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Abstract

Visual performance varies around the visual field. It is best near the fovea compared to the

periphery, and at iso-eccentric locations it is best on the horizontal, intermediate on the

lower, and poorest on the upper meridian. The fovea-to-periphery performance decline is

linked to the decreases in cone density, retinal ganglion cell (RGC) density, and V1 cortical

magnification factor (CMF) as eccentricity increases. The origins of polar angle asymme-

tries are not well understood. Optical quality and cone density vary across the retina, but

recent computational modeling has shown that these factors can only account for a small

percentage of behavior. Here, we investigate how visual processing beyond the cone pho-

ton absorptions contributes to polar angle asymmetries in performance. First, we quantify

the extent of asymmetries in cone density, midget RGC density, and V1 CMF. We find that

both polar angle asymmetries and eccentricity gradients increase from cones to mRGCs,

and from mRGCs to cortex. Second, we extend our previously published computational

observer model to quantify the contribution of phototransduction by the cones and spatial fil-

tering by mRGCs to behavioral asymmetries. Starting with photons emitted by a visual dis-

play, the model simulates the effect of human optics, cone isomerizations,

phototransduction, and mRGC spatial filtering. The model performs a forced choice orienta-

tion discrimination task on mRGC responses using a linear support vector machine classi-

fier. The model shows that asymmetries in a decision maker’s performance across polar

angle are greater when assessing the photocurrents than when assessing isomerizations

and are greater still when assessing mRGC signals. Nonetheless, the polar angle asymme-

tries of the mRGC outputs are still considerably smaller than those observed from human

performance. We conclude that cone isomerizations, phototransduction, and the spatial fil-

tering properties of mRGCs contribute to polar angle performance differences, but that a full

account of these differences will entail additional contribution from cortical representations.
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Author summary

The neural circuitry of the visual system is organized into multiple maps of the visual

field. Each map is orderly, as nearby cells represent nearby points in the visual field. Each

map is also non-uniform, in that some portions of the visual field are sampled more

densely than others. These non-uniformities emerge from the first stage of processing, the

photoreceptor array in the retina. The cone photoreceptors vary in density with eccentric-

ity—they are denser in the central than the peripheral retina—and with polar angle—they

are denser on the horizontal than vertical meridian. Our analyses show that both the

eccentricity gradient and polar angle asymmetries become more pronounced in each of

two subsequent processing stages, the midget retinal ganglion cells and primary visual

cortex. We then implement a computational observer model incorporating several com-

ponents of the early visual system. The model shows that the information present in the

cone array can explain a small portion of the polar angle asymmetries in human visual

performance, and the information present in the midget retinal ganglion cells can explain

more, but still less than half, of the performance asymmetries. A full account of perfor-

mance asymmetries will entail additional contributions from cortex.

Introduction

Visual performance is not uniform across the visual field. The most well-known effect is a

decrease in visual acuity as a function of eccentricity: we see more poorly in the periphery

compared to the center of gaze [1–4]. This observed difference in visual performance has been

attributed to several physiological factors, starting as early as the distribution of photoreceptors

[5,6]. In the human fovea, the cones are tightly packed such that visual input is encoded at

high spatial resolution. In peripheral retinal locations, cones are larger and interspersed

among rods, resulting in a drastically lower density [7–10]; hence a decrease in spatial

resolution.

Visual performance also differs as a function of polar angle. At matched eccentricity, per-

formance is better along the horizontal than vertical visual meridian (horizontal-vertical

anisotropy or “HVA”, e.g., [11–16]) and better along the lower than upper vertical visual

meridian (vertical-meridian asymmetry or “VMA”, e.g., [12–18]). These polar angle asymme-

tries are observed in many different visual tasks, such as those mediated by contrast sensitivity

[12–15,19–31], spatial resolution [11,16,17,19,20,32–34], contrast appearance [35], visual

search [36–44], crowding [44–47], and tasks that are thought to recruit higher visual areas

such as visual working memory [34]. Covert spatial attention improves performance similarly

at all iso-eccentric stimulus locations, thus it does not eliminate the polar angle asymmetries

[12,13,48,49].

These polar angle effects can be large. For instance, for a Gabor patch at 4.5˚ eccentricity

with a spatial frequency of 4 cycles per degree, contrast thresholds are close to double for the

upper vertical meridian compared to the horizontal meridian [12,13,15]. This is an effect size

similar to doubling stimulus’ eccentricity from 4.5˚ to 9˚ on the horizontal axis [15,20]. Addi-

tionally, these performance differences are retinotopic, shifting in line with the retinal location

of the stimulus rather than its location in space [14].

