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Abstract: Energy metabolism, including alterations in energy intake and expenditure, is closely
related to aging and longevity. Metabolomics studies have recently unraveled changes in metabolite
composition in plasma and tissues during aging and have provided critical information to elucidate
the molecular basis of the aging process. However, the metabolic changes in tissues responsible
for food intake and lipid storage have remained unexplored. In this study, we aimed to investigate
aging-related metabolic alterations in these tissues. To fill this gap, we employed NMR-based
metabolomics in several tissues, including different parts of the intestine (duodenum, jejunum, ileum)
and brown/white adipose tissues (BAT, WAT), of young (9–10 weeks) and old (96–104 weeks) wild-
type (mixed genetic background of 129/J and C57BL/6) mice. We, further, included plasma and
skeletal muscle of the same mice to verify previous results. Strikingly, we found that duodenum,
jejunum, ileum, and WAT do not metabolically age. In contrast, plasma, skeletal muscle, and BAT
show a strong metabolic aging phenotype. Overall, we provide first insights into the metabolic
changes of tissues essential for nutrient uptake and lipid storage and have identified biomarkers for
metabolites that could be further explored, to study the molecular mechanisms of aging.

Keywords: aging; NMR spectroscopy; mice; energy metabolism; fat; intestine; metabolomics

1. Introduction

Aging affects most living organisms and can be manifested as time-dependent accu-
mulation of structural and functional alterations in an organism [1]. During aging, the ac-
cumulation of cellular damage leads to the disruption of regular physiology and functional
impairments, and can promote cellular senescence [2]. This process can be understood as
a series of simultaneous biological activities, occurring in the body at the cellular, tissue,
organ, or systemic level. Aging is characterized by nine hallmarks: genomic instability,
telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient-sensing,
mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellu-
lar communication [1], all of which are associated with adverse effects on metabolism and
biological functions [1,3]. Aging is associated with an increasing incidence of numerous
diseases and pathologies, such as cardiovascular diseases, including atherosclerosis; cancer;
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geriatric syndromes; type 2 diabetes; and the co-occurrence of chronic diseases [4–8]. De-
spite the fact that the exact biological mechanisms of aging are poorly understood, studies
have been performed to identify metabolic biomarkers of aging derived from either human
data or mouse models [9–12]. In these studies, modern metabolomics techniques, such
as mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy have been
used to efficiently characterize the metabolome of an organism [9], reflecting alterations in
small molecule content following genomic, transcriptomic, and proteomic changes. To date,
more than 100,000 identified or predicted human metabolites have been documented [13].
Given that different tissues serve distinct metabolic functions and may age differently [12],
it is essential to compare various tissues of the same organism at different ages to reveal
the concomitant variations in metabolism at different levels (cell, tissue, organ) within
an organism.

Among all the complex biological mechanisms in humans, energy metabolism is
closely related to the aging process; as the basal metabolic rate decreases linearly with
age [14]. Multiple studies have identified the potential effects of aging on energy intake and
expenditure [14–16]. It has been suggested that essential metabolites of energy metabolism,
including ATP (AMP), malondialdehyde, succinate, or pyruvate, play an important role
or are affected during aging [16–18]. Life span is considered to be closely linked to energy
metabolism [19]. However, systematic studies investigating the changes in metabolites in
different energy metabolism-related organs and tissues during aging and how the body
controls them as a whole are still scarce [20,21]. Therefore, we aimed to perform such a
systematic study, addressing the metabolome of tissues involved in energy metabolism
to identify potential biomarkers of aging. Based on the analogy between humans and
mice, we selected plasma, skeletal muscle, brown adipose tissue (BAT), white adipose
tissue (WAT), and small intestine (duodenum, jejunum, ileum) from young and old mice to
predict human biomarkers of aging.

