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Diabetic neuropathy (DN) is one of the chronic complications of diabetes which can cause
severe harm to patients. In order to determine the key genes and pathways related to the
pathogenesis of DN, we downloaded the microarray data set GSE27382 from Gene
Expression Omnibus (GEO) and adopted bioinformatics methods for comprehensive
analysis, including functional enrichment, construction of PPI networks, central genes
screening, TFs-target interaction analysis, and evaluation of immune infiltration
characteristics. Finally, we examined quantitative real- time PCR (qPCR) to validate the
expression of hub genes. A total of 318 differentially expressed genes (DEGs) were
identified, among which 125 upregulated DEGs were enriched in the mitotic nuclear
division, extracellular region, immunoglobulin receptor binding, and p53 signaling
pathway, while 193 downregulated DEGs were enriched in ion transport, membrane,
synapse, sodium channel activity, and retrograde endocannabinoid signaling. GSEA plots
showed that condensed nuclear chromosome kinetochore were the most significant
enriched gene set positively correlated with the DN group. Importantly, we identified five
central genes (Birc5, Bub1, Cdk1, Ccnb2, and Ccnb1), and KEGG pathway analysis
showed that the five hub genes were focused on progesterone-mediated oocyte
maturation, cell cycle, and p53 signaling pathway. The proportion of immune cells from
DN tissue and normal group showed significant individual differences. In DN samples,
T cells CD4 memory resting and dendritic cells resting accounted for a higher proportion,
and macrophage M2 accounted for a lower proportion. In addition, all five central genes
showed consistent correlation with immune cell infiltration levels. qPCR showed the same
expression trend of five central genes as in our analysis. Our research identified key genes
related to differential genes and immune infiltration related to the pathogenesis of DN and
provided new diagnostic and potential therapeutic targets for DN.
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INTRODUCTION

Diabetic neuropathy (DN) is one of the most common and
serious chronic complications of diabetic mellitus (DM)
(Barrett et al., 2017; Iqbal et al., 2018), which is characterized
by pain, paresthesia, and sensory loss (Pinzur, 2011). It has been
stated that DN impacts approximately 60–70% of diabetics
(Tesfaye et al., 2010; Callaghan et al., 2012), and if it cannot
be treated well, it would multiply the disability and mortality of
diabetics (Davies et al., 2006; Smith et al., 2012). However, in
addition to controlling blood glucose levels, no effective
treatment have been found to prevent, slow, or reverse the
progression of DN (Charnogursky et al., 2014). Therefore,
identifying molecular biomarkers and exploring the underlying
mechanisms of DN pathogenesis is vital for early diagnosis,
prognosis, and personalized treatment of DN.

The principal pathological process of DN includes axonal
degeneration and segmental demyelination (Vinik et al., 2000).
Studies have identified persistently impaired insulin function and
hyperglycemia to cause a series of downstream abnormalities that
eventually lead to axon loss (Malik et al., 2001; Sima and Zhang,
2014). In addition, several biological pathways including
oxidative stress, inflammation, apoptosis, and autophagy are
also involved in the development of diabetic neuropathy
(Fernyhough and McGavock, 2014; Roman-Pintos et al., 2016;
Chung et al., 2018). However, the process is still controversial due
to its complexity.

During the last decades, bioinformatics analysis has been
extensively applied to analyze microarray data to identify
differentially expressed genes (DEGs) and perform various
analyses (Normand and Yanai, 2013; Servant et al., 2014).
Integrating and reanalyzing these genomic data offer
possibilities for identifying certain disease-related biomarkers.
At present, a great deal of research has been conducted on the
regulatory genes of DN (Guo et al., 2019; Zhou and Zhang, 2019;
Jian and Yang, 2020). Comprehensive analysis of the expression
profile data of these genes on the microarray platform will help us
understand the pathogenesis more deeply and accurately.
Selecting different high-throughput sequencing platforms and
samples will cause differences in DEG identification results. In
this study, we downloaded GSE27382 (Pande et al., 2011) gene
chip from the Gene Expression Omnibus (GEO) database (Edgar
et al., 2002) and screened DEGs of the sciatic nerve in DN model
mouse and normal mouse to determine key biomarkers. Gene
Ontology (GO) functional annotation analysis (Ashburner et al.,
2000) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis (Wixon and Kell, 2000) were
performed for the screened DEGs. The protein–protein
interaction (PPI) network of DEGs was established by
STRING (Szklarczyk et al., 2015) and visualized by Cytoscape
software (Saito et al., 2012). We also constructed transcription
factor (TF) regulation network (Han et al., 2018) and selected hub
genes. Furthermore, we used the CIBERSORT algorithm (Chen
et al., 2018) to predict the proportion of immune infiltration in
sciatic nerve samples and analyzed the correlation between the
hub gene and immune infiltration. At last, the mRNA expression
levels of these five genes were verified by in vitro experimental

analysis. Hopefully, our exploration is expected to provide novel
clues for the diagnosis and potential therapeutic targets of DN.

MATERIALS AND METHODS

Microarray Data Information
Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.
gov/geo) is a public genomics data repository of massive
high throughput gene expression data (Edgar et al., 2002).
The GSE27382 dataset provided by Manjusha Pande et al.
(Pande et al., 2011) included 6 DN model mouse sciatic nerve
and 7 normal mouse sciatic nerve. They assessed the
neuropathy of BKS db/db mouse (a genetic mouse with
spontaneous type 2 diabetes) and prepared a model of DN.
Heterozygous (db/+) mice do not develop diabetes and were
used as no diabetic controls in experimental DN. Microarray
technology was performed to compare RNA expression of
mouse sciatic nerve. Affymetrix GeneChip Mouse Genome
430 2.0 Array (CDF: Mouse4302_Mm_ENTREZG.cdf version
12.0.0) was used as the platform.

Data Pre-Processing andDEG Identification
We used R software (version 3.6.3; https://www.r-project.org/)
and Bioconductor packages (http://www.bioconductor.org/) for
data correction and analysis. The probe name in the MINiML file
was translated into the gene symbol by the R package and saved as
a TXT file. The standardized data matrix was analyzed using the
limma R software package. | logFC (fold change) | > 2 and
adjusted p-value < 0.05 were considered statistically significant,
aiming at reducing the false positive rate. Then, we used TBtools
software (Chen et al., 2020) (http://cj-chen.github.io/tbtools/) to
visualize the raw data in TXT format and drawn cluster heat map
and volcano plot.

GO and KEGG Pathway Enrichment
Analyses
GO annotates and classifies gene sets through biological
pathways (BP), cellular components (CC), and molecular
function (MF), while KEGG hints biological pathways
related to DEGs (Ashburner et al., 2000; Wixon and Kell,
2000). Gene set enrichment analysis (GSEA) is a
computational method that determines whether there is a
significant difference between two groups for a defined set
of genes. The DAVID online database provides a
comprehensive set of functional annotation tools for
annotation, visualization, and integrated discovery to
understand the biological meaning of genes and proteins.
GO and KEGG analysis in the present study was performed
using (DAVID, http://david.ncifcrf.gov) (version 6.8) and
GSEA software (version 3.0). The cut-off criterion was set
as p < 0.05 and gene counts ≥ 5 (Huang et al., 2007).

PPI Network Construction
The PPI network was established by a Search Tool for the
Retrieval of Interacting Genes (STRING; http://string-db.org)
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(version 10.0) online database (Szklarczyk et al., 2015), and
combined score > 0.4 was considered a significant interaction.
Meanwhile, we applied Cytoscape software (https://cytoscape.
org/) (version 3.6.1) to visualize the PPI network (Saito et al.,
2012).

