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Ventilator-associated pneumonia (VAP) is one of the most
common infections occurring in mechanically ventilated
patients and is frequently caused by antibiotic-resistant
bacteria.1 Mortality, hospital lengths of stay, and health
care costs are typically greater among patients with respira-
tory failure complicated by VAP comparedwith patients who
do not develop VAP.2 Moreover, we know that the adminis-
tration of inappropriate initial antibiotic therapy (IIAT) for
VAP, usually attributed to multidrug-resistant (MDR) bacte-
ria, is associated with greater hospital mortality and longer

hospital lengths of stay.3,4 These outcome influencing char-
acteristics of VAP make it an important infection for inten-
sivists to manage in an optimal manner. The ideal
management of VAP requires intensive care units (ICUs)
and hospitals to have consensus-derived strategies in place
for the prevention, diagnosis, and treatment of this impor-
tant nosocomial infection, which unfortunately are often
lacking. Moreover, the overall perceived clinical importance
of VAP has diminished in the United States due to the
imprecise under-coding of this nosocomial infection using
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Abstract Antibiotic resistance has emerged as a key determinant of outcome in patients with
serious infections along with the virulence of the underlying pathogen. Within the
intensive care unit (ICU) setting, ventilator-associated pneumonia (VAP) is a common
nosocomial infection that is frequently caused by multidrug-resistant bacteria. Anti-
microbial resistance is a growing challenge in the care of critically ill patients. Escalating
rates of antibiotic resistance add substantially to the morbidity, mortality, and cost
related to infection in the ICU. Both gram-positive organisms, such as methicillin-
resistant Staphylococcus aureus and vancomycin-intermediate S. aureus, and gram-
negative bacteria, including Pseudomonas aeruginosa, Acinetobacter species, carbape-
nem-resistant Enterobacteriaceae, such as the Klebsiella pneumoniae carbapenemase–
producing bacteria, and extended spectrum β-lactamase organisms, have contributed
to the escalating rates of resistance seen in VAP and other nosocomial infections. The
rising rates of antimicrobial resistance have led to the routine empiric administration of
broad-spectrum antibiotics even when bacterial infection is not documented. More-
over, there are several new broader-spectrum antibiotics that have recently become
available and others scheduled for approval in the near future. The challenge to ICU
clinicians is how to most effectively utilize these agents to maximize patient benefits
while minimizing further emergence of resistance. Use of rapid diagnostics may hold
the key for achieving this important balance. There is an urgent need for integrating the
administration of new and existing antibiotics with the emerging rapid diagnostic
technologies in a way that is both cost-effective and sustainable for the long run.
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the Centers for Disease Control and Prevention surveillance
definitions.5 This has resulted in the promotion of ventilator-
associated events (VAEs) as a preferred surveillance tool for
assessing the quality of ICU care in the United States and
reducing VAP to a nonreportable condition.6 This may en-
courage suboptimal practices for VAP treatment that could
be detrimental for patient outcomes and promote further
antibiotic resistance.

The clinical importance of VAP is demonstrated by recent
surveillance studies showing that it is a common nosocomial
infection across all continents.7–9 Moreover, the emerging
problemof antibiotic resistancehas added a newpremium to
the importance of accurately diagnosing and more impor-
tantly treating VAP with appropriate initial antibiotic thera-
py.10,11 It is also imperative to recognize that one of themajor
clinical issues related to the management of VAP, as well as
other nosocomial infections, is the increasing prevalence of
MDR or extremely drug-resistant (XDR) pathogens.12–15

There appears to be a direct relationship between overall
antibiotic consumption for VAP and the emergence of newly
resistance bacterial strains.16,17 The latest and most fear-
some example of this trend, due in large part to escalating
use of colistin, has been the emergence of plasmid-mediated
colistin resistance.18 The development of colistin resistance
in carbapenem-resistant Enterobacteriaceae, including New
Delhi metallo-β-lactamase-1 (NDM-1) strains, brings a re-
newed sense of urgency to minimize any further resistance
emergence and to prevent spread of these XDR bacteria.19 As
a result of this trend of increasing antibiotic resistance and
boarder spectrum empiric antibiotic treatment of suspected
VAP, more precise and rapid microbiologic diagnostic ap-
proaches for the antibioticmanagement of suspectedVAPare
urgently needed.