The visual system has polar angle asymmetries from its earliest stages, including in the

optics and cone density. In a computational observer model that tracked information from the

photons in the scene through the optics and cone isomerizations, variations in optical quality

and cone density accounted for less than 10% of the observed polar angle asymmetries in a
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contrast threshold task [50]. This leads to the question, what additional factors later in the

visual processing stream give rise to visual performance differences with polar angle?

One possibility is that even without additional asymmetries in cell density, later processing

could exacerbate the earlier asymmetries. For example, the larger cone apertures observed at

lower cone densities result in greater downregulation of the cone photocurrent [51], hence this

decrease in signal-to-noise ratio might exacerbate polar angle asymmetries.

A second—not mutually exclusive—possibility is that there are additional polar angle asym-

metries in the distribution of other downstream cell types. In the human retina, the best

described retinal ganglion cells (RGCs) are the midget and parasol cells. Both of these cell

types show a decrease in density as a function of eccentricity and vary in density as a function

polar angle in humans [52–58] and monkeys [59–62]. Because midget RGCs are the most

numerous ganglion cells in primates (i.e., 80% of ~1 million RGCs compared to 10% parasols

and 10% other types) and have small cell bodies and small dendritic field trees that increase

with eccentricity [60,61,63], they are often hypothesized to set an anatomical limit on high res-

olution spatial vision such as acuity and contrast sensitivity at mid to high spatial frequencies

[55,61].

Interestingly, in the range of eccentricities used for many psychophysical tasks (0–10˚),

cone density shows an HVA (greater density on the horizontal than vertical meridian), but not

a VMA, inconsistent with behavior (there is a slightly greater density on the upper than lower

vertical visual meridian, opposite what one would predict to explain behavior) [8–10]. Midget

RGC density, in contrast, shows both an HVA and a VMA, making their distribution patterns

more similar to behavioral patterns [52–54,57,64].

Here, we investigate how asymmetries in the visual system vary across processing stages.

First, we quantify asymmetries in spatial sampling around the visual field in three early visual

processing stages: cones, mRGCs, and V1 cortex. We do so because it is important to first

identify if there are any differences in spatial encoding across these processing stages, and if so,

how these differences relate to differences in behavior. Then we extend our previously pub-

lished computational observer model, which included optics and cone sampling, by adding a

model of conversion from photon absorptions to photocurrent, and then mRGC-like spatial

filtering. We compare this observer model to our previous model (no RGC layer) and to

human performance on a two alternative forced choice (2-AFC) orientation discrimination

task. By comparing the predicted performance to human observers, we can quantify the con-

tribution of mRGCs to visual performance differences around the visual field.

Results

We quantify the asymmetries in cone density, midget retinal ganglion cells (mRGCs) density

and V1 cortical magnification factor (CMF)—both as a function of eccentricity and for the

four cardinal meridians. In the next two sections, we first show that both eccentricity gradients

and polar angle asymmetries are amplified from cones to mRGCs and from mRGCs to early

visual cortex. Then we implement the observed variations in mRGC density in a computa-

tional observer model to test whether biologically plausible differences in mRGC sampling

across the cardinal meridians can quantitatively explain psychophysical performance differ-

ences as a function of polar angle.

Fovea-to-periphery gradient is amplified from retina to mRGCs to early

visual cortex

A hallmark of the human retina is the sharp drop in cone density from fovea to periphery [8–

10]. Within the central one degree, cone density decreases dramatically (on average by

PLOS COMPUTATIONAL BIOLOGY Asymmetries around the visual field

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009771 January 10, 2022 3 / 34

https://doi.org/10.1371/journal.pcbi.1009771


3.5-fold). Beyond the fovea, cone density continues to decrease by 10-fold between 1˚ and 20˚

eccentricity (Fig 1A, left panel). This decrease in cone density is due to an increase in cone

spacing caused by the presence of rods and by the increase in cone diameter [9].

The second processing stage we focus on are the midget RGCs. The mRGC cell bodies are

laterally displaced from their receptive fields by the foveal cones. Therefore, we use a computa-

tional model by Watson [64] that combines cone density [9], mRGC density [53] and displace-

ment [57] to infer the mRGC density referred to the visual field, rather than the cell body

positions. Throughout, we refer to mRGC density with respect to receptive fields. Like the

cones, midget RGCs sample the visual field differentially as a function of eccentricity. At the

central one degree, mRGC density is greater than cone density. The fovea-to-periphery gradi-

ent is steeper for mRGCs than for cones (Fig 1A, middle panel compared to left panel). This

divergence results in a cone:mRGC ratio of 0.5 (Fig 1B, left panel), indicating a ‘direct line’

between a single cone and a pair of ON- and OFF-center mRGCs. In the periphery, mRGC

density falls off at a faster rate than cones. For example, cone density decreases by 10-fold