Different AT depots have distinct functions, with the WAT representing the main
energy storage depot, whereas the BAT dissipates energy in the form of heat [22]. The
aging process is accompanied by a decrease in BAT mass and activity, as well as a reduced
browning of the WAT [23,24]. The amount of WAT initially increases with age, but is
redistributed in different locations during aging [25]. Changes in BAT and WAT function
have been associated with metabolic abnormalities, including insulin resistance, chronic
inflammation, or increased risks of diabetes [26]. Therefore, understanding the metabolic
alterations behind the structural and functional changes in adipose tissue depots will shed
light on the underlying mechanisms. Aging has also been associated with reduced nutrient
absorption and altered morphology of the small intestine [27]. As for skeletal muscle, aging
causes a loss of mass and function over time [28], which has been connected to several
phenomena, including changes in protein synthesis and degradation, a decreased number of
motor axons, increased reactive oxygen species (ROS), and mitochondrial dysfunction [28].
Plasma, as an essential extracellular fluid in the body that transports proteins, nutrients,
hormones, and metabolic waste destined for excretion, plays an irreplaceable role in energy
metabolism [29]. In addition, plasma biomarkers, either in the form of proteins [30] or
metabolites [31], have been linked to aging.

Overall, the above-mentioned organs and tissues have been shown to be functionally
altered during aging. We, therefore, used untargeted NMR metabolomics in the afore-
mentioned tissues to identify novel metabolite biomarkers of aging on a tissue-specific
and systemic level. Furthermore, we highlighted their potential implications on energy
metabolism. NMR-based metabolomics provided an adequate approach to experimentally
characterize our samples with a high quantification precision, while keeping the samples
intact. In addition, it enabled an automated workflow and a relatively short process time
for a large number of samples [32]. Using metabolic profiling of essential organs from
young and aged mice, we have already identified multiple metabolites, including several
amino acids (AAs), 4-aminobutyrate, succinate, nicotinamide, and other small molecules as
tissue specific biomarkers of aging [20]. The present study focuses on tissues associated
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with energy metabolism in young and aged mice, with the aim of gaining a comprehensive
insight into metabolic profiles from both tissue-specific and systemic perspectives. Our
results indicated the following tissue- and plasma-specific biomarkers of aging: lactic acid,
citric acid, and glucose in plasma; arginine, glycine, inosinic acid, and phenylalanine in
skeletal muscle; phosphorylcholine, lysine, and hypoxanthine in BAT; citric acid in WAT;
allantoin and inosine in ileum. Citric acid and lysine are biomarkers of aging across tissues.
Combined with our previous results in brain, heart, kidney, liver, lung, and spleen [20],
we identified tyrosine as a global biomarker of aging, as it was systematically changed in
seven different tissues. This study provides a general overview of the altered metabolic
profiles of various metabolically active tissues in aging and highlights potential biomarkers
associated with this process. It also provides robust evidence of the biological mechanisms
of aging from an additional dimension, which could be used either to identify targets for
anti-aging pharmacology or as indicators to validate the effect of senolytic therapies.

2. Results

Our goal was to identify the tissue-specific metabolomic profiles of young and aged
mice, to shed light on their respective metabolic alterations during aging. Moreover, we
aimed to elucidate the interrelationships and dependencies between tissue metabolism and
the systemic metabolic signatures of aging. To systematically characterize the aging process
of each tissue, we used an untargeted NMR-based strategy, as previously reported [20], and
performed metabolic profiling of plasma, skeletal muscle, BAT, WAT, duodenum, jejunum,
and ileum from young and old mice.

2.1. Aging-Associated Changes in Plasma Are Closely Related to Energy Metabolism

Plasma is composed of several components that change as aging progresses. Interest-
ingly, it has been found that replacing half of the plasma of mice with saline containing
5% albumin can improve aging-related changes in mice [33], suggesting that compounds
in plasma may contribute to aging. Plasma samples from young and aged mice showed
a predictive score (T score [1]) of 35.1% on the O-PLS-DA plot, indicating that they are
well separated (Figure 1A, left, middle). Resampling analysis through permutation test,
which exchanged labels on the data points resulted in R2Y at 0.99 (p = 0.01) and Q2 at
0.902 (p = 0.01) (Figure 1A, right). This clearly indicates that the difference is unlikely to
originate from a random distribution, i.e., this highlights its significance. Moreover, analysis
of the metabolites in plasma revealed increases in acetone, citric acid, lysine, creatine, myo-
inositol, threonine, and indoxyl sulfate, and decreases in valine, lactic acid, alanine, acetic
acid, glycerol, and glucose during aging (Figures 1B and S1A,B). Among these metabolites,
the levels of citric acid, indoxyl sulfate, threonine, myo-inositol and acetone increased
by more than two-fold, while, those of lactic acid and acetic acid decreased more than
two-fold. Notably, indoxyl sulfate showed the highest increase (5.2-fold), and acetic acid
decreased the most (2.1-fold). To further support our findings, we performed metabolite
enrichment analysis (MSEA) [34] and matched the significantly altered metabolites to a
metabolic pathway library [35], to identify metabolic pathways associated with the ob-
served age-related changes in mice. These alterations in plasma were mainly related to
galactose metabolism, glucose-alanine cycle, transfer of acetyl groups to mitochondria,
Warburg effect, and glycine and serine metabolism (Figure 1C).
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Figure 1. NMR-based metabolomics analysis of plasma. (A) O-PLS-DA plot of plasma samples from 
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component (p1) and two orthogonal components (o1, o2) with cross-validated R2X, R2Y, and Q2 co-
efficients (middle), and histogram showing the permutation test with permutation number n = 100 
(right). Note in the O-PLS-DA plot (left panel), the 2 data points with an orthogonal T-score of 0 
overlap. (B) Volcano plot of metabolites with different abundances between plasma from young 
and aged mice. Increased (red) and decreased (blue) metabolites illustrate significant fold changes 
during aging, while grey dots denote insignificantly changed metabolites. (C) Metabolite set enrich-
ment analysis (MSEA) of affected metabolites pointing out their physiological relevance. 

