the complex have a root-mean-square-distance of less

than 2.5 Å from the native (bound) complex. Generally we assess

the performance of a docking algorithm using the success rate (SR)

and average hit count (AHC) curves. The success rate is the fraction of

test cases that have at least one hit, as a function of the number of

allowed predictions for each test case. The average hit count is the

total number of hits as a function of the number of predictions

considered for each test case, divided by the total number of test

cases. Often it is desired to represent the performance of an

algorithm by a single number, instead of a graph that needs visual

inspection. Here we use the integrated success rate (ISR) [8], which is

obtained from plotting the success rate against the log of the

number of predictions for the range 1–1000, with the ISR defined

as the area under the success rate curve normalized to 1. The

worst performance is at ISR = 0, and perfect performance is at

ISR = 1.

For the optimization of the weights in the section that combines

funnel properties and ZDOCK score, we performed 22-fold cross-

validation for training and testing. The target function in the

optimization is the ISR.

Clustering
The purpose of clustering or pruning a set of docking results is

two-fold. First, removing predictions that are similar (or redun-

dant) to others reduces the set of predictions that needs to be

considered further. Second, the density of a prediction, defined as

the number of predictions that are similar to the prediction, may

indicate whether the prediction is correct.

We first prune using an iterative algorithm. The center of the

first cluster is the complex with the highest ZDOCK score. We

then eliminate all the predictions that are similar to this prediction,

based on some similarity measure (RMSD or angular distance in

this work), using a specified cutoff. Of the remaining set, the

Figure 3. Success rate for the standard 66 rotational sampling and the hybrid-resolution approach.
doi:10.1371/journal.pone.0056645.g003
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prediction with the highest score becomes the center of the second

cluster, and these steps are repeated until no predictions remain in

the list. The resulting set of cluster centers represents a pruned set

of predictions, which are spaced by at least the threshold. The

clustering process is finalized by determining how many predic-

tions of the original set are within the threshold distance of each

cluster center.

For the pruning using angular distance we also explored a

‘translation-restricted’ variant of the algorithm. Predictions that

have a translational difference of more than half the receptor size

are not allowed to be in the same cluster, as they are highly

unlikely to belong to the same funnel. The translational difference

is obtained from the three translational coordinates in the rigid-

body docking, and the receptor size is defined as the average of the

lengths of the protein in the directions of the three Cartesian axes.

Because the translational difference is needed only for pairs of

predictions that have angular distances under the angular

threshold, this extension to the algorithm only increases the

computational time moderately.

An alternative approach to score-based pruning is to rank and

prune based on the density of predictions. We explored two

versions of density-based pruning. First we followed the ClusPro

algorithm [31], which determines for each prediction the number

of neighbors within a threshold distance, ranks accordingly, and

uses this rank for a pruning step. Second, we used R to

hierarchically cluster the predictions, and varied the height at

which the branches are cut to find the best performance. For both

density-based algorithms we used the top scoring 2000 predictions

as starting point, and tested both RMSD and angular distance.

The ZDOCK score was used to rank predictions that have

identical densities. For the hierarchical clustering we used the

complete linkage method, and the defined the medoid as the

prediction that represents a cluster.

Funnel Analysis
We analyze the energy funnel around each prediction using

angular distances and RMSD’s. For each prediction, we plot the

docking scores of the N most similar predictions as a function of

either angular distance or RMSD from the prediction. Using

linear regression, we then determine the slope and intersect of the

best-fit line of the plot and use them to characterize the energy

funnel around the prediction in question. In addition, we calculate

the average docking score of the N most similar predictions.

Angular Distance
In this work we use the angular distance as a measure of the

similarity of two docking predictions. In our docking algorithm,

the rotation of the ligand from its original coordinates is described

by three successive rotations, represented by the Euler angles. The

total angle resulting from the three successive rotations, however,

is not simply the sum of the three Euler angles, nor is it the

Pythagorean distance (as the three rotations are not orthogonal).