Module Analysis and CytoHubba Analysis
Molecular Complexity Detection (MCODE), a plugin in
Cytoscape, identifies the most important modules in a PPI
network based on nodes and scores (Anitha et al., 2016).
MCODE scores > 5, degree cutoff � 2, node score cutoff �
0.2, K-core � 2, and Max depth � 100 were set as filtering
parameters. Another plugin, CytoHubba (Chin et al., 2014),
was used to screen out key subnets. We used the maximal
clique centrality (MCC) algorithm to rank the nodes for
network centrality and select the top 20 as candidate genes.

TF Regulation Prediction
TRRUSTv2 (http://www.grnpedia.org/trrust/) is a manually
curated database of human and mouse transcriptional
regulatory interactions. This database used a continuously
improved sentence-based text mining algorithm, coupled with
careful manual proofreading after mining, to ensure that the
interaction between the TFs-targets in the database was
experimentally verified (Han et al., 2018). Based on this online
database, we found regulatory factors of DEGs and
comprehensively analyzed the interaction between TF and its
target genes. Then, we screened the target genes and TFs linked to
target genes to build a co-expression network.

Screening for Hub Genes
The MCC algorithm of CytoHubba, MCODE scoring method,
and key TF target genes were used to comprehensively screen the
important hub genes among DEGs. We employed the web tool
Venn diagram (http://bioinfogp.cnb.csic.es/tools/venny/) to
obtain the common hub genes in three different experiments.
Subsequently, the biological process analysis of hub genes was
performed using Biological Networks Gene Ontology tool
(BiNGO) (version 3.0.3) (Maere et al., 2005) plugin of
Cytoscape, and we reanalyzed hub genes via KEGG pathway
enrichment.

Determination of Immune Cell Landscapes
We use the bioinformatics algorithm CIBERSORT to calculate
the proportion of 22 immune cells based on the gene
expression profile. The 22 infiltrating immune cells include
B cells, T cells, natural killer cells, macrophages, dendritic cells,
and myeloid subsets (Edgar et al., 2002; Newman et al., 2015;
Chen et al., 2018). The CIBERSORT analysis tool uses Monte
Carlo sampling to obtain the P-value of the deconvolution of
each sample to determine the confidence. At p < 0.05, the
inferred CIBERSORT immune cell population score was
accurate. We uploaded the standardized gene expression
data set to the CIBERSORT Web site (http://cibersort.
stanford.edu/), with the permutation parameter to 1,000,
screened out samples with p < 0.05, calculated the
percentage of each immune cell in the sample, analyzed the

immune infiltration level of each immune cell between the two
groups, and performed principal component analysis (PCA).
The immune cell type fractions summed up to one. Finally, we
used the Pearson method to analyze the relationship between
immune cells and core gene expression.

qRT-PCR Assay of the Hub Genes
The RSC96 cell line was purchased from the Institute of
Biochemistry and Cell Biology, CAS (Shanghai, China). The
cells were cultured in Dulbecco’s modified Eagle’s medium
(DMEM; Gibco, Grand Island, NY, United States) containing
10% FBS (Gibco), 100 mg/ml streptomycin and 100 U/ml
penicillin (Biyuntian, China) at 37°C in a humidified 5% CO2
incubator (Thermo, Waltham, MA, United States). After the cells
were fused to 70–80%, they were digested with 0.25% trypsin for
subsequent experiments. The cells were divided into two groups:
control group and model group. The glucose concentration in
DMEM is 5.6 mM, which is considered normal glucose (Con),
and 50 mM is considered high glucose (HG). The normal group
was cultured at a concentration of 5.6 mM glucose. The
glycotoxicity model group was first cultured under 5.6 mM
glucose for 24 h, and then incubated with 50 mM glucose for
48 h. The equivalent concentration of mannitol was used as an
osmotic control.

We extracted total RNA from two groups of cells using TRIzol
reagent (Invitrogen, Thermo Fisher Scientific, Inc.). RNA
samples from total RNA were reverse transcribed to cDNA,
and qRT-PCR was carried out using the 7500 Real-Time PCR
instrument (Applied Biosystems, United States). The expression
levels of the selected genes were normalized against β-actin. The
PCR primers used in this study are displayed in Table 1. Student’s
t test was used for the statistical analysis, and p < 0.05 indicated a
significant difference.

RESULTS

Identification of DEGs
After normalizing the microarray results from GSE27382
(Figures 1A,B), we identified 318 DEGs including 125
upregulated genes (logFC > 0) and 193 downregulated genes
(logFC < 0) after the comparison between 6 DN samples and 7
normal sciatic nerve samples. The identified DEGs were showed
by volcano plot (Figure 1C), the top 30 upregulated and
downregulated genes of the two expression groups were
displayed in a heat map (Figure 1D).

TABLE 1 | Primers used in qRT-PCR experiments.

Gene Forward primer (59-39) Reverse primer (59-39)

Birc5 TGCCCTACCGAGAATGAGC TTCCACCTGCTTCTTGACTGT
Bub1 GAAAACTCAGCTTGCGTTCC AGGCTTGGGTGCCATAGAT
Cdk1 CAGGACTCCAGGCTGTATCTC TCGGTATTCCAAACGCTCT
Ccnb1 CAGAGGTGGAACTGGATGAGC CACATCGGAGAAAGCCTGACA
Ccnb2 CATTCCAAGTTTAGGCTTCTGC GATTTGGGAACTGGTGTAAGCA
β-actin CGTTGACATCCGTAAAGAC TAGGAGCCAGGGCAGTA
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GO and KEGG Pathway Enrichment
Analyses
We performed functional analysis of DEGs by the DAVID online
software (Table 2). In the GO enrichment analysis, the upregulated
DEGs in BP were mainly enriched in mitotic nuclear division, cell
division, inflammatory response, cell cycle, chromosome
segregation, and innate immune response, while the
downregulated DEGs in BP were enriched in ion transport,
transport, sodium ion transport, synaptic vesicle exocytosis,
retinal ganglion cell axon guidance, and learning. CC analysis
showed that the upregulated DEGs were significantly enriched in
the extracellular region, extracellular space, condensed chromosome
kinetochore, kinetochore, chromosome, centromeric region, and
external side of plasma membrane, while the downregulated
DEGs were enriched in the membrane, synapse, axon, neuronal
cell body, perikaryon, and synaptic vesicle. As for MF, the
upregulated DEGs were mainly focused on immunoglobulin
receptor binding, serine-type endopeptidase activity, peptidase
activity, calcium ion binding, serine-type peptidase activity, and
peptide hormone binding, and downregulated DEGs were mainly
focused on sodium channel activity, voltage-gated sodium channel
activity, voltage-gated ion channel activity, clathrin binding,
potassium channel regulator activity, and calcium ion binding.
Additionally, KEGG pathway analysis results are displayed in
Table 3. We discovered that upregulated DEGs were significantly
enriched in p53 signaling pathway, complement and coagulation
cascades, progesterone-mediated oocyte maturation, oocyte meiosis,

neuroactive ligand-receptor interaction, and cell cycle, whereas
downregulated DEGs were significantly enriched in retrograde
endocannabinoid signaling, dopaminergic synapse, nicotine
addiction, amyotrophic lateral sclerosis (ALS), synaptic vesicle
cycle, and neuroactive ligand-receptor interaction.

GSEA identified 1,204 GO terms and 26 KEGG terms in DN
group and normal controls. GO analysis indicated that the
condensed nuclear chromosome kinetochore, condensed nuclear
chromosome, centromeric region, protein localization to
kinetochore, regulation of attachment of spindle microtubules to
kinetochore, and histone–serine phosphorylation were the most
significantly enriched biological processes in DN group
(Figure 2A). Most significant enriched pathway positively
correlated with the DN group included fat digestion and
absorption, homologous recombination, p53 signaling pathway,
cell cycle, and viral protein interaction with cytokine and
cytokine receptor (Figure 2B).