between 1˚ and 20˚ eccentricity, whereas mRGC density decreases by 80-fold. This convergence
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Fig 1. Foveal over-representation is amplified from cones to mRGCs to cortex. (A) Cone density, mRGC receptive

field density, and V1 cortical magnification factor as a function of eccentricity. Left panel: Cone data from Curcio et al.
[9]. Middle panel: midget RGC RF density data from Watson [64]. Both cone and mRGC data are the average across

cardinal retinal meridians of the left eye using the publicly available toolbox ISETBIO [65–67]. Right panel: V1 CMF is

predicted by the areal equation published in Horton and Hoyt [68]. (B) Transformation ratios from cones to mRGCs

and mRGCs to V1. The cone:mRGC ratio is unitless, as both cone density and mRGC density are quantified in cells/

deg2. The increasing ratio indicates higher convergence of cone signals by the mRGCs. For mRGC:V1 CMF ratio units

are defined in cells/mm2. The ratio increase in the first 20˚ indicates an amplification of the foveal over-representation

in V1 compared to mRGCs.

https://doi.org/10.1371/journal.pcbi.1009771.g001
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can also be expressed in the cone:mRGC ratio, which increases as a function of eccentricity

(Fig 1B, left panel).

Third, we quantify the amount of V1 surface area devoted to a portion of the visual field,

also known as the cortical magnification factor (Fig 1A, right panel). There have been claims

that V1 CMF is proportional to retinal ganglion cell density [69–72] and see Discussion).

However, when comparing human mRGCs density [64] to V1 CMF [68], we find that the ratio

is not constant: The foveal magnification is even more accentuated in V1 up to 20˚ eccentricity

(Fig 1B, right panel). These results are consistent with the findings in squirrel monkey [73],

owl monkey [74], and macaque [75], all of which show that the cortical magnification function

falls off with eccentricity more steeply in V1 than would be predicted by mRGC density alone.

Beyond 20˚ eccentricity, the mRGC to V1 CMF ratio declines slowly. This effect is driven by

V1 CMF falling off slightly more steeply than mRGC density. The relative compression of V1

CMF vs mRGC density in the far periphery has been reported in owl monkey [74]. However,

given that this result has not been confirmed in human cortex, we cannot exclude the possibili-

ties that in the far periphery Watson’s formula [64] overpredicts mRGC density, Horton and

Hoyt’s formula [68] underpredicts V1 CMF, or a combination of both.

Polar angle asymmetries are amplified from cones to mRGCs

Cone density differs as a function of polar angle. It is higher along the horizontal visual field

meridian (average of nasal and temporal retina meridians) than the upper and lower vertical

visual field meridians (representing the inferior and superior retinal meridians) (Fig 2A, left

panel). This horizontal-vertical asymmetry is around 20% and relatively constant with eccen-

tricity. There is no systematic difference between the cone density in the upper and lower

visual field meridians. If anything, there is a slight ‘inverted’ vertical-meridian asymmetry in

the central three degrees: cones are more densely packed along the upper vertical visual merid-

ian. Assuming greater density leads to better performance, this would predict better perfor-

mance on the upper vertical meridian in the central three degrees, opposite of the typical

asymmetry reported in behavior, which has been found up to 1.5˚ eccentricity in a study on

contrast sensitivity [30]. All of these patterns of cone density asymmetries are found using two

different datasets with different methods: a post-mortem retinal dataset [9] and an in vivo
dataset [10], indicating reproducibility of the biological finding. All of the patterns are also

consistent when computed using two different analysis toolboxes (ISETBIO [65–67] and

rgcDisplacementMap [76], S1 Fig, top row), indicating computational reproducibility.

The polar angle asymmetries in density are larger in the mRGC distribution. The horizontal

visual field meridian (average of nasal and temporal retina) contains higher cell densities (after

correction for cell body displacement) than the upper and lower visual field meridians (Fig

2A, middle panel). This horizontal-vertical asymmetry increases with eccentricity. For exam-

ple, at 3.5˚ eccentricity, the average horizontal visual field density is ~20% higher than the

average of upper and lower visual field meridians. By 40˚ eccentricity, this density difference

increases to ~60%. Beyond 10˚ eccentricity, this horizontal-vertical asymmetry is mostly

driven by the nasal retina, as it contains higher mRGC density than the temporal retina. This

finding is in line with earlier histology reports in macaque [62] and positively correlated with

spatial resolution tasks (e.g., [77]). This nasal-temporal asymmetry, although interesting, is

beyond the focus of this paper, as the asymmetries in performance we observe are found in

both binocular and monocular experiments [12,16]. Overall, the emphasis on the horizontal is

substantially greater in the mRGCs than the cones.

