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Abstract
Crucial, natural protection against tumour onset in humans is orchestrated by
the dynamic protein p53. The best-characterised functions of p53 relate to its
cellular stress responses. In this review, we explore emerging insights into p53
activities and their functional consequences. We compare p53 in humans and
elephants, in search of salient features of cancer protection.
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Introduction
Protection from DNA damage defines the primary function of 
ancestral p53 at its emergence around one billion years ago. 
This is deduced from germline gametes of the modern-day early  
metazoan descendent, the sea anemone (reviewed in 1). Conserva-
tion of this core business in contemporary p53, which promotes 
the preservation of DNA integrity in our evolutionarily developed 
human species, defines its critical function as the ‘guardian of the 
genome’.

The ascribed gene name, tumour suppressor protein p53 (TP53), 
reflects its key role in suppressing malignant transformation in 
advanced species. Recent analyses reveal that corruption of p53 
function (through mutation in approximately 50% of all human 
cancers2 and negative regulation in others3) can wreak havoc 
across the epigenome4, the coding and non-coding transcriptome5,6, 
microRNA (miRNA) machinery7, and the proteasome8, resulting 
in altered protein output. Ensuing pathway deregulation impacts 
on cellular stress responses, including those that facilitate DNA 
repair or cell termination of the irreparable (reviewed in the  
recent series edited by Haupt and Blandino9), autophagy (reviewed 
in 10), mRNA translation, DNA replication11, metabolism12 and 
immunity (reviewed in 13).

The emergence of cancer in humans is often touted as a largely 
modern-day affliction that has arisen with extended longevity  
associated with clinical advances. Remarkably, however, one of 
the oldest living mammals, the elephant, rarely, if ever, dies of  
cancer. Highly relevant to this review, p53 appears to be the 
lynchpin to explain both these scenarios. In humans, cancers are  
associated with the high prevalence of TP53 gene mutation2.  
Elephants, on the other hand, have extended, cancer-free lon-
gevity, attributed to their at least 20 paired copies of its TP53  
repertoire14. Dissection of this protection offers fascinating insight 
into p53 function.

How p53 defends against DNA damage to preserve the genome 
and fight cancer is still being elucidated, despite more than 35 
years of intense molecular and cellular study. Until very recently, 
the field predominantly focused on the role of p53 as a transcrip-
tional regulator, particularly on its transactivation targets that drive 
arrest and apoptosis. The capacity of p53 to suppress tumours  
independent of key mediators of these processes has challenged 
accepted knowledge15,16. The complexity of the p53 response  
continues to emerge along with new understanding of the contri-
bution of p53 to transcriptional repression17,18 and also revisitation 
of the concept of p53 transactivation-independent function, which  
was first reported more than 20 years ago19.

The best-defined p53 responses to DNA damage are either tem-
porary or permanent interruption of cell proliferation. Measured 
restraint of these potent p53 responses is biologically essential for 
survival. Despite early suggestions that this feature developed late 
in evolution, new findings have identified a key orthologue in the 
fly genome of the major negative regulator of p5320. The ancient  
origins of p53 and also the ancestral form of the contemporary  

regulators MDM2 and MDM4 reflect their fundamental impor-
tance for evolutionary fitness.

Tumour suppressor function of p53
The critical role of p53 in preserving genomic integrity is sup-
ported by extensive exome sequence data sets (including from the 
Getz lab21 and the Tumor Cancer Genome Atlas22), which iden-
tify TP53 as the single most frequently mutated gene in cancer.  
Furthermore, p53 pathway genes proved to be the most signifi-
cantly enriched set in the cancer susceptibility loci in the 1000  
Genomes Project23. In parallel, the loss of TP5324 or germline25,26 
mutation predisposes mouse models to cancer and its mutation 
is the major driver of malignancy in the human inherited Li- 
Fraumeni cancer syndrome. Intriguingly, in stem cells, p53  
controls cell differentiation27, which is inherently distinct from its  
counterpart role in protecting from DNA corruption in somatic 
cells. These distinct functional differences have been tentatively 
attributed to distinct p53 isoform expression (reviewed in 28).  
These key points condense the message of thousands of indi-
vidual studies that, in vertebrates, p53 performs a major tumour- 
suppressive role in somatic cells. In this review, we will focus on 
the somatic functions of p53.