PPI Network Analysis
We constructed a protein interactions network by the STRING
online platform and extracted the proteins with a combined score >
0.4 for visualization by Cytoscape. A total of 247 DEGs from 318
candidate DEGs were contained into the network which included
247 nodes and 746 edges (Figure 3A). Among them, the red nodes
represent 98 upregulated genes, and the blue nodes represent 149
downregulated genes. The remaining 71 DEGs do not interact with
any other DEGs, so they are not included in the PPI network.

FIGURE 1 | Standardization of GSE27382. (A,B) The green bar represents the data before normalization, and the red bar represents the data after normalization.
(C) Volcano plots of DEGs in GSE27382. Red plots represent the upregulated genes with logFC > 2 and adjusted p-value < 0.05. Green plots represent the
downregulated genes with logFC < −2 and adjusted p-value < 0.05. Black plots represent the remaining genes with no significant difference. (D) Heat maps of DEGs
display of the most significant top 50 upregulated and downregulated genes.
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TABLE 2 | Gene ontology enrichment analysis of differentially expressed genes.

Expression Category Term Count p-value

Downregulated GOTERM_BP_DIRECT GO:0006811∼ion transport 22 1.30E-07
GOTERM_BP_DIRECT GO:0006810∼transport 40 5.91E-07
GOTERM_BP_DIRECT GO:0006814∼sodium ion transport 10 2.49E-06
GOTERM_BP_DIRECT GO:0016079∼synaptic vesicle exocytosis 5 2.56E-05
GOTERM_BP_DIRECT GO:0031290∼retinal ganglion cell axon guidance 5 3.17E-05
GOTERM_BP_DIRECT GO:0007612∼learning 7 3.48E-05
GOTERM_CC_DIRECT GO:0016020∼membrane 109 3.10E-11
GOTERM_CC_DIRECT GO:0045202∼synapse 24 2.84E-10
GOTERM_CC_DIRECT GO:0030424∼axon 20 1.58E-09
GOTERM_CC_DIRECT GO:0043025∼neuronal cell body 23 4.55E-09
GOTERM_CC_DIRECT GO:0043204∼perikaryon 12 1.46E-07
GOTERM_CC_DIRECT GO:0008021∼synaptic vesicle 11 2.61E-07
GOTERM_MF_DIRECT GO:0005272∼sodium channel activity 6 7.90E-06
GOTERM_MF_DIRECT GO:0005248∼voltage-gated sodium channel activity 5 3.17E-05
GOTERM_MF_DIRECT GO:0005244∼voltage-gated ion channel activity 9 3.76E-05
GOTERM_MF_DIRECT GO:0030276∼clathrin binding 6 6.73E-05
GOTERM_MF_DIRECT GO:0015459∼potassium channel regulator activity 5 2.74E-04
GOTERM_MF_DIRECT GO:0005509∼calcium ion binding 18 2.98E-04
GOTERM_BP_DIRECT GO:0006811∼ion transport 22 1.30E-07
GOTERM_BP_DIRECT GO:0006810∼transport 40 5.91E-07
GOTERM_BP_DIRECT GO:0006814∼sodium ion transport 10 2.49E-06
GOTERM_BP_DIRECT GO:0016079∼synaptic vesicle exocytosis 5 2.56E-05

Upregulated GOTERM_BP_DIRECT GO:0007067∼mitotic nuclear division 13 1.82E-07
GOTERM_BP_DIRECT GO:0051301∼cell division 13 4.27E-06
GOTERM_BP_DIRECT GO:0006954∼inflammatory response 11 6.44E-05
GOTERM_BP_DIRECT GO:0007049∼cell cycle 14 1.31E-04
GOTERM_BP_DIRECT GO:0007059∼chromosome segregation 5 2.42E-03
GOTERM_BP_DIRECT GO:0045087∼innate immune response 9 3.84E-03
GOTERM_CC_DIRECT GO:0005576∼extracellular region 30 3.56E-07
GOTERM_CC_DIRECT GO:0005615∼extracellular space 26 2.53E-06
GOTERM_CC_DIRECT GO:0000777∼condensed chromosome kinetochore 5 1.64E-03
GOTERM_CC_DIRECT GO:0000776∼kinetochore 5 5.93E-03
GOTERM_CC_DIRECT GO:0000775∼chromosome, centromeric region 5 1.04E-02
GOTERM_CC_DIRECT GO:0009897∼external side of plasma membrane 7 1.22E-02
GOTERM_MF_DIRECT GO:0034987∼immunoglobulin receptor binding 4 8.90E-04
GOTERM_MF_DIRECT GO:0004252∼serine-type endopeptidase activity 7 1.96E-03
GOTERM_MF_DIRECT GO:0008233∼peptidase activity 10 4.46E-03
GOTERM_MF_DIRECT GO:0005509∼calcium ion binding 11 1.07E-02
GOTERM_MF_DIRECT GO:0008236∼serine-type peptidase activity 5 1.80E-02

TABLE 3 | Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of differentially expressed genes.

Expression Category Term Count p-Value Genes

Downregulated KEGG_PATHWAY mmu04723:Retrograde endocannabinoid
signaling

6 8.68E-04 SLC17A7, GABRG1, GABRG2, SLC17A6, GNG3,
MAPK10

KEGG_PATHWAY mmu04728:Dopaminergic synapse 6 0.002792254 GNAL, SCN1A, GNG3, MAPK10, PPP2R2B,
PPP2R2C

KEGG_PATHWAY mmu05033:Nicotine addiction 4 0.002985375 SLC17A7, GABRG1, GABRG2, SLC17A6
KEGG_PATHWAY mmu05014:Amyotrophic lateral sclerosis (ALS) 4 0.005947408 PRPH, NEFH, NEFL, NEFM
KEGG_PATHWAY mmu04721:Synaptic vesicle cycle 4 0.010210301 SLC17A7, SLC17A6, CPLX1, ATP6V1G2
KEGG_PATHWAY mmu04080:Neuroactive ligand-receptor

interaction
7 0.016857166 GABRG1, F2RL2, ADRB3, GABRG2, AGTR1B,

GRM7, NPY2R
Upregulated KEGG_PATHWAY mmu04115:p53 signaling pathway 4 0.00976751 CCNB1, CDK1, CCNB2, SERPINE1

KEGG_PATHWAY mmu04610:Complement and coagulation
cascades

4 0.013749751 C6, SERPINE1, F7, CFI

KEGG_PATHWAY mmu04914:Progesterone-mediated oocyte
maturation

4 0.019706172 CCNB1, CDK1, CCNB2, BUB1

KEGG_PATHWAY mmu04114:Oocyte meiosis 4 0.037781539 CCNB1, CDK1, CCNB2, BUB1
KEGG_PATHWAY mmu04080:Neuroactive ligand-receptor

interaction
6 0.039529327 GABRR2, AGTR2, MC2R, OXTR, TSHR, CHRNA2

KEGG_PATHWAY mmu04110:Cell cycle 4 0.048667279 CCNB1, CDK1, CCNB2, BUB1
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Module Analysis and CytoHubba Analysis
We analyzed the total nodes by the Cytoscape pluginMCODE and
identified three significant modules with an MCODE score > 5
(Table 4). Module 1 contains 13 nodes and 77 edges (Figure 3B);
Module 2 contains 10 nodes and 55 edges (Figure 3C); Module 3
contains 19 nodes and 54 edges (Figure 3D). The most significant
Module A consisted of 13 nodes (Fam64a, Ccnb1, Cdk1, Bub1,
Nuf2, Ccnb2, Spc25, Birc5, Cdca5, Nek2, Cdca3, Cep55, and
Esco2). CytoHubba plugin was used to explore the important
nodes and sub-networks in the network. The top 20 maximal
clique centrality (MCC) protein nodes were selected as candidate
genes. CytoHubba plugin was used to explore the pivotal nodes and
sub-networks in the network. The top 20maximal clique centrality
(MCC) protein nodes were selected as candidate genes, including
Agtr1b, Amph, Birc5, Bub1, Ccnb1, Ccnb2, Cdca3, Cdca5, Cdk1,
Cep55, Esco2, Fam64a, Il7r, Nek2, Nuf2, Sh3gl2, Snap91, Spc25,
Syt11, and Syt9 (Figure 3E).