  

Figure 1. NMR-based metabolomics analysis of plasma. (A) O-PLS-DA plot of plasma samples
from young (blue) and old (orange) mice (left), with n = 5 each, and the permutation between
predictive component (p1) and two orthogonal components (o1, o2) with cross-validated R2X, R2Y,
and Q2 coefficients (middle), and histogram showing the permutation test with permutation number
n = 100 (right). Note in the O-PLS-DA plot (left panel), the 2 data points with an orthogonal T-score of
0 overlap. (B) Volcano plot of metabolites with different abundances between plasma from young and
aged mice. Increased (red) and decreased (blue) metabolites illustrate significant fold changes during
aging, while grey dots denote insignificantly changed metabolites. (C) Metabolite set enrichment
analysis (MSEA) of affected metabolites pointing out their physiological relevance.

2.2. Metabolic Changes in Skeletal Muscle during Aging

It has been previously shown that aging exacerbates skeletal muscle atrophy [36] and
that biomarkers of aging are abundantly expressed in this tissue [21,37]. The NMR profiles
of skeletal muscle samples from young and old mice were clearly distinguishable from
each other in the O-PLS-DA plot, with a T score [1] of up to 44.4%; overwhelmingly higher
than the one of the orthogonal component (Figure 2A, left, middle). A permutation test
yielding R2Y at 0.954 (p = 0.03) and Q2 at 0.712 (p = 0.02) indicated the significant separation
of the two groups (Figure 2A). Accordingly, we identified a large number of metabolites
that were altered in the muscles of aged mice, including a higher abundance of leucine,
isoleucine, arginine, glycogen, inosine, tyrosine, and phenylalanine, and a lower abundance
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of lactic acid, alanine, acetic acid, creatine, glycine, glucose, inosinic acid, and fumaric acid
(Figures 2B and S2A,B). The levels of these metabolites were increased/decreased by less
than two-fold. These significantly altered metabolites were mainly related to aspartate
metabolism, phenylalanine and tyrosine metabolism, arginine and proline metabolism,
urea cycle, and glycine and serine metabolism (Figure 2C).
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Figure 2. NMR-based metabolomics analysis of skeletal muscle. (A) O-PLS-DA plot and cross
validation of skeletal muscle samples from young (blue) and old (orange) mice (left), with n = 5 each,
and permutation between the predictive component (p1) and orthogonal components (o1) with
cross-validated R2X, R2Y, and Q2 coefficients (middle), and histogram showing the permutation test
with permutation number n = 100 (right). (B) Volcano plot of differentially regulated metabolites
in skeletal muscle from aged and young mice. Increased (red) and decreased (blue) metabolites
delimitate the fold change over aging, while grey dots denote insignificantly changed metabolites.
(C) MSEA of affected metabolites in search of their functional relevance.