Unlike the cones, mRGC receptive fields show a consistent asymmetry along the vertical

meridian: The lower visual meridian (superior retinal meridian) contains a higher mRGC
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density than the upper visual meridian (inferior retinal meridian). This is consistent with the

psychophysical VMA, showing better performance on the lower vertical meridian [12–15,19–

31]. This asymmetry increases with eccentricity. For example, the lower vertical meridian

(superior retina) has ~15% higher density compared to upper vertical (inferior) at 3.5˚, and

~50% higher density at 40˚ eccentricity. This interaction between retinal meridian and eccen-

tricity is summarized in the cone-to-mRGC transformation plot (Fig 2B, left panel), where the

convergence ratio from cones to mRGCs increases more rapidly along the upper than the

lower vertical and the horizontal visual meridians (see also S2 Fig).
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Fig 2. Nonuniformities in polar angle representations are amplified from cones to mRGCs to cortex. (A) Cone

density, mRGC density, and V1 CMF for cardinal meridians as a function of eccentricity. Left panel: Cone density

from Curcio et al. [9]. Middle panel: mRGC densities from Watson [64]. All data are in visual field coordinates. Black

line represents the horizontal visual field meridian (average of nasal and temporal retina), green line represents lower

visual field meridian (superior retina), and blue line represents upper visual field meridian (inferior retina). Cone and

mRGC data are computed with the open-source software ISETBIO [65–67]. Right panel: V1 CMF computed from the

HCP 7T retinotopy dataset analyzed by Benson et al. [78] (black, green, blue dots and lines) and predicted areal CMF

by the formula in Horton and Hoyt [68] (dotted black line, replotted from Fig 1). All data are plotted in visual field

coordinates where black, green, and blue data points represent the horizontal, lower, and upper visual field meridians,

respectively. Data points represent the median V1 CMF of ±20˚ wedge ROIs along the meridians for 1–6˚ eccentricity

in 1˚ bins. Error bars represent 68%-confidence intervals across 163 subjects using 1,000 bootstraps. Black, green, and

blue lines are 1/eccentricity power functions fitted to corresponding data points. Pink dashed line is the average of fits

to horizontal, upper, and lower visual field meridians from HCP 7T retinotopy dataset [78] and agrees well with

Horton and Hoyt’s formula [68]. (B) Transformation ratios from cones to mRGCs and mRGCs to V1 CMF. Ratios are

shown separately for the horizontal (black), lower (green) and upper (blue) visual field meridians. The mRGC:V1 CMF

panel has a truncated x-axis due to the limited field-of-view during cortical measurements. These polar angle

asymmetries can be found across two different computational models of mRGC density (see S1 Fig, second row).

https://doi.org/10.1371/journal.pcbi.1009771.g002
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Polar angle asymmetries are amplified from mRGCs to early visual cortex

Because the areal V1 CMF calculation by Horton and Hoyt [68] does not make separate pre-

dictions for the cardinal meridians, we used the publicly available retinotopy dataset from the

Human Connectome Project (HCP) analyzed by Benson et al. [79] to calculate the CMF along

the meridians (see also [78]). As a first check on agreement between the two datasets, we

found that the V1 CMF data measured in 163 subjects with functional MRI [78], pooled across

all polar angles, was a close match to Horton and Hoyt’s [68] prediction based on lesion case

studies from three decades ago. We then used the HCP dataset to compute CMF along the sep-

arate meridians.

We find that polar angle asymmetries in cortical magnification factors are yet larger than

those found in mRGC density (Fig 2A, right panel), where V1 CMF is higher on the horizontal

than vertical meridian, and the V1 CMF is higher for the lower than the upper vertical merid-

ian. For example, at 3.5˚ eccentricity CMF is ~52% higher on the horizontal than vertical

meridians and ~41% higher for the lower than upper vertical meridian. These polar angle

asymmetries show a 2x increase within the first three degrees of eccentricity before flattening

(Fig 2B, right panel) and are mostly driven by the upper vertical meridian (S2 Fig). This indi-

cates that the mapping of the visual field in early visual cortex is not simply predicted from the

distribution of midget retinal ganglion cells, but rather the cortex increases the retinal polar

angle asymmetries.

A computational observer model from stimulus to mRGCs to behavior

To understand how polar angle asymmetries in visual field representations might affect visual

performance, we added a photocurrent transduction and retinal ganglion cell layer to our

computational observer model [50]. In this observer model, we used the publicly available

ISETBIO toolbox [65–67] to simulate the first stages of visual pathway including the stimulus

scene, fixational eye movements, chromatic and achromatic optical aberrations, and isomeri-

zation by the cone array. Combining model output with a linear support vector machine classi-

fier allowed us to simulate performance on a 2-AFC orientation discrimination task given

information available in the cones. When matching stimulus parameters in the model to a pre-

viously published psychophysical experiment [13], we showed that biologically plausibly varia-

tions in optical quality and cone density together would contributed no more than ~10% to

the observed polar angle asymmetries in contrast sensitivity.