Diagnostic Criteria for VAP

The diagnosis of VAP is problematic because noninfectious
conditions can cause pulmonary infiltrates and systemic
findings such as leukocytosis, fever, and increased oxygen
requirements.20 Various diagnostic criteriawith variable rigor
havebeendeveloped to assist in thediagnosis ofVAP.However,
themost stringent criteria availablehavebeen associatedwith
the greatest observedmortality and establishing the diagnosis
of VAP took significantly longer when applying them com-
pared with less stringent criteria, potentially resulting in
delayed therapy.21Erringon thesideofcaution,mostclinicians
employ the finding of a new or progressive radiographic
infiltrate and at least one clinical feature (fever, leukocytosis,
worsening oxygenation, or purulent tracheal secretions),
which has high sensitivity but low specificity for VAP.22 The
difficulty in relying on clinical criteria for the diagnosis of VAP
is the potential for over diagnosis, resulting in the unnecessary
administration of antibiotics to noninfected patients. This has
the potential to promote further emergence of antibiotic
resistance, especially when employed for prolonged time
periods, and to dilute out the ability of clinicians to identify
the beneficial impact of treating patients with appropriate
initial antibiotic therapy.23,24

Owing to the lack of a proven diagnostic method, two
different strategies have been used and compared using
clinical or bacteriologic criteria, each associated with advan-
tages and disadvantages.22 The clinical strategy employs the
abovementioned clinical and radiographic criteria in diag-
nosing VAP. A combination of two out of three clinical criteria
and a radiographic infiltrate yielded a sensitivity of 69% and a
specificity of 75% for the diagnosis of VAP in 25mechanically
ventilated patients using histology and quantitative lung
tissue culture on autopsy as the reference.25 Increasing the
number of clinical criteria resulted in greater specificity but
at the cost of lesser overall sensitivity.25 In a postmortem
analysis of 39 mechanically ventilated patients, clinical
criteria did not provide reliable predictive accuracy for
histologic pneumonia.26 A semiquantitative endotracheal
aspirate culture can be used to identify a causative pathogen
of VAP and, if positive, has been shown to correlate with
quantitative cultures of the lower respiratory tract obtained
via protected specimen brush (PSB).27 Additionally, a nega-
tive endotracheal aspirate culture has good negative predic-
tive value in excluding the presence of VAP if antibiotics have
not recently been started or changed.28 However, semiquan-
titative cultures are generally not as reliable as quantitative
cultures of the lower respiratory tract due to an inability to
differentiate between colonization and infection.29 The use
of clinical criteria and a reliance on semiquantitative cultures
can result in clinical false-positive results for the diagnosis of
VAP resulting in unnecessary antibiotic use.

The bacteriologic strategy uses quantitative cultures ob-
tained from the lower respiratory tract via endotracheal
aspirate, PSB, or bronchoalveolar lavage (BAL) to confirm or
exclude the diagnosis of nosocomial pneumonia based on
thresholds of bacterial growth of �105 colony forming units
(CFU)/mL for an endotracheal aspirate,�104 CFU/mL for a BAL
specimen, and�103 CFU/mL for a PSB sample. Results of these
procedures guide decisions such as when to initiate or stop
antibiotics andwhich drug should be used against the offend-
ing agent. There are nodefinitivedata to support theuse ofone
sampling technique over another; however, the cellular analy-
sis of BAL fluid may provide an advantage, as a sample
containing less than 50% neutrophils was associated with
excellent negative predictive value in one study.26 Also, given
themultifocal nature of VAP, evenmini-BAL samples obtained
blindly without the use of bronchoscopy can be effective.30–32

However, other studies caution on the use of unilateral cul-
tures even when directed to the side of the dominant radio-
graphic abnormality.33 Thebacteriologic strategy has resulted
in less overall prescription and more narrowed antibiotic use,
an important point given the surge of antibiotic resistance in
the ICU setting.34–36Amajor disadvantage of the bacteriologic
approach is the concern for false negatives which could result
in cases of nosocomial pneumonia going untreated, especially
in the setting of recently introduced antibiotics.37