TF Regulatory Network Analysis
According to the TRRUSTv2 database, we calculated the TFs that
regulate DEG and obtained TFs-target interaction information. A
gene-TF regulatory network was constructed including 28 genes
and 21 TFs, resulting in 55 recombination relationship pairs
(Figure 4A). While Birc5 and Serpine1 were found to be
regulated by 7 TFs; Dcstamp was regulated by 4 TFs, Cxcl2,
and Hmga2 were regulated by 3 TFs; Ccnb2, Cdk1, Cldn11, F7,
Mmp12, Nefl, Tesc, Ucp1 was regulated by 2 TFs.

Hub Gene Selection and Analysis
In the end, the 13 significant genes generated by module
analysis, the top 20 candidate genes obtained by the MCC
algorithm, and the 28 target genes predicted by TFs were
applied to the overlap of Venn diagrams (Figure 4B). We
identified five common genes from three groups, including
Birc5, Bub1, Cdk1, Ccnb2, and Ccnb1. Therefore, these hub

FIGURE 2 |GSEA identifiedGO and KEGG pathways enriched in the DN group and normal controls. (A)GO analysis of the top five significantly enriched gene set in
DN group. (B) KEGG analysis of the top five significantly enriched pathways in DN group.
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genes may serve as promising biomarkers of DN. The GO
analysis of five hub genes using BiNGO is shown in Figure 4C,
the KEGG pathway results showed that the hub genes were
significantly enriched in progesterone-mediated oocyte
maturation, cell cycle, p53 signaling pathway, and oocyte
meiosis (Table 5).

Determination of Immune Infiltration
According to the CIBERSORT algorithm, 13 samples including
normal samples (n � 7) and DN samples (n � 6) all meet the
requirements of CIBERSORTP < 0.05. We used R software to
visualize the profile of immune infiltration of 13 sciatic nerve
tissues (Figure 5). Figures 5A,B show the relative proportions
and stratified clustering of the 22 immune cells in each sample.
Among them, dendritic cells resting account for most of all
infiltrating cells, especially in DN tissues. Figures 5C,D show
the correlation between the 22 immune infiltrating cells in normal

and DN groups. In normal samples, T cells follicular helper and
T cells CD4 memory activated, T cells CD4 memory resting and
NK cells resting, B cells naive and plasma cells, and macrophage
M0 showed strong correlation. In DN samples, macrophages M2
and plasma cells, monocytes and T cells CD4 memory resting,
and T cells CD8 all showed significant positive correlations.
Figure 5E further analyzes the differences in immune cells
between normal and DN samples. Obviously, the P values of
T cells CD4 memory resting, T cells CD4 memory activated,
T cells gamma delta, monocytes, macrophages M2, dendritic cells
resting, and eosinophils are 0.016, 0.042, 0.018, 0.01, 0.003, 0.002,
and 0.047, respectively. There are significant differences in the
proportions of these seven immune cells. Compared with normal
tissues, DN tissues contain a higher proportion of T cells CD4
memory resting and dendritic cells resting and a lower proportion
of macrophage M2. Figure 5F used principal component analysis
(PCA) to reveal the significant cluster bias clustering and

FIGURE 3 | Protein–protein interaction network construction and analysis of differentially expressed genes. (A) Red nodes represent upregulated genes, and blue
nodes represent downregulated genes. (B–D) Three significant modules with MCODE score > 5 and top 20 maximal clique centrality (MCC) protein nodes. Three
modules extracted from the PPI network. Red nodes indicate upregulated DEGs and green nodes indicate downregulated DEGs. (E) Top 20 candidate genes with
maximal clique centrality.

TABLE 4 | Three most significant modules from the PPI networks with MCODE score > 5.

Cluster Score Nodes Edges Node IDs

1 11 13 77 Fam64a, Ccnb1, Cdk1, Bub1, Nuf2, Ccnb2, Spc25, Birc5, Cdca5, Nek2, Cdca3, Cep55, and Esco2
2 10 10 45 Sh3gl2, Amph, Pacsin1, Snap91, Aak1, Syt11, Agtr1b, Syt9, Fzd4, and Il7r
3 6 19 54 Ptprn, Pcsk2, Scg5, Chgb, Chga, Cxcl2, Mmp8, Clec4d, Cxcl3, Slpi, Agtr2, Gng3, Npy2r, Orm2, Grm7, Sucnr1, Syt4, Il1rn,

and Saa3
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FIGURE 4 | Gene transcription factor and hub genes identified. (A) Gene transcription factor (TF) regulatory network. Green hexagons stand for the transcription
factor and red nodes stands for DEGs. (B) Hub genes identified by Venn diagram. The blue circle represents the 13 significant genes generated by module analysis, the
red circle represents the top 20 candidate genes obtained by the MCC algorithm, and the green circle represents the 28 target genes predicted by TFs. (C) GO analysis
of the hub gene constructed using BiNGO. The color depth of the node refers to the corrected p-value of the ontology. The size of the node refers to the number of
genes involved in the ontology. p < 0.01 is statistically significant.

TABLE 5 | Reanalysis hub genes via KEGG pathway enrichment analysis.

Category Term Count p-Value Genes

KEGG_PATHWAY cfa04914:Progesterone-mediated oocyte maturation 4 7.92E-06 CCNB1, CDK1, CCNB2, BUB1
KEGG_PATHWAY cfa04110:Cell cycle 4 2.33E-05 CCNB1, CDK1, CCNB2, BUB1
KEGG_PATHWAY cfa04115:p53 signaling pathway 3 5.41E-04 CCNB1, CDK1, CCNB2
KEGG_PATHWAY cfa04114:Oocyte meiosis 3 1.49E-03 CDK1, CCNB2, BUB1
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individual differences of the 22 immune cells in the two groups of
samples. The results showed that the expression level of the
normal group and the DN group were clearly differentiated. In

summary, these findings indicated that the difference in the
expression of immune infiltration between the DN group and
the normal group has important clinical significance.

FIGURE 5 | Landscape of immune infiltration between DN samples and normal samples. (A) The bar plot represents the relative percentage of 22 immune cells in
each sample. (B) Cluster heat map based on 22 immune cell proportions of normal samples and DN samples. Red indicates a high percentage of immune cells and blue
indicates a low percentage of immune cells. (C,D) Correlation matrix of the proportion of immune cells in the normal and DN groups. Red indicates positive correlation
and blue indicates negative correlation. (E) The difference in immune infiltration between the normal and DN samples (blue for the normal group and red for the DN
group, p value < 0.05 was considered statistically significant. (F) Principal component analysis of normal and DN samples. (G) Correlation index analysis of hub genes
expression and immune infiltration level. Red indicates positive correlation and blue indicates negative correlation.
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Correlation Analysis of Hub Gene and
Immune Infiltration
We investigated whether the expression of central genes in DN is
related to immune infiltration. The results showed that all five
central genes showed a consistent correlation with immune cell
infiltration levels (Figure 5G). The expression of Hub gene was
positively correlated with the infiltration level of T cells CD8,
T cells CD4 naive, T cells CD4 memory resting, and monocytes,
and had a large negative correlation with the infiltration level of
dendritic cells resting. These results indicated that immune cell
infiltration has an effect on DN progression, and Birc5, Bub1,
Cdk1, Ccnb2, and Ccnb1 play an important role in DN immune
infiltration.

qRT-PCR Assay of the Hub Genes
We detected the expression of these five genes at the mRNA level
by qRT-PCR analysis. The results showed that the transcript
levels of Birc5, Bub1, Cdk1, Ccnb1, and Ccnb2 were significantly
higher in the glycotoxicity model group compared to the control
group (Figure 6, p < 0.05), which is consistent with our above
bioinformatics analysis results.