2.3. BAT and WAT Age Differently

BAT displays a decreased activity, and redistributes in the human body, during ag-
ing [24]. In addition, the concomitant metabolic dysfunction is caused by alterations in
WAT and/or strongly affects WAT homeostasis [38]. Similar to other tissues, the metabolic
fingerprints of BAT from young and old mice demonstrated a distinct heterochronic clus-
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tering of the tissues, with the T score of the predictive component at 29.4% (Figure 3A, left,
middle). The permutation test showed a correlation coefficient of R2Y at 0.992 (p < 0.01) and
Q2 at 0.82 (p < 0.01) for BAT, indicating the significance of the difference (Figure 3A, right).
In contrast, we found for the O-PLS-DA of WAT a T score [1] at 19.4%. This indicated an
insignificant separation of the two groups (Figure 4A, left, middle); as well as the permu-
tation test showing a R2Y of 0.999 (p < 0.01) and Q2 of 0.624 (p = 0.16) for WAT, further
indicating the insignificance of alteration (Figure 4A, right). In the volcano plot and the
reduced spectra of BAT, we found more isoleucine, leucine, valine, methionine, citric acid,
lysine, threonine, tyrosine, histidine, tryptophan, and phenylalanine, as well as less ala-
nine, phosphorylcholine, and hypoxanthine in BAT during aging (Figures 3B and S3A,B).
Changes in metabolite levels were below two-fold. The significantly altered metabolites in
BAT were mainly related to glycine and serine metabolism; valine, leucine, and isoleucine
degradation; phenylalanine and tyrosine homeostasis; and methylhistidine, and biotin
metabolism (Figure 3C). However, the metabolites in WAT were less affected by aging,
since only the higher abundance of citric acid and lower abundance of myo-inositol were
significant. The levels of citric acid increased 2.1-fold in WAT and 2.0-fold in the BAT of
aged mice, respectively (Figures 4B and S4A,B).
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Figure 3. NMR-based metabolomics analysis of BAT. (A) O-PLS-DA plot and cross validation of BAT
samples from young (blue) and old (orange) mice (left), with n = 5 each, and permutation between
predictive component (p1) and two orthogonal components (o1, o2) with cross-validated R2X, R2Y
and Q2 coefficients (middle), and histogram showing the permutation test with permutation number
n = 100 (right). (B) Volcano plot of differentially regulated metabolites in BAT from young and aged
mice. Increased (red) and decreased (blue) metabolites delimitate the fold change over aging, while
grey dots denote insignificantly changed metabolites. (C) MSEA of affected metabolites, in search of
their functional relevance.
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relation coefficient R2Y of 0.935 (p = 0.29) and Q2 of 0.413 (p = 0.16) (Figure 6A, right). The 
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Figure 4. NMR-based metabolomics analysis of WAT. (A) O-PLS-DA plot and cross validation of
WAT samples from young (blue) and old (orange) mice (left), with n = 5 for young and n = 3 for
old, and permutation between predictive component (p1) and two orthogonal components (o1, o2)
with cross-validated R2X, R2Y, and Q2 coefficients (middle), and histogram showing permutation test
with permutation number n = 100 (right). (B) Volcano plot of differentially regulated metabolites in
WAT from young and aged mice. Increased (red) and decreased (blue) metabolites delimitate the fold
change with aging, while grey dots denote insignificantly changed metabolites.

2.4. Small Intestine Is Metabolically Inert during Aging

To complete our systemic screening on the consequences of aging in metabolically
active tissues, we determined the metabolic signatures of duodenum, jejunum, and ileum
of young and old mice. It has been reported that the number of endocrine cells in the
duodenum changes during aging [39], whereas data on time-dependent alterations in the
jejunum are scarce [27]. However, morphological modifications and impaired function
were observed in the ileum or at the ileocecal junction at an advanced age [27,40]. We
obtained a T score [1] at 11.9% (Figure 5A, left, middle), a correlation coefficient R2Y at
0.986 (p = 0.08) and Q2 at 0.374 (p = 0.30) for duodenum (Figure 5A, right), and NMR-
based metabolomics profiling of duodenal metabolites only revealed a decrease in lysine
during aging (Figures 5B and S5A,B), despite a trend toward a reduction in all metabolites.
Jejunal samples showed a T score [1] at 16.2% (Figure 5A, left, middle), with a permutation
correlation coefficient R2Y of 0.935 (p = 0.29) and Q2 of 0.413 (p = 0.16) (Figure 6A, right).
The volcano plot and reduced spectra indicated no significantly altered metabolites in
the aging jejunum (Figures 6B and S5C). The ileum showed significant alterations during
aging, despite a T score [1] at 12.2% (Figure 7A, left, middle), which was associated with a
permutation correlation coefficient R2Y at 0.997 (p < 0.01) and Q2 of 0.855 (p = 0.01) between
the clusters of samples from young and old mice (Figure 7A, right). In the volcano plot and
reduced spectra, an increase of dimethylamine and allantoin and a decrease of inosine were
evident, among which the changes of allantoin and inosine levels were 2.8-fold (increase)
and 2.3-fold (decrease), respectively (Figures 7B and S6A,B).
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tation between the predictive component (p1) and three orthogonal components (o1, o2, o3) with
cross-validated R2X, R2Y, and Q2 coefficients (middle), and histogram showing permutation test
with permutation number n = 100 (right). (B) Volcano plot of differentially regulated metabolites in
the duodena of young and aged mice. Decreased (blue) metabolites delimitate the fold change over
aging, while grey dots denote insignificantly changed metabolites.
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Figure 6. NMR-based metabolomics analysis of jejunum. (A) O-PLS-DA plot and cross validation of
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between predictive component (p1) and three orthogonal components (o1, o2, o3) with cross-validated
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and aged mice. Grey dots denote insignificantly changed metabolites.
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aged mice. Increased (red) and decreased (blue) metabolites delimitate the fold change over aging,
while grey dots denote insignificantly changed metabolites.