The Euler representation is equivalent to the axis-angle represen-

tation, which rotates the object about a single vector in the 3D

space. Because the direction of this vector can be described using

two variables, the axis-angle representation has three independent

variables (the same number as the Euler representation). The

angular distance a of a 3D rotation is equivalent to the angle in the

axis-angle representation and is related to the trace (tr) of the

rotation matrix T:

aT~arccos
tr(T){1ð Þ

2

� �
ð4Þ

Figure 4. Average hit count for the standard 66 rotational sampling and the hybrid-resolution approach.
doi:10.1371/journal.pone.0056645.g004
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Figure 5. IRMSD’s of the best predictions for the standard 66 rotational sampling run and the hybrid-resolution run, for the top 100
(top panel) and top 1000 (bottom panel) predictions.
doi:10.1371/journal.pone.0056645.g005
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Figure 6. Success rate for 156 and 66 rotational sampling, and for 66 rotational sampling with 196 angular distance pruning or 6 Å
RMSD pruning.
doi:10.1371/journal.pone.0056645.g006

Figure 7. Average hit count for 156 and 66 rotational sampling, and for 66 rotational sampling with 196 angular distance pruning or
6 Å RMSD pruning.
doi:10.1371/journal.pone.0056645.g007
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Thus we can express the rotation of a docking prediction

specified by three Euler angles as a rotation matrix, from which we

can then obtain the angular distance a between this prediction and

the starting ligand orientation.

The angular distance between the rotations of two docking

predictions i and j, which are specified by two rotation matrices Ti

and Tj respectively, is defined as:

Da(i,j)~arccos
tr Tj
� �{1

Ti
n o

{1
� �

2

2
4

3
5 ð5Þ

The inverted matrix T21 (which for rotation matrices is

identical to the transpose) is the rotation in the opposite direction

of T. The product (Tj)21Ti specifies the rotation needed to

generate prediction j starting from prediction i. Equation 5 is an

analytical expression and can be evaluated rapidly. Because we use

fixed sets of angles in our docking algorithm ZDOCK (thus with

fixed rotation matrices T), we can pre-compute the lists of the

closest neighbors for each rotation and use the results to evaluate

the predictions of any docking run.

Results

In Figure 1 we plot the RMSD against the angular distance

between the top ZDOCK prediction of the 1BJ1 complex and

2000 predictions (top 1000 and bottom 1000 according to

ZDOCK score). We use this complex as an example because its

top ZDOCK prediction is the closest to the native complex of all

test cases in our benchmark. It is clear that the angular distance

and RMSD are correlated. The correlation is particularly strong

for shorter distances, which is the region that we are concerned

with for most purposes.

Hybrid-resolution Docking
We explored the possibility of reducing the computational cost

of protein-protein docking by an approach consisting of two stages

with different angular resolutions (Figure 2). A two-stage approach

with different translational resolutions was explored previously in

context of rigid-body protein-protein docking by Vakser and

coworkers [4]. We argue that a first low-resolution stage can

identify the regions in the angular space that contain near-native

predictions. The second stage then refines the most promising

regions using high-resolution sampling. Here we show results of a

hybrid 15u/6u run. For each complex, we first took the 400 top

predictions from a 15u sampling run. This corresponded to

roughly 10% of the total number of 4392 predictions. We followed

this with a 6u sampling run in which we only considered those

angle sets that were within 10u of the 400 predictions identified in

the first stage. Generating this reduced 6u angle list is computa-

tionally inexpensive as we used pre-computed lists of nearest

neighbors based on angular distance defined by Equation 5. The

average number of angle sets retained in the 6u run was 7173,

resulting in an average total number of 11,565 angle sets

(4392+7173) that needed to be evaluated. This corresponds to

Figure 8. Success rate for 156 and 66 rotational sampling, the Intercept and Slope funnel properties (based on 10 closed neighbors
using angular distance), and the scores and properties combined in a weighted linear function (training and testing using 22-fold
cross validation).
doi:10.1371/journal.pone.0056645.g008
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17% of the angle sets of a standard 6u sampling run (68,760 angle

sets), or a 6-fold reduction in total computational time.

Figure 3 shows the SR of both the standard 6u sampling and the

15u/6u hybrid-resolution runs. The performances are nearly

identical, with ISR = 0.239 for the hybrid-resolution and 0.241

for the standard 6u sampling run. Figure 4 shows the AHC, which

is also nearly identical for the standard and hybrid-resolution runs.

Previously we showed that there was a tradeoff between SR and

AHC: decreasing the total number of predictions increases the SR

and decreases the AHC and vice versa [20]. However, we see from

Figures 3 and 4 that with the hybrid-resolution approach we can

reduce the number of predictions by a factor of about 10

compared with a standard 6u sampling run while maintaining the

same performance as measured by SR and AHC.