Multiple studies have compared the clinical and bacterio-
logic strategies. Only one prospective, randomized trial dem-
onstrated a mortality benefit when using the bacteriologic
strategy at 14 days.34 Others have failed to reproduce these
findings, including a large study conducted by the Canadian
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Critical Care Trials Group and a comprehensive meta-analy-
sis.38,39 In addition, thebacteriologic strategydoesnot seemto
reduce the duration ofmechanical ventilation or ICU length of
stay.39 The decision to employ either the clinical or bacterio-
logic strategy restswith the clinician ona case-by-casebasis. If
bronchoscopic sampling can be performed safely and the
appropriate personnel is available, it is reasonable to utilize
this approach as antibiotic decisions may change based on
culture results allowing for more effective antimicrobial dees-
calation. If the clinical strategy is used, the clinician should
reevaluate the patient often for guidance on antibiotic usage.
Regardless of the diagnostic strategy, an unstable patient with
a high pretest probability of nosocomial pneumonia should be
initiated on empiric antibiotics, as a delay in antibiotic admin-
istration leads to higher mortality.40–42

The lackof consistency in establishing a precise diagnosis of
VAPhas ledsomenationalguidelines to reflecton therelatively
low accuracy of microbiology cultures as a diagnostic tool in
VAP.22 Moreover, contamination with upper respiratory tract
pathogens or endotracheal tube colonizers is common and
traditional microbiology laboratory flow with Gram staining,
cultures, and antibiotic susceptibility testing requires at least
48 to 96 hours for information to be processed for clinical
decision making. These current limitations in establishing a
rapid and precise microbiologically confirmed diagnosis of
VAP serve as the impetus for developing new rapid diagnostic
approaches for this important infection.

New Diagnostic Technologies

Multiplex Real-Time Polymerase Chain Reaction
A broad range of viral and bacterial pathogens can cause
acute respiratory tract infections including VAP often with
similar clinical and radiographic presentations (►Fig. 1).

Rapid detection of the causative pathogen offers the poten-
tial for providing timely administration of appropriate anti-
microbial therapy as well as minimizing the use of broad-
spectrum antibiotics when they are not justified based on
microbiologic evaluation. Multiplex real-time polymerase
chain reaction (PCR) offers rapid detection of a broad array of
respiratory pathogens to optimize antimicrobial treatment.
The FilmArray Respiratory Panel (RP; bioMérieux BioFire,
Salt Lake City, UT) assay (►Fig. 2) is the first FDA-cleared
assay for the qualitative detection of nucleic acid targets
from both viruses and bacteria in nasopharyngeal swab
specimens.43 The FilmArray RP can detect 17 viral targets
and three bacterial species (Bordetella pertussis, Chlamydo-
phila pneumoniae, and Mycoplasma pneumoniae) more typi-
cally associated with community-acquired pneumonia with
a turnaround time of approximately 1 hour and has been
applied to direct respiratory specimens, including BAL speci-
mens frommechanically ventilated patients (►Table 1).44–46

More recently, the FilmArray RP has been employed to
demonstrate that more than 24% of nonventilated hospi-
tal-acquired pneumonia (HAP) episodes were associated
with respiratory virus infection alone or concomitant viral
and bacterial infection.47 This type of information could have
important implications in terms ofmodifying or deescalating
antibiotic therapy.44

A new Luminex NxTAG Respiratory Pathogen Panel
(NxTAG-RPP, Austin, TX) has been introduced as a high-
throughput system that can detect nucleic acid from 21
respiratory viruses, including all pathogens detected by the
FilmArray RP except B. pertussis plus Legionella pneumo-
phila and human bocavirus.48 A comparison of these two
technologies demonstrated complete concordance in 98.8%
(318/322) of positive results (kappa ¼ 0.92). The high sam-
ple throughput with reasonable turnaround time of these