2.5. Overview

We summarized the variation of all metabolites from the seven studied tissues in a heat
map, shown in Figure 8. This highlights the metabolic changes of tissues, and additionally
reveals the enrichment of amino acids in the intestines, and the increase of metabolites
related to the tricarboxylic acid cycle (TCA cycle), glycolysis/gluconeogenesis, and amino
acid derivatives in the plasma, skeletal muscle, BAT, and WAT.
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WAT) under each group, while the corresponding metabolites are indicated in each row. Increased
metabolites are indicated in red, and decreased metabolites are indicated in blue.

3. Discussion

The accumulation of abnormalities and loss of functional mass in organs as a result of
aging are closely related to altered energy metabolism and expenditure [5,41,42]. The study
of tissues responsible for energy uptake, storage, and utilization can provide essential in-
formation about the corresponding metabolic dysregulations. The analysis of murine small
intestine, adipose tissue, muscle, and plasma by untargeted NMR-based metabolomics
allowed us to identify the respective metabolite composition with high confidence. This
shed light on the disturbances in energy homeostasis, which also explain the observed
metabolic changes in aging tissues.

The plasma metabolome has been extensively studied in recent years, to identify
biomarkers or to predict biological age, the rate of aging, and age-related disease
risks [31,43–46]. In our study, we observed a consistent increase in plasma myo-inositol
and a decrease in glycerol. In humans, conflicting results have been reported, with either
increased [43] or decreased [31] aging-associated plasma citric acid levels. A reduction
in plasma citric acid levels has been proposed to be a consequence of diminished citrate
synthase activity with aging, resulting in higher citric acid concentrations in younger pop-
ulations [31]. However, and in accordance with other human data [43], we found that
citric acid was strongly increased in the plasma of aged mice. The increase in citric acid
in aged humans and mice may be a consequence of decreased aconitase activity, which
has been reported for several tissues [47,48], and which would lead to reduced citric acid
degradation. Both mechanisms affect the citric acid cycle and cause variations in citric acid
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concentrations in aged humans and mice [47], yielding apparently-contradictory results. A
different set of AAs were found to be significantly altered in the plasma of elder humans
and aged mice, with the exception of serine, which decreases in both [43,46]. Our studies
revealed a consistent result with previous mice experiments, with respect to a decrease in
alanine [46]. In addition, we identified a decrease of valine and an increase in lysine and
threonine, indicating both similarities and differences between studies. Potential reasons
for differences could be age of mice (9–10 weeks vs. 24 weeks), or different mouse strains
(mixed genetic background of 129/J and C57BL/6 vs. C57BL/6J). Thus, follow-up studies
to address the potential impact of these variables on the plasma metabolome of mice will
be necessary. The BCAAs valine, leucine, and isoleucine in plasma have been suggested as
indicators of fasting, because they are used as energy sources [44]. Thus, their decreased
concentrations in aged mice may suggest a reduced mobilization of endogenous energy
sources. Notably, we also found decreased glucose concentrations in aged mice, which con-
trasts with its increase found in aging humans in previous studies [43,49], which may be due
to the high-calorie diet in developed regions. In addition, we observed an increased level
of myo-inositol in plasma. Myo-inositol is a precursor of phosphatidylinositol-3-phosphate
(PI3P) [50,51], which activates autophagy. Autophagy is impaired during aging [52], and
myo-inositol, per se, is a promoter of longevity [53]. Hence, the elevated myo-inositol
concentrations in our mice might be the result of reduced conversion into PI3P, indicating a
reduced activity of several enzymes targeting myo-inositol or its downstream products.
Overall, our results revealed a set of aging biomarkers in plasma consistent with some
previous studies [43,46], but also a few contrasts to other studies [31,46,49]; implying the
heterogeneity of plasma in different species and populations.