DISCUSSION

Diabetes is regarded as a global threat to human health. According to
the data from the International Diabetes Federation (IDF), by 2045,
there will be approximately 700 million patients with diabetes
(Saeedi et al., 2019). DN is the most insidious and long-term
complication of diabetes, in addition to neuropathic symptoms,
the secondary complications may lead to serious further morbidity
including ulceration, fractures, amputations, and even death (Sung
et al., 2012). Because of its complex pathophysiological pathway,

there are currently no specific and efficient diagnostic methodologies
and treatment strategies. Hence, it is greatly needed to excavate the
DN-related markers and therapeutic targets. RNA sequencing has
been widely used in the research of endocrine andmetabolic diseases
(Wang et al., 2018; Backman et al., 2019). Studies have been
conducted to analyze the protein markers of diabetic
nephropathy (Caramori et al., 2015), diabetic retinopathy (Cui
et al., 2018), diabetic encephalopathy (Song et al., 2017), and
other complications using microarrays in diabetic patients or
animal models. These explorations have achieved remarkable
achievements and clinical benefits.

In this study, in order to investigate the change of expression
profile in DN and reveal its biological process, the 13 samples
from GSE27382 were selected to study the gene expression of the
sciatic nerve. A total of 318 DEGs were identified between DN
samples and normal sciatic nerve samples including 125
upregulated genes and 193 downregulated genes. Then, GO
and KEGG pathways enrichment analyses of DEGs were
performed. We constructed the PPI network and applied
module and maximal clique centrality analysis. Furthermore, we
predicted the TF-mediated transcriptional regulatory network and
comprehensively filtered out five hub genes including Birc5, Bub1,
Cdk1, Ccnb1, and Ccnb2. The qRT-PCR verification revealed that
the relative transcription levels of these genes showed the same
expression trends as in our bioinformatics analysis. Finally, using the
CIBERSORT algorithm, we found that the proportion of immune
infiltration in the DN and normal groups was different. In DN
samples, T cells CD4 memory resting and dendritic cells resting
accounted for a higher proportion, and macrophage M2 accounted
for a lower proportion. The difference inDN immune spectrummay
become a new target for immunotherapy.

Birc5, baculoviral IAP repeat-containing 5, is a member of the
inhibitor of apoptosis (IAP) gene family, which encode negative

FIGURE 6 | The mRNA levels for hub genes in glycotoxicity model and control group. (A–E) The transcript levels of Birc5, Bub1, Cdk1, Ccnb1 and Ccnb2 were
significantly higher in the glycotoxicity model group compared to the control group. All experiments were repeated three times (n � 3). Mean ± SD., *p < 0.05,
**p < 0.01.
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regulatory proteins that prevent apoptotic cell death (Blanc-
Brude et al., 2002). It is reported that BIRC5 can be involved
in cell-cycle regulation and apoptosis by inhibiting caspase3. It is
highly expressed during fetal development and in most tumors
(Cheung et al., 2013). In our study, Birc5 is upregulated in the
neural tissue of DN. We hypothesized that Birc5 may play an
important role in the occurrence and development of DN
through cell cycle and apoptosis pathways.

Bub1 encodes a serine/threonine–protein kinase that plays a
central role in mitosis. BUB1 involved in several pathways and
played different roles in them (Breit et al., 2015). In the cell-cycle
pathway, Bub1, MPS1, Bub3, Mad2, and Cdc20 formed a mitotic
checkpoint complex (MCC), which leads to the inhibition of APC/C
(Shi et al., 2011). In progesterone-mediated oocyte maturation
pathway, Bub1 is phosphorylated by target Rsk downstream of
MAPK and inhibits the function of the checkpoint effector
Cdc20/fizzy with the complex Mad1/2/3 (Zhang et al., 2017).

Cdk1, cyclin-dependent kinase 1. The protein encoded by this
gene belongs to the Ser/Thr protein kinase family. It plays a key
role in controlling the eukaryotic cell cycle by regulating the
centrosome cycle and the onset of mitosis (Santamaría et al.,
2007; Jones et al., 2018). By linking with multiple interphase
cyclins, Cdk1 promotes the G2-M transition and regulates the G1
process and G1-S transition (Prevo et al., 2018). During cell
proliferation, G2-M phase CDK1-mediated FOXO1
phosphorylation inhibits the interaction between FOXO1 and
14-3-3 protein, thereby promoting FOXO1 nuclear accumulation
and transcription factor activity, resulting in neuronal cell death
after mitosis (Yuan et al., 2008). At the same time,
phosphorylation of CALD1 affects the migration of Schwann
cells during peripheral nerve regeneration.

Both Ccnb1 (cyclin B1) and Ccnb2 (cyclin B2) are members of
the cyclin family, precisely the b-type cyclin. It is essential to
control the cell cycle during the G2/M (mitotic) transition
(Huang et al., 2013). Currently, few studies have been
conducted on CCNB1, CCNB2, and their roles in DN. Zhang
et al. reported that db/db mice showed upregulation of CCNB2 at
mRNA levels, suggesting that it may cause diabetic nephropathy
by interfering with G2/M phages (Zhang et al., 2017).

In addition, our data revealed the details of the infiltration of the
22 immune cells in DN for the first time. The proportion of T cells
CD4memory resting and dendritic cells resting in theDNgroupwas
higher, while the proportion of macrophage M2 was lower. Studies
have found that CD4 +memory T cells are associated with the onset
of type 1 diabetes. Quantification of CD4 + memory T cells can be
used as an immunomarker for the diagnosis of type 1 diabetes
(Orban et al., 2014). Gao et al. indicated that in high blood sugar
state, the number of dendritic cells in the cornea of mice decreased,
resulting in a decrease of CNTF, which affected the regeneration of
sensory nerves (Leppin et al., 2014). Studies have confirmed that
direct contact between dendritic cells and basal nerve plexus
triggered nerve fiber damage, resulting in diabetic polyneuropathy
(Gao et al., 2016). Macrophage M2, also known as alternatively
activated macrophage, can downregulate the immune response by
secreting the inhibitory cytokine interleukin-10 (IL-10) or tumor
growth factor-beta (TGF-β), etc., clearing apoptotic cells and
reducing inflammation (Roszer, 2015). Experiments have

confirmed that the macrophage phenotype of diabetic peripheral
neuropathy sufferers was characterized by reduced production of
pro-inflammatory chemokinesMCP-1 and IL-10, and the lack of IL-
10 andTGF-βwill increase the risk of diabetic peripheral neuropathy
(Alvarado-Vázquez et al., 2019). At the same time, we further
confirmed the relationship between key genes and immune
infiltration. The results showed that the relationship between the
five hub genes and immune infiltration was consistent, and they had
a strong relationship with T cells CD8, T cells CD4 naive, T cells
CD4 memory resting, monocytes, and dendritic cells resting. The
results demonstrated that key genes and immune infiltration may
play important roles in the progression of DN.

In conclusion, we screened 318 DEGs related to DN based on
the GEO database and then screened out five hub genes through a
variety of bioinformatics methods. The expression levels of five
hub genes were confirmed by qRT-PCR. In addition, the
correlation analysis of 22 immune cell infiltrations in DN
samples revealed that five hub genes may affect the progress
of DN through various biological functions and pathways. This
research helps to further understand the development
mechanism of DN and provide new ideas for the discovery of
DN drug targets. In the future, we need larger genetic data and
experimental research to confirm the findings of this study.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found in the article/
Supplementary Material.