Fig. 1 Three chest X-rays of patients with microbiologically confirmed pneumonia showing similar types of infiltrates for different pathogens.
These X-rays illustrate the general nonspecificity of the radiographic findings for establishing a precise microbiologic diagnosis of pneumonia.
MRSA, methicillin-resistant Staphylococcus aureus.
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assays makes them suitable multiplex platforms for routine
screening of respiratory specimens in hospital-based labo-
ratories. Moreover, the use of multiplex real-time PCR has
been associated with reduced antibiotic utilization in
patients evaluated for respiratory tract infections demon-
strating their potential value as antibiotic stewardship
adjuncts.49,50 Another potential use of multiplex real-
time PCR would be the addition of emerging respiratory
viral pathogens to the panel, facilitating surveillance to
identify patients with new, and often virulent, respiratory
virus syndromes such as Middle East respiratory syndrome
coronavirus infection.51

A preclinical evaluation was recently conducted to evalu-
ate the performance of the Cepheid XpertMRSA/SA SSTI real-
time PCR assay (Cepheid, Sunnyvale, CA) on 135 lower
respiratory tract secretions for detection of methicillin-
resistant Staphylococcus aureus (MRSA) and S. aureus.52

Compared with the gold standard quantitative culture, the
sensitivity, specificity, and positive and negative predictive
values were 99.0, 72.2, 90.7, and 96.3%, respectively. The
same assay has been employed to exclude the presence of
MRSA and S. aureus in VAP demonstrating negative predic-
tive values of 99.7% (98.1–99.9%) and 99.8% (98.7–99.9%)
for methicillin-susceptible S. aureus (MSSA) and MRSA,
respectively.53

Other Nucleic Acid Detection Techniques
New point-of-care PCR systems for rapid identification of
pathogens and antibiotic resistance markers are available
and showpromise for themanagement of infections like VAP.
Kunze et al evaluated point-of-care multiplex PCR (Unyvero,
Curetis AG,Holzgerlingen, Germany) for patientswithHAP.54

Mean turnaround test result times were 6.5 hours (4.7–18.3
hours) formultiplex PCR and 71 hours (37.2–217.8 hours) for
conventional microbiology. However, they found concordant
results in only 45% and nonconcordant results in 45% of all
patients. Only 55% of the results were concordant in patients
with a clinical pulmonary infection score higher than 5,
suggesting a high likelihood for the presence of HAP. These
authors concluded that Unyvero allowed point-of-care
microbial testing with short turnaround times, but the
system performance was poor and what was needed was
an improved systemwith more reliable performance and an
extended microbial panel.

Vincent et al employed culture-independent polymerase
chain reaction/electrospray ionization-mass spectrometry
(PCR/ESI-MS) to test 616 bloodstream infection samples, 185
pneumonia samples, and 110 sterile fluid and tissue speci-
mens from529patients.55Fromthe616bloodstreamsamples,
PCR/ESI-MS identified a pathogen in 228 cases (37%) and
conventional culture methods in just 68 (11%). Conventional

Fig. 2 The BioFire FilmArray System. (A) The BioFire instrument and computer. Each instrument can run one FilmArray pouch at a time. (B) The
specimen loading station. The FilmArray pouch is fixed in the station, and rehydrating buffer and specimen are added. (C) The FilmArray pouch.
The specimen is moved through a series of reagents, including nucleic acid extraction and purification steps, a reverse transcriptase and initial
PCR step, and a second-stage PCR. PCR product detection is performed in the “honeycomb” of the second-stage PCR.
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cultures were positive and PCR-ESI-MS was negative in 13
cases, and bothwere negative in 384 cases, giving PCR/ESI-MS
a sensitivity of 81%, specificity of 69%, and negative predictive
value of 97% at 6 hours from sample acquisition. Similar
observations were made for pneumonia and sterile fluid and
tissue specimens. An independent clinical analysis of results
suggested that PCR/ESI-MS technology could potentially have
resulted in altered treatment in up to 57% of patients. The
findings of this study were promising in suggesting that
clinical decision making could potentially be influenced in a
positivemanner with PCR/ESI-MS by allowingmore rapid and
accurate modifications in antibiotic therapy.