Given the inability of cone density to quantitatively explain differences in visual perfor-

mance, we extended our model further into the retina to include temporal and spatial filtering,

and noise at two later processing stages. First, we added temporal filtering and noise in the

conversion of cone isomerizations to photocurrent in the cone outer segments. Second, we

added spatial filtering and noise in a model of midget RGCs. The mRGCs are especially inter-

esting because they show a systematic asymmetry between the upper and lower visual field

(where the cones did not), and an amplification of the horizontal-vertical asymmetry. The

mRGC computational stage is implemented after cone isomerizations and photocurrent and

before the model performs the discrimination task. We provide a short overview of the mod-

eled stages that precede the mRGC layer, as details of these stages can be found in our previous

paper [50], followed by a discussion of the implementation details of the photocurrent trans-

duction and mRGC layer.

Scene radiance. The first stage of the model comprises the photons emitted by a visual

display. This results in a time-varying scene defined by the spectral radiance of an achromatic

low contrast Gabor stimulus (Fig 3, panel 1). The Gabor was oriented 15˚ clockwise or

counter-clockwise from vertical with a spatial frequency of 4 cycles per degree. These stimulus
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parameters were chosen to match a recent psychophysical experiment [15] to later compare

model and human performance.

Retinal irradiance. The second stage simulates the effect of emitted photons passing

through the human cornea, pupil, and lens. This computational step results in time-varying

retinal irradiance (Fig 3, panel 2). Optics are modeled as a typical human wavefront with a

3-mm diameter pupil without defocus and contain a spectral filter that reduces the fraction of

short wavelengths (due to selective absorption by the lens). We do not vary the optics across

the different simulations.

Cone absorptions. The third stage implements a rectangular cone mosaic with L-cones

only (2x2˚ field-of-view). For each cone, we compute the number of photons absorbed in each

2-ms bin, resulting in a 2D time-varying cone absorption image (Fig 3, panel 3). The number

of absorptions depends on the photoreceptor efficiency, on the wavelengths of light, and on

Poisson sampling due to the quantal nature of light. This stage differs in two ways from our

previous model. First, we use an L-cone only retina, and second, we exclude fixational eye

movements. We make these two simplifications to keep the model tractable and the calcula-

tions to reasonable size. As we describe in the Methods, the number of trials is much larger

than in our previous work (to ensure that the classifier has sufficient information to learn the

best classification), the number of conditions simulated is much larger (because we vary both

cone density and mRGC:cone ratios), and the noise level is substantially higher (because we

add noise at phototransduction and mRGC stages). The lack of eye movements enables us to

average time points across trials, greatly speeding up processing, as well as simplifying the

interpretation of how the new stages contributed to performance.

Cone photocurrent. The fourth stage converts photon absorptions to photocurrent,

incorporating the recently added phototransduction functionality in ISETBIO by Cottaris

et al. [51], Here, phototransduction is implemented as a temporal filter followed by gain con-

trol and additive noise (Fig 3, panel 4). The result is a continuous time-varying signal in units

of current (picoamps). While we use the same photocurrent model for all cones irrespective of

size or location, the effect of the photocurrent depends on properties of the cones, due to the

additive noise. Specifically, the signal-to-noise decreases more for larger cones than smaller

cones, because large cones capture more photons and are subject to more downregulation

before the additive noise.

Midget RGC responses. The fifth stage is spatial filtering by the mRGCs. We model the

mRGCs in a rectangular array with each mRGC receptive field centered on a cone. We do not

add further temporal filtering beyond that inherited from the photocurrent stage. We do not

explicitly model spiking and its associated noise, but instead add independent Gaussian white

noise to each RGC output at each time point. Unlike the photocurrent, where the noise is

Fig 3. Overview of computational observer model with additional mRGC layer. A 1-ms frame of a 100% contrast

Gabor stimulus is used at each computational step for illustration purposes. (1) Scene radiance. Photons emitted by the

visual display, resulting in a time-varying scene spectral radiance. Gabor stimulus shows radiance summed across 400–

700 nm wavelengths. (2) Retinal irradiance. Emitted photons pass through simulated human cornea, pupil, and optics,

indicated by the schematic point spread function (PSF) in the top right-side box, resulting in time-varying retinal

irradiance. Gabor stimulus shows irradiance with wavelengths converted to RGB values for illustration purposes. (3)