The metabolome of skeletal muscles has also been studied in detail [37,46,54,55]. Our
results showed consistent changes in the levels of leucine, lactic acid, alanine, glycine,
inosine, and phenylalanine. Among the significantly altered metabolites, the increase in
leucine and isoleucine may correspond to the decrease in BCAA catabolism in muscle
atrophy [56]. Since it has been suggested that BCAAs stimulate muscle protein synthesis, a
decline in muscle function despite their accumulation suggests a defect in the downstream
processes of BCAA-stimulated protein expression [57]. The decrease in lactic acid may
be a result of reduced physical activity [58], which is consistent with the decrease in
alanine, a byproduct of AA catabolism during muscle catabolism [59]. Arginine has
a protective effect on muscle protein synthesis [60]. Thus, more arginine in old mice
may indicate a self-protective mechanism against muscle atrophy. Decreased acetic acid,
creatine, and glycine levels in old mice were consistent with a reduced capacity of the
muscle to generate energy [61–63]. The levels of lactic acid and glucose were found to
increase in the skeletal muscle of aged mice [46], which is in contrast to our study. This
might be due to the aforementioned differences between the mouse studies, but also
indicates that these variables need to be evaluated in the future. Increased glycogen
concentrations are possibly due to a decrease in glycogen hydrolysis, due to the decrease
of glycogen phosphorylase activity [64]. This is in line with a previous study reporting
decreased glycogen phosphorylase activity in the tibialis anterior (TA) muscle of aged
rats [65]. The increased inosine level, along with decreased inosinic acid level, suggested
an enhanced degradation of inosinic acid, if not all adenosine nucleotides [66,67]. Overall,
our biomarkers revealed a consistent picture of the decline in muscle activity with age.

Adipose tissues of human and mice have various heterogeneities [68,69], here we
aimed to decipher the possible common mechanisms of aging despite these diversities.
First, we have found that most biomarkers for aging are found in BAT, including eight es-
sential AAs and two nonessential AAs. Other biomarkers are citric acid, phosphorylcholine,
and hypoxanthine. A significant amount of BCAAs is degraded in adipose tissue [70,71].
Increased BCAAs and the reduction of alanine in aged BAT, similarly to skeletal muscle,
may indicate a decrease in BCAA degradation and may be related to aging-related dimin-
ished BAT thermogenesis [56,72]. This might be due to the downregulation of the BCAA
aminotransferase during aging [73,74]. The methionine increase, however, might be linked



Metabolites 2022, 12, 17 12 of 18

to the increase in lipogenesis [75], while the accumulation of citric acid is consistent with
the reduced activity of aconitase during aging [47], as observed in plasma. Interestingly,
threonine and valine have been found to promote aging via activation of the TOR/S6K path-
way [76]. Threonine could additionally alter metabolic homeostasis via the liver-derived
hormone fibroblast growth factor 21 [77], which probably explains the increase in threonine
and valine concentrations in the aging BAT. The elevated level of tyrosine might be related
to the decreased synthesis of catecholamines [78].