Banerjee et al performed a randomized trial in a total of
617 patients with positive blood culture bottles (BCBs) who
underwent stratified randomization into three arms: stan-
dard BCB processing (control, n ¼ 207), rapid multiplex PCR
reported with templated comments (rmPCR, n ¼ 198), or
rmPCR reported with templated comments and real-time

audit and feedback of antimicrobial orders by an antimicro-
bial stewardship team (rmPCR/AS, n ¼ 212).56 The primary
outcome was antimicrobial therapy duration. The rmPCR
panel used in both intervention arms was the FilmArray
Blood Culture ID Panel (BioFire Diagnostics/bioMérieux Bio-
Fire), which was performed as soon as a BCB signaled
positive, 24 hours a day, 7 days a week. This assay detects
the pathogens and resistance genes shown in ►Table 1.
Compared with the control group, both intervention groups
had decreased broad-spectrum piperacillin-tazobactam use
and increased narrow-spectrum β-lactam antibiotic use, and
fewer instances of antibiotic therapy for contaminants. Time
fromGram stain to appropriate antimicrobial deescalation or
escalation was shortest in the rmPCR/AS group. The aim
would be to replicate these types of findings in patients with
pneumonia using lower respiratory specimens.

The Verigene Nanosphere system is a multiplex nucleic
acid detection assay that is being used in clinical laboratories
for pathogen identification and resistance gene detection in
positive blood culture broth and for respiratory pathogen
detection (►Table 2, ►Fig. 3).57–59 Similar to the BioFire
blood culture assay, use of the Verigene assay for bacteremic
patients has been associated with reduced length of stay,
reducedmortality, and improvement in time to optimization
of antimicrobial therapy.57,59,60 Panels directed toward low-
er respiratory tract pathogens are in development.

Matrix-Assisted Laser Desorption Ionization Time-of-
Flight Mass Spectrometry
Traditionally, the identification of microbes recovered in cul-
ture has relied on microbial growth and metabolism in the
presences of various biochemical substrates. In contrast, ma-
trix-assisted laser desorption ionization time-of-flight mass
spectrometry (MALDI-TOF MS) uses proteomic profiling to
assign an identification; this can be applied to a variety of
microbes, including bacteria, yeast, mold, and mycobacte-
ria.61–66 It is primarily ribosomal proteins that are detected
using this method. The MALDI BioTyper system (Bruker Dal-
tonics, Billerica, MA) and the VITEK MS (bioMerieux, Durham,
NC) are the commercially availableMALDI-TOFMS instrumen-
tation/database platforms for microorganism identification.
While MALDI-TOF MS has been used most frequently for
expediting the identification of microbes recovered on solid
culturemedia, it has also been used to identify somemicrobes
fromclinical specimens, including positivebloodculturebroth
and urine.67–69 In addition, proof-of-principle studies have
demonstrated the power of this method to simultaneously
identify important resistance determinants during routine
organism identification, such as a vancomycin-intermediate
S. aureus and certain KPC-containing plasmids.70,71 As this
technology becomes more widespread, it is likely that the
rapid and accurate identification of pathogens will facilitate
optimization of antimicrobial therapy in patients with all
types of infection, including respiratory infection.

Fluorescence In-Situ Hybridization
The fluorescence in-situ hybridization (FISH) technique is
based on fluorescently labeled oligonucleotide probes that