To further analyze the performance of the hybrid-resolution

approach, we compared for each complex in our test set the best

prediction obtained using the standard approach (uniform 6u
rotational sampling) with the best prediction obtained using the

hybrid-resolution approach. The best prediction of a set is defined

as that with the lowest interface RMSD (IRMSD) from the bound

Figure 9. Average hit count for 156 and 66 rotational sampling, the Intercept and Slope funnel properties (based on 10 closed
neighbors using angular distance), and the scores and properties combined in a weighted linear function (training and testing
using 22-fold cross validation).
doi:10.1371/journal.pone.0056645.g009

Table 1. ISR’s for funnel properties obtained using angular distance or RMSD.

Angular Angular Angular RMSD RMSD RMSD

N Intercept Slope Average score Intercept Slope Average score

5 0.072 0.062 0.210 0.200 0.202 0.216

10 0.293 0.290 0.212 0.239 0.245 0.209

15 0.255 0.248 0.209 0.244 0.252 0.199

20 0.247 0.251 0.206 0.237 0.242 0.198

30 0.236 0.236 0.202 0.237 0.249 0.192

50 0.228 0.233 0.196 0.228 0.236 0.184

100 0.218 0.223 0.188 0.212 0.229 0.173

150 0.215 0.219 0.181 0.204 0.223 0.166

200 0.213 0.217 0.176 0.200 0.214 0.164

N is the number of the closest neighbors used to calculate the properties. The best prediction for each property is in bold.
doi:10.1371/journal.pone.0056645.t001
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complex [5]. In Figure 5 we show the best prediction among the

top 100 and the top 1000 predictions (by ZDOCK score)

respectively, for each test case. We see that for both the top 100

and the top 1000 predictions, most of the IRMSD’s lie on the

diagonal, which indicates that the best predictions of the two

approaches are very similar. For the top 100 predictions (Figure 5

top), the best predictions obtained with the two approaches differ

only for a few test cases, mostly from the ‘others’ category. The

overall performance is very similar, indicated by the similar

number of points above and below the diagonal. Only one test

case has a hit for the standard approach and not for the hybrid-

resolution approach. Thus for this case the near-native region of

the 6D space is not sampled in the top 400 predictions of the first

stage, which may be due to the score being sensitive to small

perturbations. For the top 1000 predictions, we see that when the

IRMSD’s are different, they are generally lower using the standard

approach. However, we see that only three hits (out of 176 test

cases) are not shared by the two approaches, with two hits

generated by the standard approach only and one hit generated by

the hybrid-resolution approach only. These results show that the

two approaches generally make highly similar predictions.

Pruning and Clustering
Protein-protein docking algorithms typically make a large

number of predictions, many of which are very similar. Therefore,

before further refining the predictions, the set is usually pruned or

clustered to remove the redundant predictions. Using our bench-

mark, we determined the threshold that maximizes the ISR for

pruning using similarity based on RMSD and using similarity

based on angular distance. For RMSD based pruning the optimal

threshold was 6 Å and for angular distance pruning the optimal

threshold was 19u. For these cutoffs, the angular distance and

RMSD based pruning retain an average number of 1347 and

6316 predictions, respectively. We plot the point that corresponds

to these optimal thresholds as an asterisk in Figure 1, and indeed

find this point in the cloud that shows a strong correlation between

angular distance and RMSD. The ISRs obtained using the

optimal angular distance and RMSD based clustering are 0.320

and 0.313 respectively, both improved over the uniform 6u and

15u sampling (ISR = 0.241 and 0.287). Figures 6 and 7 show the

success rates and average hit counts and the results are very similar

between angular distance and RMSD, with angular distance

slightly outperforming RMSD in SR and both reducing the AHC

to almost the same level. This shows that for clustering, the

angular distance is a suitable alternative for the generally used

RMSD. To ensure that our docking algorithm is not biased toward

our test cases, we repeated the analysis just for the cases that were

newly introduced in the latest version of our Benchmark, which

was published three years after the version of ZDOCK we used in

this work. For the pruning with RMSD and with angular distance,

we find ISRs of 0.280 and 0.270, respectively. Thus the

performance with the two distance metrics is still very similar.

With the translation-restricted version of the angular pruning

algorithm we obtain the best ISR with a threshold of 19u, which is

the same as for the unrestricted algorithm. The ISRs of the

unrestricted and restricted algorithms are very similar (0.320 and

0.318, respectively), which indicates that the funnels for the top

predictions are generally well defined and the angular distance is a

good approximation for the distance in 6D space.