Cone absorptions. Retinal irradiance is isomerized by a rectangular cone mosaic, resulting in time-varying photon

absorption rates for each L-cone with Poisson noise. (4) Cone photocurrent. Absorptions are converted to

photocurrent via temporal integration, gain control, followed by adding Gaussian white noise. This results in time-

varying photocurrent for each cone. (5) Midget RGC responses. Time-varying cone photocurrents are convolved with

a 2D Difference of Gaussians spatial filter (DoG), followed by additive Gaussian white noise and subsampling. (6)

Behavioral inference. A linear support vector machine (SVM) classifier is trained on the RGC outputs to classify

stimulus orientation per contrast level. With 10-fold cross-validation, left-out data are tested, and accuracy is fitted

with a Weibull function to extract the contrast threshold at ~80%.

https://doi.org/10.1371/journal.pcbi.1009771.g003
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implemented in ISETBIO according to a physiologically-informed model [80], the noise

added in the mRGC layer is not constrained by a physiological model because the noise added

by mRGCs (after accounting for noise inherited from prior stages) is less well known. For this

reason, in additional simulations, we explore the effect of noise level in mRGCs, and find that

while the mean performance declines with increasing noise (as expected), the differences

between conditions are largely unaffected by noise level (S4 Fig). In the Discussion, we elabo-

rate on the possible contribution of other aspects of retinal processing to polar angle asymme-

tries such as spatial subunits and spiking.

The mRGC layer has the same field-of-view as the cone array. Because we do not model rec-

tification or spiking non-linearities, we do not separately model ON- and OFF-cells. Our

mRGC receptive fields are 2D difference of Gaussian (DoG) models, approximating the shape

of receptive fields measured with electrophysiology [81,82] (Fig 3, panel 5), based on parame-

ters from macaque [83]. The width of the center Gaussian (σc, 1 sd) is ⅓ of the spacing between

neighboring cones, and the surround Gaussian (σs) is 6x the width of the center. This creates

an mRGC array with one mRGC per cone and where mRGC RFs overlap at 1.3 standard devi-

ations from their centers, which matches the overlap of dendritic fields reported in human ret-

ina [55]. We compute the mRGC responses by convolving the cone absorptions with this

mRGC DoG receptive field. Because the ratio of mRGCs to cones varies across the retina, we

simulate differences in this ratio by subsampling the mRGC array (Fig 4). Thus, the mRGC

density (cells/deg2) is determined by both the cone array density and the cone-to-mRGC ratio,

creating a 2D space of simulations.

Behavioral inference. The final stage of the computational observer model is the infer-

ence engine. For the main analysis, we use a linear support vector machine (SVM) classifier to

discriminate stimulus orientation (clockwise or counter-clockwise from vertical) given the

cone absorptions, cone photocurrent, or mRGC responses. We compute a weighted average

across time for the output of each cell before running the classifier. This greatly reduces the

dimensionality of the classifier input, and therefore speeds up computation time and reduces

the number of trials needed for the classifier to learn optimal classification boundary. The

weighting is proportional to the temporal filter in the photocurrent simulation, such that the

time points with the highest weight in the filter has the largest contribution to the weighted

average. Because we do not simulate eye movements or vary the phase of the stimulus, the only

changes over time arise from the noise and temporal filtering by the photocurrent, and hence

there is little to no loss of signal from averaging. The classifier trains and tests on the averaged

responses for each stimulus contrast separately, where each contrast level results in a percent

correct identified stimulus. The accuracy results are then fitted with a Weibull function to

extract the contrast threshold at ~80%.

The cone photocurrent and mRGCs have a large effect on orientation

discrimination

We find large effects on performance of the computational observer when adding the cone

photocurrent and the mRGC layers. For comparison, we ran the SVM decision maker either

on the cone absorptions, the cone photocurrent, or the mRGC outputs while varying the cone

density and the stimulus contrast. Consistent with our prior model [50], thresholds are low

(~0.1–0.2%) when analyzed on the cone absorptions, and show only a small effect of cone den-

sity (Fig 5A). Thresholds increase sharply, about 5–10x, after the absorptions are converted to

photocurrent (Fig 5B). This increase is due to noise in the photocurrent, consistent with prior

results [51]. Surprisingly, the effect of cone density is also substantially increased, as seen in

the greater spread of the psychometric functions. This is because the cones in the lower density
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retinal patches have larger apertures, resulting in greater photon capture, and hence more

downregulation when converted to photocurrent. Over the 10-fold range of retinal densities,

threshold vary by only about 1.4:1 for the absorptions, much less in contrast to about 5:1 for

the photocurrent. The spatial filtering and late noise from the mRGCs further elevate thresh-

olds, but at a fixed mRGC:cone ratio there is little change in the effect of cone density: the

threshold vs density plot shows a vertical shift compared to the cone photocurrent, with about

the same slope (Fig 5C).