Table 1 Pathogens identified with the FilmArray panels

FilmArray respiratory
panel

FilmArray blood culture
ID panel

Adenovirus Staphylococcus species

Coronavirus 229E Staphylococcus aureus

Coronavirus HKU1 Streptococcus species

Coronavirus OC43 Streptococcus agalactiae

Coronavirus NL63 Streptococcus pyogenes

Human Metapneumovirus Streptococcus pneumoniae

Human Rhinovirus/
Enterovirus

Enterococcus species

Influenza A Listeria monocytogenes

Influenza A/H1 Klebsiella oxytoca

Influenza A/H1–2009 Klebsiella pneumoniae

Influenza A/H3 Serratia species

Influenza B Proteus species

Parainfluenza 1 Acinetobacter baumannii

Parainfluenza 2 Haemophilus influenzae

Parainfluenza 3 Neisseria meningitidis

Parainfluenza 4 Pseudomonas aeruginosa

RSV Enterobacteriaceae

Bordetella pertussis Escherichia coli

Chlamydophila pneumoniae Enterobacter cloacae complex

Mycoplasma pneumoniae Candida albicans

Candida glabrata

Candida krusei

Candida parapsilosis

Candida tropicalis

mecA

vanA/B

blaKPC
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complementarily bind to specific target ribosomal RNA
sequences of bacteria, yeasts, or othermicroorganisms. Target
sequences are naturally present in bacteria at a concentration
high enough to enable visual detection of the specific fluores-
cent signal.72 FISH can be used to detect pathogens that are
difficult or time consuming to identifywith traditional culture
methods, especially whenmore than one species is present in
the sample, as in the case of polymicrobial infections including
VAP. RespiFISH HAP Gram (�) Panel (miacom diagnostics
GmbH, Duesseldorf, Germany) is a classic FISH technology
employing fluorescently labeled DNA molecular beacons as
probes to develop a simple procedure known as the beacon-
based FISH technology.73 This panel is able to detect most
gram-negative bacterial pathogens and has been shown to be
accurate in detecting the causative pathogens in patientswith
pneumonia, including VAP.74

Automated Microscopy
Douglas et al employed a real-time multiplexed FISH-based
microscopy ID/AST system (Accelerate Diagnostics, Tucson,
AZ), capable of evaluating antibiotic sensitivity and resis-

tance against live pathogenic organisms from blood cultures
or respiratory samples using automated phenotypic growth
pattern analysis (►Fig. 4), to study surveillance for potential
preempted treatment of VAP.75 Seventy-seven mini-BAL
specimens were obtained in 33 patients. One patient (3%)
was clinically diagnosed with VAP. Of 73 paired samples,
conventional culture methods identified seven, containing
pneumonia panel bacteria (>104 colony-forming units/mL)
from five patients (four S. aureus [three MRSA], two Steno-
trophomonas maltophilia, one Klebsiella pneumoniae) and
resulted in antimicrobial changes/additions to two of five
of those patients. Microscopy identified seven of seven
microbiologically positive organisms and 64 of 66 negative
samples compared with culture. Antimicrobial changes/ad-
ditions would have occurred in three of seven microscopy-
positive patients had those results been clinically available in
5 hours, including one patient diagnosed later with VAP
despite negative mini-BAL cultures. Overall, automated mi-
croscopy was 100% sensitive and 97% specific for high-risk
pneumonia organisms compared with clinical cultures sug-
gesting that rapid microscopy-based surveillance may be

Fig. 3 The Nanosphere Verigene System, consisting of instrumentation (A, B) and the test cartridge (C). Sample and reagents are added to the
processing unit. After analysis is completed, the cartridge is moved briefly to the reading unit for interpretation.

Table 2 Pathogens detected with the Verigene panels

Verigene respiratory pathogen panel Gram-positive blood culture test Gram-negative blood culture test

Adenovirus
Human Metapneumovirus
Influenza A
Influenza A (subtype H1)
Influenza A (subtype H3)
Influenza B
Parainfluenza 1
Parainfluenza 2
Parainfluenza 3
Parainfluenza 4
Rhinovirus
RSV A
RSV B
Bordetella pertussis
Bordetella parapertussis/B.
bronchiseptica
Bordetella holmesii

Staphylococcus aureus
Staphylococcus epidermidis
Staphylococcus lugdunensis
Streptococcus anginosus Group
Streptococcus agalactiae
Streptococcus pneumoniae
Streptococcus pyogenes
Enterococcus faecalis
Enterococcus faecium
Staphylococcus spp.
Streptococcus spp.
Listeria spp.
mecA
vanA
vanB