P53 transactivation function
In response to a range of cellular stresses, p53 transactivates  
multiple target genes to regulate a range of outcomes, includ-
ing cell growth arrest, apoptosis, DNA damage repair, oncogene  
activation, telomere shortening and metabolic disturbance (reviewed 
in 29). While p53 transcriptional activity is widely regarded 
as its core function, intriguing recent findings have exposed  
greater complexity. Consistent with conventional understanding, 
transactivation-incompetent p53 mutants fail to suppress tumour 
development15. This provoked an intense search for decisive p53 
targets. Although thousands of putative p53 transcriptional tar-
gets have been reported, only a couple of hundred were identified 
at high confidence17,30 and these appear independent of cell type 
and treatment31. More specifically and unexpectedly, a synthetic 
p53 mutant rendered incapable of transactivating its key known 
mediators of growth arrest and apoptosis is still able to suppress  
cancer development15. Consistently, ablation of prime transcrip-
tional p53 targets (specifically: p21, Puma and Noxa) in the  
cell-cycle inhibitory pathways failed to completely recapitulate  
p53 loss16. Intense study is under way, in many labs, to define 
the critical p53 targets that execute its downstream effects (see 
‘P53 gene repressor function’, ‘DNA damage response’ (DDR),  
‘Emerging p53 growth suppression mechanism: ferroptosis- 
induced cell death’ sections below). To comprehensively evaluate 
the significance of these studies, a key distinction must be drawn 
between the prevention of cancer development that was assessed 
and intervention to treat a developed cancer that remains to be 
tested (particularly pertinent to the very elegant in vivo experiments 
from the labs of Gerard Evan32, Scott Lowe33 and Tyler Jacks34).

P53 gene repressor function
A mechanism of p53 transcriptional repression has recently 
been delineated which has led to a fundamental revision of our  
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understanding of p53 activity, particularly the induction of cell-
cycle arrest. This new concept supersedes the former dogma that 
p53 represses gene transcription through direct engagement of 
particular response elements35. P53 transcription inhibition is now 
attributed to an indirect p53 action where p53 transactivates the  
cyclin-dependent kinase (CDK) inhibitor p21 (CDKN1A/p21), 
causing interference with phosphorylation of RB-like pocket 
protein homologs RBL1 (p107) and RBL2 (p130). These hypo-
phosphorylated RB-like proteins then cause stabilization of the 
multi-protein repressor ‘DREAM’ complex (which is composed of 
dimerization proteins [DPs], RB-like proteins, E2F4 and MUVB). 
DREAM is a transcriptional repressor complex that engages E2F 
or CHR promoter sites. A link between p53 and DREAM is a new 
concept that is now referred to as the ‘p53-p21-DREAM pathway’ 
of gene repression. The repertoire of genes repressed by this com-
plex are largely cell cycle–associated and include those in DNA 
repair (as discussed below). It is the recruitment of this complex 
to the promoters of target genes that causes transcriptional repres-
sion (reviewed in 17). This is a fundamental change in thinking 
and is relevant to the multitude of targets repressed when p53 is 
activated.

P53 responses to stress
DNA damage response
A decisive role for p53 in the DDR has been recognized (reviewed 
in 36). Indeed, in response to disruption of the genome, critical 
directives by p53 seal cellular fate. P53 is capable of activating 
molecular processes to either initiate temporary arrest and repair 
or induce permanent arrest or death. Despite the many thousands of 
studies defining the role of p53 in these mechanisms, what directs 
these choices still awaits comprehensive elucidation (see ‘Emerg-
ing functions: p53 regulation of the epigenome’ section below37).