We next quantified the effect of the mRGC:cone ratio on computational observer perfor-

mance. We find that as the ratio increases, contrast thresholds decline (Fig 6A). The effect of

the mRGC:cone ratio is largely independent of the cone density. For example, at any cone den-

sity, downsampling the mRGC density by 4x elevates thresholds by about 70% to 80%. The bet-

ter model performance with more mRGCs comes from higher SNR, which arises because the
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in our model are not rectified, they respond to both increments and decrements. Physiologically, this would require two cells (an ON

and OFF cell), so we count each modeled mRGC location as two cells. Both panels show a mRGC:cone ratio of 2:1. (B) 1D

representation of Difference of Gaussians in Fourier space. The Fourier representation illustrates the band-pass and unbalanced nature

of the DoG (i.e., non-zero amplitude at DC). Depending on the width/subsample rate, DoGs attenuate different spatial frequencies.

However, at our peak stimulus frequency (4 cycles per degree, indicated with red dashed line) the two DoG filters vary a relatively small

amount, preserving most stimulus information. Fourier amplitudes are normalized. Note that y-axis is truncated for illustration

purposes. (C) 2D representation of two example mRGC layers shown in panel. Midget RGC DoG filters are zoomed into a 1x1˚ field-of-

view cone array (black raster) centered at 4.5˚ (red center with purple surround) and 40˚ eccentricity (red center with yellow surround),

corresponding to the 1D examples in panel A. Centers and surrounds are plotted at 2 standard deviations. For illustration purposes,

only one mRGC is shown; the mRGC array in our computational observer model tiles the entire cone array.

https://doi.org/10.1371/journal.pcbi.1009771.g004
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signal is correlated across mRGCs (due to spatial pooling), whereas the noise added in the

mRGC layer is independent. To visualize the space of predicted contrast thresholds as a func-

tion of cone density and mRGC:cone ratio, we plot model thresholds as a function of both
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Fig 5. Model performance for different computational stages. Left column shows classifier accuracy as function of

stimulus contrast. Data are from simulated experiments with 1,000 trials per stimulus class, using a model with a L-cone

only mosaic varying in cone density. Data are fitted with a Weibull function. Contrast thresholds are plotted separately

as a function of cone density in the right column. (A) Cone absorptions. Applying a linear SVM classifier to cone

absorptions averaged across stimulus time points. (B) Cone photocurrent. Applying a linear SVM classifier to cone

outer segment photocurrent responses, averaged across time weighted by a temporally delayed stimulus time course.

This transformation of cone absorptions into photocurrent causes a ~10x increase in contrast thresholds, interacting

with cone density (i.e., Weibull functions are spaced out compared to cone absorptions). (C) RGC responses. Applying

a linear SVM classifier to spatially filtered photocurrent with added white noise. This transformation causes an

additional increase in contrast thresholds for all cone densities. Data show results for a fixed subsampling ratio of 2

mRGCs per cone.

https://doi.org/10.1371/journal.pcbi.1009771.g005
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independent variables (Fig 6B). This surface plot confirms the observation from the line plots

(Fig 6A) that the effects of these two retinal factors—cone density and mRGC:cone ratio—

have approximately independent, additive effects on model contrast threshold.
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https://doi.org/10.1371/journal.pcbi.1009771.g006
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Comparison between model and human contrast sensitivity

To compare model performance to human observers, we evaluate the model outputs for cone

densities and mRGC:cone ratios that match the values on the different meridians according to

the literature. We then compare these predicted thresholds to those obtained in a recent psy-

chophysical experiment [15]. We also compare both the human data and the mRGC model

data to two simplified models, one which omits the mRGCs and one which omits mRGCs and

the conversion from isomerizations to photocurrent.

According to Curcio et al. [9], cone density at 4.5˚ eccentricity is ~1,575 cones/deg2 on the

horizontal retinal meridian (nasal: 1590 cones/deg2, temporal: 1560 cones/deg2), 1300 cones/

deg2 on the superior retinal meridian, and 1382 cones/deg2 on the inferior retinal meridian.

We combine these cone density values with the mRGC:cone ratios from the computational

model by Watson [64], which ranges between 0.84 mRGCs per cone on the horizontal merid-

ian (nasal: 0.87, temporal: 0.82), to 0.81 on the superior retina and 0.68 on the inferior retina.

Consistent with our previous report [50], we find that a model in which the pattern of pho-

ton absorptions is fed into the linear SVM classifier shows only a small effect of cone density

(Fig 7A, left). Given the expected cone densities at the different polar angles at 4.5˚ eccentric-

ity, the model predicts only about 5% higher sensitivity for the horizontal than vertical visual

meridians, much less than the 40% difference found in behavioral experiments [15] (Fig 7B).