Escherichia coli
Klebsiella pneumoniae
Klebsiella oxytoca
Pseudomonas
aeruginosa
Acinetobacter spp.
Citrobacter spp.
Enterobacter spp.
Proteus spp.
CTX-M
IMP
KPC
NDM
OXA
VIM
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informative for treatment and antimicrobial stewardship in
patients at risk for VAP. In addition, this system has been
demonstrated to rapidly detect carbapenem resistance in K.
pneumoniae, and, if present, predict if the resistance can be
attributed to KPC carbapenemase.76

Analysis of Exhaled Breath Condensate Fluid and
Volatile Organic Compounds
May et al employed a novel strategy for the rapid diagnosis of
VAP utilizing exhaled breath condensatefluid (EBCF) obtained
from heat moisture exchangers to provide a substrate for
testing with PCR to identify bacterial DNA.77 These investi-
gators showed in critically ill surgical patients excellent con-
cordance between pathogen identification using PCR of EBCF
and pathogens isolated from BAL fluid using conventional
microbiology techniques. Additionally, they found that
increasing DNA load among serial EBCF samples preceded
the clinical suspicion of VAP. The potential advantages of this
type of diagnostic approach include noninvasive sampling of
EBCF, ease of acquiring serial samples to potentially allow
preemptive or targeted preventative treatment of early VAP or
tracheobronchitis, and pathogen-specific characterization.
The latter could help direct antibiotic therapy limiting the
unnecessary use of broad-spectrum antibiotics for pathogens
that are not identified, thus promoting antibiotic stewardship
principles. Themain disadvantage of this type of PCR-directed
diagnostic approach is that it does not provide true antimicro-
bial susceptibility testing of the causative pathogens.

Volatile organic compound (VOC) detection is another
promising diagnostic technology with probably the greatest

applicability in VAP. Both humans and bacteria produce VOCs
(volatile carbon molecules) as part of their metabolism. The
VOCs vary depending on disease states, growth environment,
and the presence of other bacteria. This technology is par-
ticularly appealing to lung diseases, as it can be monitored
noninvasively analyzing exhaled breath (similar to EBCF).
Changes in VOC patterns can trigger an earlyworkup and also
can be monitored to assess response to treatment. Mass
spectrometry can swiftly identify and quantify VOCs. New
technologies like electronic noses and optical spectra
systems can describe the VOC patterns or fingerprints of
bacteria.78,79 In a study that included 38 ventilated patients,
electronic nose–derived VOC fingerprints showed good cor-
relation with clinical pneumonia scores.80 A recent study
monitored 45 ventilated patients thrice weekly using elec-
tronic nose technology.81 The obtained VOC fingerprints
were able to differentiate between infected, colonized, and
noninfected patients. The potential for VOC detection in
diagnosing lung infections using either few specific biomark-
ers or the whole VOC fingerprint is currently being actively
pursued.82,83

Potential Limitations and Implications of
Novel Diagnostics for VAP

As suggested earlier,56 experiences with rapid diagnostics
for the evaluations of blood culture specimens suggest that
rapid diagnostics may play an important role in enhancing
antimicrobial prescribing practices in hospitalized patients.
The benefits to this can be numerous, including optimizing

Fig. 4 The Accelerate System. A cassette, regent pack, and clinical sample are loaded into the analyzer. Following automated sample
preparation, organism identification and antimicrobial susceptibility testing are performed. The results are available via the graphic user
interface.
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clinical outcomes, reducing toxicity, and facilitating clinical
trials for new anti-infective agents by stratifying patients
eligible for the trial at the earliest possible opportunity.
However, it is also important to understand the limitations
of these new technologies including that they cannot dif-
ferentiate colonization from infection, which could be
highly problematic in mechanically ventilated patients,
nor give us the true susceptibility patterns of the responsi-
ble pathogens. The latter is true with the exception of a few
specific mechanisms of resistance provided by the previ-
ously described molecular techniques and automated
microscopy which has the potential to provide real suscep-
tibility data.