Although not determined in this study, it has been shown that aging-induced body
mass gain in female mice is associated with increased WAT but not BAT mass [25]. The
authors also showed that female mice exhibit a progressive age-dependent loss of subcuta-
neous and visceral WAT browning, whereas BAT changes toward a fat storage phenotype.
Despite these differences in WAT browning, function, and depot capacity during aging
in humans and mice [24,25,38], the metabolome of WAT was comparable between young
and old mice. The mostly unaffected metabolome of WAT indicates that aging has little
effect on its metabolism, despite the fact that alterations in WAT function or depot capacity
have been observed in humans and mice [24,38]. Less myo-inositol in WAT suggests a
lack of autophagy, which may consequently promote inflammation [79]. A higher amount
of citric acid in BAT, WAT, and plasma, including other tissues studied previously [20],
indicates that citric acid could be a suitable biomarker for changes in energy and lipid
metabolism during aging. Future studies should focus on the activities of aconitase and
citrate synthase [80], in order to complement the metabolomics results. In line with this,
previous studies outlined the critical role of the TCA cycle in aging [81], leading to a poten-
tial reduction in functional (including endocrine) activities [82]. Overall, we observed a
concomitant and similar change in lactic acid, alanine, acetic acid, citric acid, lysine, threo-
nine, and glucose concentrations in plasma, skeletal muscle, and BAT. This may indicate
that similar mechanisms of aging occur in different tissues, which is largely consistent with
our previous results [20].

According to our results, the duodenum, jejunum, and ileum remained unaffected
by aging, from a metabolomic point of view. It has been suggested that aging promotes
inflammation and alterations in cell function in the intestine [83], as well as malabsorption,
or the reverse, increased absorption, of multiple nutrients [27]. Our results, however, indi-
cate that the metabolic alterations corresponding to such changes may not necessarily take
place. This could be due to epithelial homeostasis including rapid self-renewal [84]. Further
studies are needed to validate whether the human gut has the same ‘unaged’ metabolome
and to clarify whether it is common for aged mice to have unaffected intestinal nutrient
absorption. In the ileum, we observed less inosine and more allantoin. Since allantoin
is the metabolic product of inosine in mice [85,86], this suggests increased catabolism of
adenosine and probably other nucleotides. Elevated dimethylamine levels, however, are
a consequence of increased activity of intestinal bacteria that convert choline to dimethy-
lamine [87,88]. Overall, our data imply that the duodenum, jejunum, and ileum undergo
few functional changes over the entire life span.

In addition to current knowledge on the altered metabolome in aged plasma and
skeletal muscle, we have identified heterogeneity in circulating AAs in plasma of aged
mice, either among individuals or between species. Elevated citric acid levels in plasma and
adipose tissues confirmed the critical role of the TCA cycle in linking energy metabolism,
lipid metabolism, and aging [89]. Metabolic profiling of skeletal muscle and BAT provided
an overall picture of their aberrant activity. In contrast, the metabolomes of WAT and
intestine remain relatively unaltered during aging. The consistency of several results
from plasma and skeletal muscle with previous studies demonstrates the reliability and
precision of this NMR-based metabolomics approach. Nevertheless, future studies are
needed to reveal potential metabolic differences between mouse strains and metabolic
changes occurring during the early life of mice in the future.
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4. Materials and Methods
4.1. Collection of Mouse Tissues

Animals, diet, and mouse tissue collection have been described previously [20]. All
experiments were performed in accordance with the European Directive 2010/63/EU and
approved by the Austrian Federal Ministry of Education, Science, and Research.

4.2. NMR Sample Preparation

Thirty to fifty mg of each organ and tissue sample from wild type female mice with
mixed genetic background of 129/J and C57BL/6 were resected and snap-frozen in liquid
nitrogen, followed by storage at −80 ◦C until analysis. For metabolite extraction, 400 µL
ice-cold methanol and 200 µL MilliQ H2O were added to each sample (except for plasma,
where only 400 µL ice-cold methanol was added to 200 µL plasma). Tissue samples
were transferred to 2 mL tubes with O-ring caps containing Precellys beads (1.4 mm
zirconium oxide beads, Bertin Technologies, Villeurbanne, France) for homogenization by
Precellys 24 tissue homogenizer (Bertin Technologies, Montigny-le-Bretonneux, France).
After centrifugation at 13,000 rpm for 45 min (4 ◦C), the supernatant was transferred to
new 1.5 mL tubes and subsequently lyophilized at <1 Torr, 850 rpm, 25 ◦C for 10 h in a
vacuum-drying chamber (Savant Speedvac SPD210 vacuum concentrator) with an attached
cooling trap (Savant RVT450 refrigerated vapor trap) and vacuum pump (VLP120) (all
Thermo Scientific, Waltham, MA, USA). For the NMR experiments, the samples were
re-dissolved in 500 µL of NMR buffer (0.08 M Na2HPO4, 5 mM TSP (3-(trimethylsilyl)
propionic acid-2,2,3,3-d4 sodium salt), 0.04 (w/v)% NaN3 in D2O, pH adjusted to 7.4 with
8 M HCl and 5 M NaOH). For BAT, WAT, and intestinal samples, 50 µL of chloroform
(CHCl3) was added to the solution in NMR buffer then centrifuged at 13,000 rpm for 10 min
(4 ◦C) to remove lipids. The supernatants were transferred to 5 mm NMR tubes for data
acquisition.