AUTHOR CONTRIBUTIONS

ZF and GS designed the study. YL analyzed the data for GEO data
sets and drafted the manuscript. FW and LC modified the
manuscript. All authors have read and approved the final version.

FUNDING

This study was supported by the National Natural Science
Foundation of China (No. 81603574, No. 81774286), Key
Research and Development Program of Anhui Province
(No.S202104j07020013), Major Natural Science Research
Projects of Colleges and Universities in Anhui Province (No.
KJ2018ZD029), and the second batch of scientific research
projects for the construction of the national traditional
Chinese medicine clinical research base business (JDZX2015123).

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fphar.2021.682005/
full#supplementary-material

Frontiers in Pharmacology | www.frontiersin.org May 2021 | Volume 12 | Article 68200511

Lin et al. Key Biomarker in Diabetic Neuropathy

https://www.frontiersin.org/articles/10.3389/fphar.2021.682005/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphar.2021.682005/full#supplementary-material
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


REFERENCES

Alvarado-Vázquez, P. A., Grosick, R. L., Moracho-Vilrriales, C., Ward, E., Threatt,
T., and Romero-Sandoval, E. A. (2019). Cytokine Production Capabilities of
Human Primary Monocyte-Derived Macrophages from Patients with Diabetes
Mellitus Type 2 with and without Diabetic Peripheral Neuropathy. J. Pain Res.
12, 69–81. doi:10.2147/JPR.S186372

Anitha, P., Anbarasu, A., and Ramaiah, S. (2016). Gene Network Analysis Reveals
the Association of Important Functional Partners Involved in Antibiotic
Resistance: A Report on an Important Pathogenic Bacterium staphylococcus
Aureus. Gene 575 (2 Pt 1), 253–263. doi:10.1016/j.gene.2015.08.068

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., et al.
(2000). Gene Ontology: Tool for the Unification of Biology. Nat. Genet. 25 (1),
25–29. doi:10.1038/75556

Backman, M., Flenkenthaler, F., Blutke, A., Dahlhoff, M., Ländström, E., Renner, S.,
et al. (2019). Multi-omics Insights into Functional Alterations of the Liver in
Insulin-Deficient Diabetes Mellitus. Mol. Metab. 26, 30–44. doi:10.1016/j.
molmet.2019.05.011

Barrett, E. J., Liu, Z., Khamaisi, M., King, G. L., Klein, R., Klein, B. E. K., et al.
(2017). Diabetic Microvascular Disease: An Endocrine Society Scientific
Statement. J. Clin. Endocrinol. Metab. 102 (12), 4343–4410. doi:10.1210/jc.
2017-01922

Blanc-Brude, O. P., Yu, J., Simosa, H., Conte, M. S., Sessa, W. C., and Altieri, D. C.
(2002). Inhibitor of Apoptosis Protein Survivin Regulates Vascular Injury. Nat.
Med. 8 (9), 987–994. doi:10.1038/nm750

Breit, C., Bange, T., Petrovic, A., Weir, R. J., Müller, F., Vogt, D., et al. (2015). Role
of Intrinsic and Extrinsic Factors in the Regulation of the Mitotic Checkpoint
Kinase Bub1. PLoS One 10 (12), e0144673. doi:10.1371/journal.pone.0144673

Callaghan, B. C., Cheng, H. T., Stables, C. L., Smith, A. L., and Feldman, E. L.
(2012). Diabetic Neuropathy: Clinical Manifestations and Current Treatments.
Lancet Neurol. 11 (6), 521–534. doi:10.1016/s1474-4422(12)70065-0

Caramori, M. L., Kim, Y., Goldfine, A. B., Moore, J. H., Rich, S. S., Mychaleckyj,
J. C., et al. (2015). Differential Gene Expression in Diabetic Nephropathy in
Individuals with Type 1 Diabetes. J. Clin. Endocrinol. Metab. 100 (6),
E876–E882. doi:10.1210/jc.2014-4465

Charnogursky, G., Lee, H., and Lopez, N. (2014). Diabetic Neuropathy. Handb
Clin. Neurol. 120, 773–785. doi:10.1016/b978-0-7020-4087-0.00051-6

Chen, B., Khodadoust, M. S., Liu, C. L., Newman, A.M., and Alizadeh, A. A. (2018).
Profiling Tumor Infiltrating Immune Cells with Cibersort. Methods Mol. Biol.
1711, 243–259. doi:10.1007/978-1-4939-7493-1_12

Chen, C., Chen, H., Zhang, Y., Thomas, H. R., Frank, M. H., He, Y., et al. (2020).
Tbtools - an Integrative Toolkit Developed for Interactive Analyses of Big
Biological Data. Mol. Plant 13, 1194–1202. doi:10.1016/j.molp.2020.06.009

Cheung, C. H., Huang, C. C., Tsai, F. Y., Lee, J. Y., Cheng, S. M., Chang, Y. C., et al.
(2013). Survivin - Biology and Potential as a Therapeutic Target in Oncology.
Onco Targets Ther. 6, 1453–1462. doi:10.2147/OTT.S33374

Chin, C.-H., Chen, S.-H., Wu, H.-H., Ho, C.-W., Ko, M.-T., and Lin, C.-Y. (2014).
Cytohubba: Identifying Hub Objects and Sub-networks from Complex
Interactome. BMC Syst. Biol. 8 (Suppl. 4), S11. doi:10.1186/1752-0509-8-s4-s11

Chung, Y. C., Lim, J. H., Oh, H. M., Kim, H. W., Kim, M. Y., Kim, E. N., et al.
(2018). Calcimimetic Restores Diabetic Peripheral Neuropathy by Ameliorating
Apoptosis and Improving Autophagy. Cell Death Dis. 9 (12), 1163. doi:10.1038/
s41419-018-1192-7

Cui, Z., Zeng, Q., Guo, Y., et al. (2018). Integrated Bioinformatic Changes and
Analysis of Retina with Time in Diabetic Rats. Peer J. 6, e4762. doi:10.7717/
peerj.4762

Davies, M., Brophy, S., Williams, R., and Taylor, A. (2006). The Prevalence,
Severity, and Impact of Painful Diabetic Peripheral Neuropathy in Type 2
Diabetes. Diabetes Care 29 (7), 1518–1522. doi:10.2337/dc05-2228

Edgar, R., Domrachev, M., and Lash, A. E. (2002). Gene Expression Omnibus: Ncbi
Gene Expression and Hybridization Array Data Repository. Nucleic Acids Res.
30 (1), 207–210. doi:10.1093/nar/30.1.207

Fernyhough, P., and McGavock, J. (2014). Mechanisms of Disease. Handb Clin.
Neurol. 126, 353–377. doi:10.1016/b978-0-444-53480-4.00027-8

Gao, N., Yan, C., Lee, P., Sun, H., and Yu, F.-S. (2016). Dendritic Cell Dysfunction
and Diabetic Sensory Neuropathy in the Cornea. J. Clin. Invest. 126 (5),
1998–2011. doi:10.1172/jci85097

Guo, K., Elzinga, S., Eid, S., Figueroa-Romero, C., Hinder, L. M., Pacut, C., et al.
(2019). Genome-wide DNA Methylation Profiling of Human Diabetic
Peripheral Neuropathy in Subjects with Type 2 Diabetes Mellitus.
Epigenetics 14 (8), 766–779. doi:10.1080/15592294.2019.1615352

Han, H., Cho, J.-W., Lee, S., Yun, A., Kim, H., Bae, D., et al. (2018). Trrust V2: An
Expanded Reference Database of Human and Mouse Transcriptional
Regulatory Interactions. Nucleic Acids Res. 46 (D1), D380–D386. doi:10.
1093/nar/gkx1013