Further illustrating the potential role of rapid diagnostics in
improving antimicrobial therapy and outcome when embed-
ded in awell-organized antimicrobial stewardship program is
the study by Huang et al from the University of Michigan.84

These investigators performed a quasi-experimental study to
analyze the impact of MALDI-TOF MS in conjunction with an
antimicrobial stewardship team intervention in patients with
bloodstreaminfections.84The antimicrobial stewardship team
provided antibiotic recommendations after receiving real-
timenotification followingbloodcultureGramstain, organism
identification, andantimicrobial susceptibilitiesusingconven-
tionalmicrobiologymethods in thebefore-period andMALDI-
TOFMS in the after-period. Use ofMALDI-TOFMS significantly
decreased time to organism identification, and improved time
to effective antibiotic therapy as well as optimal directed
antibiotic therapy. Mortality, length of ICU stay, and recurrent
bacteremia were also lower during the intervention period.
Similarly, the PCR-based GeneXpert MRSA/SA diagnostic plat-
form (Cepheid, Sunnyvale, CA) was studied at the Veterans
Affairs Medical Center in Houston demonstrating that for
MSSA bacteremia, the mean time to initiation of appropriate
therapywas reduced from49.8 to5.2hoursand thedurationof
unnecessaryMRSA drug therapy was reduced by 61 hours per
patient.85 It is hoped that the application of rapid diagnostic
methods to respiratory specimens could have a similar impact
on patients with pneumonia including VAP.

It is clear that we are entering a new era in the manage-
ment and treatment of serious infections such as VAP. Spell-
berg et al made a recent plea to change our current patterns
of managing patients with proven and presumed infections
to reverse the spiraling trend of antibiotic resistance that has
occurred over the last century.86Within the next 3 to 5 years,
new antibiotics directed against MDR Gram-negative bacte-
ria, in addition to the recently approved ceftolozane–tazo-
bactam and ceftazidime-avibactam, will likely become
available, including carbavance, plazomicin, eravacycline,
relebactam, brilacidin, BAL30072, aztreonam-avibactam,
carbapenems with ME 1071, and S-649266—a novel side-
rophore cephalosporin. These agents can provide enhanced
activity against β-lactamase producers, carbapenem-resis-
tant bacteria, and in some cases even metallo-β-lactamase–
producing bacteria.

The challenge to ICU clinicians is how to most effectively
utilize these agents once they become available to
maximize patient benefits while minimizing the emergence
of resistance (►Table 3). This is an especially important
challenge in resource-limited countries that have often
been at the forefront of the emergence of novel antimicro-
bial resistance mechanisms due to local patterns of antibi-
otic use. The use of rapid diagnostics may hold the key for
achieving this important balance. There is an urgent need
for clinical studies aimed at understanding how to best
integrate the use of these new antibiotics with the emerging
rapid diagnostic technologies in a way that is cost-effective
and sustainable for the long run.87 In addition, the micro-
biology laboratory must work closely with their clinical
partners to deploy these new diagnostic tools in a manner
that will afford the maximum benefit of these new tech-
nologies, including incorporation of the antimicrobial stew-
ardship team and interpretative report comments, when
applicable. Clinical outcome studies demonstrating the
benefit of these new technologies on patient outcomes
are needed. VAP may be an ideal infection to demonstrate
the impact of rapid diagnostics as a means of enhancing
antimicrobial treatment and stewardship.88

Table 3 Characteristics of diagnostic methods for ventilator-associated pneumonia

Diagnostic method Conventional
culture time (h)

Pathogen/Biochemical
identification time (h)

True antibiotic
susceptibility
available

Antibiotic
susceptibility
time (h)

Total diagnostic
time (h)

Conventional
culture method

24–36 n/a Yes 12–24 36–72

BioFire/Luminex n/a 2–4a No n/a 2–4

PNA-FISH n/a 2–4a No n/a 2–4

AXDX ID/AST n/a 2–4a Yes 3–6 6–10

VOC fingerprints n/a 2–4a No n/a 2–4

Abbreviations: FISH, fluorescence in situ hybridization; ID/AST, identification/antibiotic susceptibility testing via automated microscopy; n/a, not
applicable; VOC, volatile organic compounds.
aAssumes direct specimen inoculation from respiratory samples including endotracheal aspirates and bronchoalveolar lavage samples.
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