4.3. Data Acquisition and Analysis

Metabolic-profiling analysis was conducted at 310 K using a 600 MHz Bruker Avance
Neo NMR spectrometer (Bruker Biospin, Rheinstetten, Germany) equipped with a TXI
600S3 probe head. The Carr–Purcell–Meiboom–Gill (CPMG) pulse sequence was used
to acquire 1H 1D NMR spectra with a pre-saturation for water suppression (cpmgpr1d,
512 scans, 73,728 points in F1, 12019.230 Hz spectral width, 1024 transients, recycle de-
lay 4 s) [90,91]. The 1H-13C heteronuclear single-quantum correlation (HSQC) spectra
were recorded with a recycle delay of 1.0 s, spectral widths of 20.8/83.9 ppm, centered
at 3.9/50.0 ppm in 1H/13C, with 2048 and 256 points, respectively, and 8 scans per in-
crement. NMR spectral data were processed as previously described [92]. Briefly, data
were processed in Bruker Topspin version 4.0.2 using one-dimensional exponential win-
dow multiplication of the FID, Fourier transformation, and phase correction. The NMR
data were then imported into Matlab2014b; TSP was used as the internal standard for
chemical-shift referencing (set to 0 ppm); regions around the water, TSP, and methanol
signals (also CHCl3 signals for BAT, WAT and intestines, as well as EDTA for plasma) were
excluded. The NMR spectra of two WAT samples of old mice could not be analyzed due
to problems with field homogeneity. The NMR spectra were aligned, and a probabilistic
quotient normalization was performed. Reduced spectra and normalized spectra were
generated by Matlab2014b, among which the normalized spectra were used to quantify
metabolites by signal integration. For each quantified metabolite, a characteristic peak
without interfering signals was selected, the start and end points limiting the range of
the peak were defined to integrate the area of the peak by summing the values for each
point. To visualize our integration approach, the characteristic peaks of selected metabolites
are shown in Supplementary Figures S1C–S4C, S5D and S6C, with the areas of integration
defined by the black bars. The integrations were used to generate the orthogonal partial
least squares discriminant analysis (O-PLS-DA), permutation analysis, volcano plot, MSEA
(including associated data consistency checks and cross-validation), and the heat map
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using MetaboAnalyst 5.0 [35]. The statistical significance of the identified differences was
validated by the quality assessment statistic Q2. A univariate statistical analysis was carried
out with aforementioned integrations using GraphPad Prism 7.04 (GraphPad Software, La
Jolla, CA, USA). Data were represented as mean ± standard deviation (SD). The p-values
were calculated using a two-tailed Student’s t-test for pairwise comparison of variables.
Metabolites with p < 0.05 are shown in panel B of each supplementary figure. Additionally,
we recorded for each tissue an 2D 1H-13C HSQC spectra, to highlight the presented metabo-
lites and to validate our interpretations on 1D 1H spectra. These figures are included in the
Supplementary Figures S1D–S4D, S5E, S5F, and S6D.

5. Conclusions

Biomarkers provide essential information about the health state or disease develop-
ment in patients [93]. Therefore, it is of utmost interest to identify new biomarkers in a
reproducible manner and to reveal their underlying metabolic pathways. Metabolomics
is a recently developed technique that allows the precise identification of molecules from
biological samples [94]. In the present study, we used NMR-based metabolomics to give an
overview of tissues associated with energy metabolism and highlighted several molecules
related to major pathways of energy homeostasis. In addition, we identified the WAT,
duodenum, jejunum, and ileum as mainly ‘unaltered’ organs, which are likely to present a
lower spectrum of functional changes during aging. This leads to the hypothesis that aging
mainly affects energy expenditure by reducing it, with less effects on the absorption and
storage of energy. This is the first systematic study on the metabolic landscape of organs
involved in energy metabolism, with the potential, in future studies, for new strategies to
treat diseases related to aging and nutrition.
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