Huang, D., Sherman, B. T., Tan, Q., Collins, J. R., Alvord, W. G., Roayaei, J., et al.
(2007). The David Gene Functional Classification Tool: A Novel Biological
Module-Centric Algorithm to Functionally Analyze Large Gene Lists. Genome
Biol. 8 (9), R183. doi:10.1186/gb-2007-8-9-r183

Huang, Y., Sramkoski, R. M., and Jacobberger, J. W. (2013). The Kinetics of G2 and
M Transitions Regulated by B Cyclins. PLoS One 8 (12), e80861. doi:10.1371/
journal.pone.0080861

Iqbal, Z., Azmi, S., Yadav, R., Ferdousi, M., Kumar, M., Cuthbertson, D. J., et al.
(2018). Diabetic Peripheral Neuropathy: Epidemiology, Diagnosis, and
Pharmacotherapy. Clin. Ther. 40 (6), 828–849. doi:10.1016/j.clinthera.2018.
04.001

Jian, L., and Yang, G. (2020). Identification of Key Genes Involved in Diabetic
Peripheral Neuropathy Progression and Associated with Pancreatic Cancer.
Diabetes. Metab. Syndr. Obes. Vol. 13, 463–476. doi:10.2147/dmso.s235011

Jones, M. C., Askari, J. A., Humphries, J. D., and Humphries, M. J. (2018). Cell
Adhesion Is Regulated by Cdk1 during the Cell Cycle. J. Cel Biol. 217 (9),
3203–3218. doi:10.1083/jcb.201802088

Leppin, K., Behrendt, A.-K., Reichard, M., Stachs, O., Guthoff, R. F., Baltrusch, S.,
et al. (2014). Diabetes Mellitus Leads to Accumulation of Dendritic Cells and
Nerve Fiber Damage of the Subbasal Nerve Plexus in the Cornea. Invest.
Ophthalmol. Vis. Sci. 55 (6), 3603–3615. doi:10.1167/iovs.14-14307

Maere, S., Heymans, K., and Kuiper, M. (2005). BiNGO: a Cytoscape Plugin to
Assess Overrepresentation of Gene Ontology Categories in Biological
Networks. Bioinformatics 21 (16), 3448–3449. doi:10.1093/bioinformatics/
bti551

Malik, R. A., Veves, A., Walker, D., Siddique, I., Lye, R. H., Schady, W., et al. (2001).
Sural Nerve Fibre Pathology in Diabetic Patients with Mild Neuropathy:
Relationship to Pain, Quantitative Sensory Testing and Peripheral Nerve
Electrophysiology. Acta Neuropathol. 101 (4), 367–374. doi:10.1007/
s004010000287

Newman, A. M., Liu, C. L., Green, M. R., Gentles, A. J., Feng, W., Xu, Y., et al.
(2015). Robust Enumeration of Cell Subsets from Tissue Expression Profiles.
Nat. Methods 12 (5), 453–457. doi:10.1038/nmeth.3337

Normand, R., and Yanai, I. (2013). An Introduction to High-Throughput
Sequencing Experiments: Design and Bioinformatics Analysis. Methods Mol.
Biol. 1038, 1–26. doi:10.1007/978-1-62703-514-9_1

Orban, T., Beam, C. A., Xu, P., Moore, K., Jiang, Q., Deng, J., et al. (2014).
Reduction in Cd4 central Memory T-Cell Subset in Costimulation Modulator
Abatacept-Treated Patients with Recent-Onset Type 1 Diabetes Is Associated
with Slower C-Peptide Decline.Diabetes 63 (10), 3449–3457. doi:10.2337/db14-
0047

Pande, M., Hur, J., Hong, Y., Backus, C., Hayes, J. M., Oh, S. S., et al. (2011).
Transcriptional Profiling of Diabetic Neuropathy in the Bks Db/db Mouse: A
Model of Type 2 Diabetes. Diabetes 60 (7), 1981–1989. doi:10.2337/db10-1541

Pinzur, M. S. (2011). Diabetic Peripheral Neuropathy. Foot Ankle Clin. 16 (2),
345–349. doi:10.1016/j.fcl.2011.01.002

Prevo, R., Pirovano, G., Puliyadi, R., Herbert, K. J., Rodriguez-Berriguete, G.,
O’Docherty, A., et al. (2018). Cdk1 Inhibition Sensitizes normal Cells to DNA
Damage in a Cell Cycle Dependent Manner. Cell Cycle 17 (12), 1513–1523.
doi:10.1080/15384101.2018.1491236

Roman-Pintos, L. M., Villegas-Rivera, G., Rodriguez-Carrizalez, A. D., Miranda-
Díaz, A. G., and Cardona-Muñoz, E. G. (2016). Diabetic Polyneuropathy in
Type 2 Diabetes Mellitus: Inflammation, Oxidative Stress, and Mitochondrial
Function. J. Diabetes Res. 2016, 3425617. doi:10.1155/2016/3425617

Roszer, T. (2015). Understanding the Mysterious M2 Macrophage through
Activation Markers and Effector Mechanisms. Mediators Inflamm. 2015,
816460. doi:10.1155/2015/816460

Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., et al.
(2019). Global and Regional Diabetes Prevalence Estimates for 2019 and
Projections for 2030 and 2045: Results from the International Diabetes

Frontiers in Pharmacology | www.frontiersin.org May 2021 | Volume 12 | Article 68200512

Lin et al. Key Biomarker in Diabetic Neuropathy

https://doi.org/10.2147/JPR.S186372
https://doi.org/10.1016/j.gene.2015.08.068
https://doi.org/10.1038/75556
https://doi.org/10.1016/j.molmet.2019.05.011
https://doi.org/10.1016/j.molmet.2019.05.011
https://doi.org/10.1210/jc.2017-01922
https://doi.org/10.1210/jc.2017-01922
https://doi.org/10.1038/nm750
https://doi.org/10.1371/journal.pone.0144673
https://doi.org/10.1016/s1474-4422(12)70065-0
https://doi.org/10.1210/jc.2014-4465
https://doi.org/10.1016/b978-0-7020-4087-0.00051-6
https://doi.org/10.1007/978-1-4939-7493-1_12
https://doi.org/10.1016/j.molp.2020.06.009
https://doi.org/10.2147/OTT.S33374
https://doi.org/10.1186/1752-0509-8-s4-s11
https://doi.org/10.1038/s41419-018-1192-7
https://doi.org/10.1038/s41419-018-1192-7
https://doi.org/10.7717/peerj.4762
https://doi.org/10.7717/peerj.4762
https://doi.org/10.2337/dc05-2228
https://doi.org/10.1093/nar/30.1.207
https://doi.org/10.1016/b978-0-444-53480-4.00027-8
https://doi.org/10.1172/jci85097
https://doi.org/10.1080/15592294.2019.1615352
https://doi.org/10.1093/nar/gkx1013
https://doi.org/10.1093/nar/gkx1013
https://doi.org/10.1186/gb-2007-8-9-r183
https://doi.org/10.1371/journal.pone.0080861
https://doi.org/10.1371/journal.pone.0080861
https://doi.org/10.1016/j.clinthera.2018.04.001
https://doi.org/10.1016/j.clinthera.2018.04.001
https://doi.org/10.2147/dmso.s235011
https://doi.org/10.1083/jcb.201802088
https://doi.org/10.1167/iovs.14-14307
https://doi.org/10.1093/bioinformatics/bti551
https://doi.org/10.1093/bioinformatics/bti551
https://doi.org/10.1007/s004010000287
https://doi.org/10.1007/s004010000287
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1007/978-1-62703-514-9_1
https://doi.org/10.2337/db14-0047
https://doi.org/10.2337/db14-0047
https://doi.org/10.2337/db10-1541
https://doi.org/10.1016/j.fcl.2011.01.002
https://doi.org/10.1080/15384101.2018.1491236
https://doi.org/10.1155/2016/3425617
https://doi.org/10.1155/2015/816460
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Federation Diabetes Atlas, 9th Edition. Diabetes Res. Clin. Pract. 157, 107843.
doi:10.1016/j.diabres.2019.107843