This brief survey of DDR p53 targets reveals extensive interven-
tion across multiple processes. P53 participation in a range of 
DDR was recently reviewed36; however, we will limit this discus-
sion to the high-confidence targets. P53 regulates DDR facilitators, 
through direct engagement of facilitating proteins during repair but 
also by transactivating key targets. First, p53 contributes to detec-
tion of DNA damage by promoting chromatin relaxation, which 
it achieves by engaging and consequently reducing the activity 
of two DNA helicases: XPB and XPD. This relaxation is further 
stimulated by p53 recruitment of p300 histone acetylase (HAT) to  
mediate histone H3 subunit acetylation at damage sites (reviewed 
in 36). Second, halting cell division to enable repair is under-
stood to be a key activity of p53 target CDKN1A, which is one 
of the most high-confidence targets identified in multiple screens  
(reviewed in 17).

Third, in response to single-stranded DNA damage caused by 
ultraviolet radiation, nucleotide excision repair (NER) (reviewed 
in 36) is provoked by the recruitment, to the break site, of two  
high-confidence transactivation targets of p53 that are NER 
pathway components: damage-specific DNA-binding protein 2  
(DDB2/XPE) and XPC17. RRM2B promotes DNA repair by feed-
ing precursor deoxyribonucleoside diphosphates (dNTPs), which 
it catalytically converts from ribonucleoside diphosphates38. 

Identification of RRM2B as one of the top two transactivation  
targets of p53, together with CDKN1A17, predicts the significance 
of p53 in directing arrest and DNA repair.

An additional p53 target of indirect p53-p21-DREAM repres-
sion that has been linked to NER is the mismatch repair (MMR) 
core component M2H217. Suggestion that p53 and M2H2 engage  
physically36 queries the existence of additional levels of regulation 
at the level of transcription. In addition, p53 has been linked to 
other DDR pathways, including homologous recombination (HR), 
MMR and base excision repair.

RAD51 is another target of p53 involved in HR to regulate  
double-strand break repair. Interestingly, while reported as a 
high-confidence target of repression by the p53-p21-DREAM  
pathway17, it once again appears that this is dependent on the  
isoform of p53 present. Specifically, the p53 isoform Delta133p53 
is reported to upregulate RAD5139. Furthermore, direct inter-
action between p53 and RAD51 was identified to control HR,  
suggesting that this engagement prevents aberrant recombination 
events (reviewed in 36).

Fourth, in response to DNA damage, repair is promoted through 
p53 transactivation of proliferating cell nuclear antigen (PCNA)40, 
which is a definitive component of the DNA replication fork, and 
acts as a co-factor of DNA POL Delta. This augments the essen-
tial cell cycle–regulated function of PCNA41. P53 mutation elimi-
nates this DDR40. A fascinating finding is that PCNA has response 
elements for both p53 and DREAM17. This predicts an inbuilt  
‘rheostat’ to properly meter-out the DDR, where p53 could ini-
tially activate a DDR target such as PCNA, simultaneously with 
CDKN1A, and as a secondary containment event, the p21-DREAM 
repression complex would override. Similarly, DNA polymerase  
H (POLH) appears to be differentially regulated by p53 direct and 
indirect activity17. This interesting concept of regulation needs  
testing, but oscillating levels of p53 products is an established  
concept (as evidenced in the p53-MDM2 feedback loop42,43).

At face value, if we assume that it is vital to interrupt progression 
through the cell cycle to facilitate repair, it is surprising that p21 
has not been identified in germline models to be critical for TS. 
However, perhaps it is actually the repair functions of p53 that are 
vital—with redundancy in arrest induction and tolerance of impre-
cise DREAM dampening of repair gene repression? In this context, 
the involvement of p53 in both G

1
 and G

2
 arrest (reviewed in 44) 

is pertinent.