For the density-based clustering, the number of predictions

retained after pruning may be small because we start with a set of

only 2000 predictions. Therefore we used the top 10 to assess the

performance. Furthermore, we found that the ISR is very sensitive

to small differences in rank when only the top 10 is considered.

Consequently, we used the top 10 success rate (ranging from zero to

one) to assess the performance of the density-based clustering.

Using the ClusPro approach, we found best SRs of 0.222 and

0.227 using RMSD and angular distance, respectively, at

thresholds in the range of 5–7 Å and at 20u, respectively. Using

hierarchical clustering, we found best SRs of 0.222 and 0.233

using RMSD and angular distance, respectively, with branch

cutoff at heights in the ranges of 14–18 Å and 57–69u,
respectively. Thus the RMSD and angular distance again yield

similar performance, with the angular distance slightly outper-

forming RMSD. When we use the score-based pruning algorithm,

we find top ten SRs of 0.233 using both RMSD and angular

distance.

Funnel Analysis
A collection of predictions that are similar (typically defined as

low RMSD’s) can contain more information than a single

prediction. In its simplest form, one can average the scores of

grouped predictions to alleviate random errors. More complex is

to analyze the relationship between the predictions, specifically

whether they form a ‘funnel’ where the best prediction is assumed

to be at the center. Here we analyze funnels in a simple way by

calculating the slope and intersect (using linear regression) of a

collection of nearest neighbors of a given prediction. A larger slope

means a better-defined funnel, and the intersect is an estimate of

the score at the center of the funnel. In Table 1 we show the ISR’s

obtained with angular distance and RMSD while varying the total

number of predictions used to characterize the funnel. RMSD and

angular distance show similar behaviors, but angular distance

shows the best performance. The ZDOCK score on its own with

6u and 15u sampling gives ISR = 0.241 and ISR = 0.287,

respectively. Thus by taking into account either RMSD or angular

distance funnel, we can obtain an improvement over the raw

scores. In the Figures 8 and 9 we show the performance of the

funnels using angular distance, 6u sampling, and 10 neighbors. We

also constructed a weighted linear combination of the ZDOCK

score and the intercept and slope funnel properties, which gives

ISR = 0.300.

Discussion and Conclusions

In this work we explored the use of angular distance in protein-

protein docking to measure similarities of predictions. Compared

with RMSD, angular distance represents a reduction from six

dimensions to three dimensions. Because the angular distances in a

docking run are known a priori they can be used in a hybrid-

resolution scheme. We showed such a scheme that on average

reduces the computational cost of a docking run by a factor of six

while maintaining the success rate and average hit count

compared with a standard 6u docking run. Our results suggest

that the energy landscape for protein-protein binding computed

using angular distance is reasonably smooth, because the best

orientations that can be identified by a denser sampling (6u in our

case) are in the vicinity of the best orientations identified by a

coarser sampling (15u in our case).

We also found that angular distance performed slightly better

than the RMSD for funnel analysis, despite the fact that RMSD is

a more accurate measure than angular distance for the distance

between predictions. Specifically, when we define a funnel using

the N closest neighbors based on angular distance, some of these

neighbors can have large RMSD’s to the prediction in the center

of the funnel and may not even belong to the same funnel were the

non-reduced 6D space considered. However several reasons

prevent such situations from affecting the performance of funnel

Angular Distance in Protein-Protein Docking
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analysis. In the example in Figure 1 we see that the angular

distance and RMSD are well correlated for predictions within the

funnel. We reason that the deeper an energy funnel, the stronger

the correlation between angular distance and RMSD. Because the

deepest funnels dominate the docking performance, the inaccura-

cy of angular distance has little impact on the performance.

Furthermore, in some cases, RMSD may be overly sensitive to

small structural differences and the angular distance avoids this by

lowering the dimensionality (three vs. six degrees of freedom),

hence its better performance.

Furthermore, we found that a simple pruning algorithm with

angular distance performed slightly better in terms of ISR than the

same algorithm with RMSD. Moreover, for the best angular

distance-based pruning far fewer predictions were retained (19u
cutoff, average 1347 predictions retained) than with the best

RMSD-based pruning (6 Å cutoff, average 6316 predictions

retained). This is probably because some predictions that are

similar based on angular distance can be very different in the 6D

space and these predictions are pruned out by angular distance but

not by RMSD. Because the two approaches retain the same

number of hits (Figure 7), angular pruning enriches hits by nearly

five fold and can benefit downstream analysis.
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