Saito, R., Smoot, M. E., Ono, K., Ruscheinski, J., Wang, P.-L., Lotia, S., et al. (2012).
A Travel Guide to Cytoscape Plugins. Nat. Methods 9 (11), 1069–1076. doi:10.
1038/nmeth.2212

Santamaría, D., Barrière, C., Cerqueira, A., Hunt, S., Tardy, C., Newton, K., et al.
(2007). Cdk1 Is Sufficient to Drive the Mammalian Cell Cycle. Nature 448
(7155), 811–815. doi:10.1038/nature06046

Servant, N., Romejon, J., Gestraud, P., Rosa, P. L., Lucotte, G., Lair, S., et al. (2014).
Bioinformatics for Precision Medicine in Oncology: Principles and Application
to the Shiva Clinical Trial. Front. Genet. 5, 152. doi:10.3389/fgene.2014.00152

Shi, Q., Hu, M., Luo, M., Liu, Q., Jiang, F., Zhang, Y., et al. (2011). Reduced
Expression of Mad2 and Bub1 Proteins Is Associated with Spontaneous
Miscarriages. Mol. Hum. Reprod. 17 (1), 14–21. doi:10.1093/molehr/gaq065

Sima, A. A. F., and Zhang, W. (2014). Mechanisms of Diabetic Neuropathy.Handb
Clin. Neurol. 126, 429–442. doi:10.1016/b978-0-444-53480-4.00031-x

Smith, S. C., Lamping, D. L., and Maclaine, G. D. H. (2012). Measuring Health-
Related Quality of Life in Diabetic Peripheral Neuropathy: A Systematic
Review. Diabetes Res. Clin. Pract. 96 (3), 261–270. doi:10.1016/j.diabres.
2011.11.013

Song, L., Zhuang, P., Lin, M., Kang, M., Liu, H., Zhang, Y., et al. (2017). Urine
Metabonomics Reveals Early Biomarkers in Diabetic Cognitive Dysfunction.
J. Proteome Res. 16 (9), 3180–3189. doi:10.1021/acs.jproteome.7b00168

Sung, J.-Y., Park, S. B., Liu, Y.-T., Kwai, N., Arnold, R., Krishnan, A. V., et al.
(2012). Progressive Axonal Dysfunction Precedes Development of Neuropathy
in Type 2 Diabetes. Diabetes 61 (6), 1592–1598. doi:10.2337/db11-1509

Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas,
J., et al. (2015). String V10: Protein-Protein Interaction Networks, Integrated
over the Tree of Life.Nucleic Acids Res. 43 (Database issue), D447–D452. doi:10.
1093/nar/gku1003

Tesfaye, S., Boulton, A. J. M., Dyck, P. J., Freeman, R., Horowitz, M., Kempler, P.,
et al. (2010). Diabetic Neuropathies: Update on Definitions, Diagnostic Criteria,
Estimation of Severity, and Treatments. Diabetes Care 33 (10), 2285–2293.
doi:10.2337/dc10-1303

Vinik, A. I., Park, T. S., Stansberry, K. B., and Pittenger, G. L. (2000). Diabetic
Neuropathies. Diabetologia 43 (8), 957–973. doi:10.1007/s001250051477

Wang, N., Zhu, F., Chen, L., and Chen, K. (2018). Proteomics, Metabolomics and
Metagenomics for Type 2 Diabetes and its Complications. Life Sci. 212,
194–202. doi:10.1016/j.lfs.2018.09.035

Wixon, J., and Kell, D. (2000). The Kyoto Encyclopedia of Genes and Genomes-
Kkegg. Yeast 17 (1), 48–55. doi:10.1002/(SICI)1097-0061(200004)17:1<48::
AID-YEA2>3.0.CO;2-H

Yuan, Z., Becker, E. B. E., Merlo, P., Yamada, T., DiBacco, S., Konishi, Y., et al.
(2008). Activation of Foxo1 by Cdk1 in Cycling Cells and Postmitotic Neurons.
Science 319 (5870), 1665–1668. doi:10.1126/science.1152337

Zhang, G., Kruse, T., Lopez-Mendez, B., Sylvestersen, K. B., Garvanska, D. H.,
Schopper, S., et al. (2017). Bub1 Positions Mad1 Close to Knl1 Melt Repeats to
Promote Checkpoint Signalling. Nat. Commun. 8, 15822. doi:10.1038/
ncomms15822

Zhang, H., Zhao, T., Li, Z., Yan, M., Zhao, H., Zhu, B., et al. (2017). Transcriptional
Profile of Kidney from Type 2 Diabetic Db/db Mice. J. Diabetes Res. 2017,
8391253. doi:10.1155/2017/8391253

Zhou, H., and Zhang, W. (2019). Gene Expression Profiling Reveals Candidate
Biomarkers and Probable Molecular Mechanism in Diabetic Peripheral
Neuropathy. Diabetes. Metab. Syndr. Obes. 12, 1213–1223. doi:10.2147/
dmso.s209118

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Lin, Wang, Cheng, Fang and Shen. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Pharmacology | www.frontiersin.org May 2021 | Volume 12 | Article 68200513

Lin et al. Key Biomarker in Diabetic Neuropathy

https://doi.org/10.1016/j.diabres.2019.107843
https://doi.org/10.1038/nmeth.2212
https://doi.org/10.1038/nmeth.2212
https://doi.org/10.1038/nature06046
https://doi.org/10.3389/fgene.2014.00152
https://doi.org/10.1093/molehr/gaq065
https://doi.org/10.1016/b978-0-444-53480-4.00031-x
https://doi.org/10.1016/j.diabres.2011.11.013
https://doi.org/10.1016/j.diabres.2011.11.013
https://doi.org/10.1021/acs.jproteome.7b00168
https://doi.org/10.2337/db11-1509
https://doi.org/10.1093/nar/gku1003
https://doi.org/10.1093/nar/gku1003
https://doi.org/10.2337/dc10-1303
https://doi.org/10.1007/s001250051477
https://doi.org/10.1016/j.lfs.2018.09.035
https://doi.org/10.1002/(SICI)1097-0061(200004)17:1<48::AID-YEA2>3.0.CO;2-H
https://doi.org/10.1002/(SICI)1097-0061(200004)17:1<48::AID-YEA2>3.0.CO;2-H
https://doi.org/10.1126/science.1152337
https://doi.org/10.1038/ncomms15822
https://doi.org/10.1038/ncomms15822
https://doi.org/10.1155/2017/8391253
https://doi.org/10.2147/dmso.s209118
https://doi.org/10.2147/dmso.s209118
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

	Identification of Key Biomarkers and Immune Infiltration in Sciatic Nerve of Diabetic Neuropathy BKS-db/db Mice by Bioinfor ...
	Introduction
	Materials and Methods
	Microarray Data Information
	Data Pre-Processing and DEG Identification
	GO and KEGG Pathway Enrichment Analyses
	PPI Network Construction
	Module Analysis and CytoHubba Analysis
	TF Regulation Prediction
	Screening for Hub Genes
	Determination of Immune Cell Landscapes
	qRT-PCR Assay of the Hub Genes

	Results
	Identification of DEGs
	GO and KEGG Pathway Enrichment Analyses
	PPI Network Analysis
	Module Analysis and CytoHubba Analysis
	TF Regulatory Network Analysis
	Hub Gene Selection and Analysis
	Determination of Immune Infiltration
	Correlation Analysis of Hub Gene and Immune Infiltration
	qRT-PCR Assay of the Hub Genes

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