Emerging p53 growth suppression mechanism: 
ferroptosis-induced cell death
A critical role for p53 in triggering cell death through iron- 
mediated ferroptosis has taken centre stage recently. In non- 
colorectal cancer (CRC) cells, p53 was reported to inhibit the  
transcription of solute carrier cystine-glutamate antiporter 
SLC7A11, which in turn drives ferroptosis45. In contrast, a sur-
prising new study reports that CRC cells specifically are protected  
from ferroptosis through wild-type (wt) p53 engagement in a tran-
scriptional-independent manner46. In these cells, p53 physically 
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binds and promotes the relocation of the ferroptosis promoter  
DPP4 (CD26) into the nucleus where it is inactive. This is 
reported as a p53 transcription-independent function in these cells.  
Therapeutic opportunities for targeting this antiporter system 
in the absence of functional p53 show promise across a range of  
cells46,47 and constitute an active area of research. These studies 
highlight the importance of understanding p53 activity in  
context. Further clarification is warranted regarding the breadth of 
p53 transcriptional-dependent and -independent activities across  
healthy and disease contexts to execute ferroptosis and how this 
meshes with p53-induced arrest and apoptosis.

Emerging functions: p53 regulation of the epigenome
A role for p53 in epigenomic regulation of the extensive non-
coding elements of the genome is newly emerging. Epigenetics 
refers to DNA and histone modifications, plus chromatin remodel-
ling. Importantly, promoter methylation is linked to transcription 
repression while methylation in gene bodies is associated with  
transcription activation (reviewed in 48).

P53 is involved in transcriptional silencing of repetitive, short 
interspersed nuclear elements (SINEs) and non-coding RNAs. In  
keeping with this, p53 has also attracted the title of ‘guardian of 
repeats’. These are DNA elements attributed to ancient viral inva-
sion of the genome. As a fateful safety precaution, a pathway of  
type I interferon (IFN)-mediated self-destructive cell death is 
triggered if these elements are transcribed in normal cells (where  
formation of double-stranded RNA appears key to activating 
the response). It is unsurprising then that p53 mutation, DNA 
hypomethylation and breakdown of regulated IFN function  
frequently accompany tumorigenesis49.

The exact mechanism of p53’s involvement in this silencing is  
awaiting elucidation. Pertinently, links between p53 and DNA 
methyl transferases (DNMTs) have been reported. Cell-cycle inter-
ruption is attributed to p53 recruitment of DMNT1 and consequent 
methylation of promoters of genes that promote cell growth (for 
example, through targeting the inhibitor of p53 growth arrest and 
the cell division cycle (cdc) 25C (CDC25C) tyrosine phosphatase 
and also by downregulating the anti-apoptotic gene Survivin  
(BIRC5)50. Of therapeutic relevance, DNMT1 inhibition induced 
by 5-aza-2′-deoxycytidine induces DNA hypomethylation exclu-
sively in a wt p53 context resulting in a protective G

2
/M checkpoint  

arrest, while cells (both primary and non-transformed cells) lack-
ing p53 do not stop dividing and undergo extreme chromosomal 
abnormalities, then apoptose51. In contrast, DMNT3a also inter-
acts with p53, but in this instance, it counters growth inhibition 
through the methylation of genes involved in arrest (for example,  
CDKN1A/p21). This is in keeping with elevated DMNT3a levels 
in cancers52.

In an attempt to identify the chromatin-related factors that dis-
criminate the capacity of p53 to instigate either arrest or apoptosis,  
Shelley Berger’s group undertook an RNA interference analysis 
of the chromatin mediators involved in p53-dependent transcrip-
tion of its key respective targets: CDKN1A/p21 and BBC3/puma37. 
This work was rationalized upon the evident overlap between p53 
and chromatin regulatory pathways. In this study, DNMTs did not 

stand out as key regulators of transcription; however, other chro-
matin mediators were distinguished as either positive or negative 
regulators of p53 activity under basal or stress conditions. Further-
more, target specificity was clear among these regulators. These 
rich lists are composed of both known and new candidates and their  
biological significance beyond a single cancer cell line awaits 
unmasking (37 and references within).

Another fascinating study by the Berger group identified that 
mutant p53 can drive cancer by instigating epigenomic disruption.  
Transcription of chromatin regulators was found to be subject 
to mutant p53 but not affected by wt p53. Mutant p53 is able to  
co-localize with ETS2 and Pol II at the transcriptional start sites of 
a number of vital chromatin regulatory genes, methyltransferases 
(notably MLL1 and MLL2), and also of the acetyltransferase 
(MOZ). The result is genome-wide increased histone methylation 
and acetylation associated with cancer growth.

Consistently, analyses of large, publicly available genome data sets 
demonstrate the trend that gain-of-function p53 mutation corre-
lates with elevated expression levels of MLL1, MLL2 and MOZ. 
This work defines a rational new application for the burgeoning 
field of epigenetic drug regulators4 and predicts the relevance of  
stratification according to p53 status.

P53 regulation beyond MDM2
New aspects regarding the regulation of p53 are also emerg-
ing. While elevated levels of p53 in response to stress are largely 
attributed to its post-translational modifications to protect from the  
proteasome, additional levels of transcriptional control are also  
evident. At the post-transcriptional level, the well-established  
role of MDM2 as the major regulator of p53, in partnership 
with MDM4, is being elaborated to define therapeutic relevance 
(reviewed in 53) and the oncogenic role of these regulators in 
mutant p53 cancers is also being exposed (for example, 54).

At the level of mRNA processing, the contribution of mRNA splic-
ing is reflected by the generation of discretely spliced p53 isoforms 
in stem cells, compared with differentiated tissues27. Abnormal p53 
isoforms that appear in cancers reflect the subversion of mRNA 
splicing associated with malignancy (reviewed in 55).

In addition, a host of miRNAs are being identified that also reg-
ulate p53 levels (reviewed in 56) and again their deregulation  
is a risk for cancer. Beyond this level of control, regulation during 
translation also occurs, and an alternative site for ribosome  
attachment to TP53 RNA, termed the internal ribosomal entry  
sites which are engaged at different phases of the cell cycle57.

P53 and elephants
The multiple copies of TP53 in cancer-resistant elephants cast 
a fascinating perspective on its tumour-suppressive function  
(Table 1). These additional copies of TP53 are referred to as 
TP53 retrogenes (TP53RTGs) and while a number of these are  
transcribed, they do not appear to be directly transcription-
ally active. Intriguingly, elephants have an exceptionally well- 
developed response to DNA damage and their dermal fibroblasts 
trigger apoptotic cell death when exposed to low doses of stimuli 
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but do not respond to Nutlin 3a that relieves p53 from MDM2 sup-
pression. The dual functions identified for TP53RTGs are, first, 
to repress p53 signalling in the absence of activating stimuli and, 
second, to promote greater sensitivity to DNA damage. The pro-
posed mechanism for these functions stems from the finding that 
a TP53RTG is transcriptionally incompetent but can dimerize 
with p53 in the absence of stress, effectively protecting it from 
MDM2 and the proteasome. This ‘pool of protected p53’ can then  
respond rapidly to DNA damage. The suggestion that these extra 
copies encode TP53 isoforms that are not subject to MDM2  
regulation predicts a fascinating biological perspective and has 
potential ramifications for consideration for human cancer therapy 
and longevity14.

These studies open many additional questions related to elephant 
p53 regulation during its cancer-free development by anal-
ogy to the suggestion that distinct p53 isoforms drive individual  
functions in stem cell differentiation27. The speculation that  
orthologous isoforms exist between elephants and humans is 
intriguing14, particularly with recent findings indicating that p53 
isoforms moderate the DDR in humans39. These studies also raise 
many other exciting questions such as the status of other p53  
family members in elephants, their interplay with p53 and the 
nature of their regulation. The study of elephants suggests that  
the full extent of the tumour-suppressive capacity of p53 is yet  
to be tapped in humans and predicts that vital cancer resistance  
possibilities await discovery and adoption.
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Table 1. Comparison of humans and elephants and 
parameters of relevance to cancer-free survival.

Species Humans Elephants

Average survival ~70 years58 60–70 years59

Number of pairs of  
p53 copies14

1 1

Number of pairs of  
p53 transgenes14

0 19

Cancer incidence 1:4 (US humans 
by 85 years60)

~014
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