The model also predicts almost no difference between upper and lower vertical visual merid-

ian, whereas human sensitivity was found to be about 20% higher on the lower than upper ver-

tical visual meridian. The overall sensitivity of the model observer (800–900) is considerably

higher than human sensitivity (~30–50).

The conversion from cone absorptions to cone photocurrent reduces the sensitivity by

about 4- to 5-fold, and increases the asymmetries. The linear SVM classifier performance
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https://doi.org/10.1371/journal.pcbi.1009771.g007
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based on the cone photocurrent shows about 15% higher sensitivity for horizontal than vertical

visual meridian, an asymmetry that is 3 times larger than that found in a model up to cone

isomerizations. It also predicts about 9% higher sensitivity for upper vertical than lower verti-

cal visual meridian (opposite to the pattern in human data). This is because the cone density is

slightly higher for the upper than lower vertical visual meridian at this eccentricity (4.5˚).

Finally, the mRGC model brings overall performance closer to behavior, with sensitivity of

about 70–90, and ~18% higher sensitivity for the horizontal than vertical visual meridian, pre-

dicting almost half the asymmetry found in behavior (~40%). The mRGC model also elimi-

nates the advantage for upper over lower vertical visual meridian (now predicting slightly

higher performance for the lower vs upper vertical), which is the same direction as the pattern

observed in the human data.

Overall, our models show that although including an mRGC layer predicts polar angle

asymmetries closer to behavior than a model up to cone absorptions or up to photocurrent,

the biological variations in the spatial properties of mRGCs are not sufficient to fully explain

differences in behavior. For example, the measured cone densities for the upper and lower ver-

tical visual meridians are about 12% and 19% lower than for the horizontal. To predict the hor-

izontal-vertical and vertical-meridian asymmetries as observed in human performance, and

without further changing the mRGC:cone ratios, the cell densities would instead have to be

~37% and 30% lower than the horizontal. Alternatively, one could keep the cone densities

fixed at the levels estimated by Curcio et al. [9], and instead vary the mRGC:cone ratio as

observed by Watson [64]. In this case, the ratios would have to decrease from 0.81 to 0.52 for

the lower vertical and 0.68 to 0.32 for the upper vertical visual meridian. If one decreased both

the cone densities and the mRGC:cone ratios by tracing out the values along the nasal retinal

meridian, one would need to increase eccentricity of a stimulus from 4.5˚ to 7.3˚ (upper verti-

cal) or 6.3˚ (lower vertical) to match the behavioral asymmetries.

Discussion

The visual system, from retina to subcortex to cortex, is organized in orderly maps of the visual

field. But within each particular processing stage, the retinotopic map is distorted. Here we

investigated the polar angle asymmetries in these spatial representations across three stages of

the early visual pathway: cones, mRGCs, and V1 cortex. Our study revealed that both the

eccentricity gradient (foveal bias) and polar angle asymmetries (HVA and VMA) in spatial

representations are amplified from cones to mRGCs, and further amplified from mRGCs to

early visual cortex. Additionally, we showed that although mRGC density has considerably

polar angle asymmetries in the directions predicted by psychophysical studies, they are insuffi-

cient to explain observed differences in human’s contrast sensitivity around the visual field.

Linking behavior to eccentricity and polar angle asymmetries in visual field

representations

For over a century, limits in retinal sampling were hypothesized to cause the fovea-to-periph-

ery gradient in human visual performance [1,5,6]. Initial tests of this idea showed that the fall-

off in cone density could explain some, but not all of the observed decrease in visual acuity

[2,3,84–87]. Later, more detailed computational models, reported that mRGCs come closer in

predicting the eccentricity-dependent decrease in achromatic contrast sensitivity and resolu-

tion, and conclude that mRGCs are sufficient to explain some aspects of behavior, such as spa-

tial resolution and contrast sensitivity [88–94]. Similar to the retina, the cortical magnification

factor in V1 has been linked to visual performance as a function of eccentricity, for example,

PLOS COMPUTATIONAL BIOLOGY Asymmetries around the visual field

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009771 January 10, 2022 15 / 34

https://doi.org/10.1371/journal.pcbi.1009771


explaining differences in acuity [92,95,96], contrast sensitivity and resolution [20], visual

search [97,98], and the strength of some visual illusions [99].

Conversely, polar angle asymmetries have rarely been considered. For instance, all above-

mentioned studies either ignored the stimulus polar angle for analysis or limited measure-

ments to a single meridian, usually the horizontal. Despite the fact that the existence of polar

angle asymmetries in human early visual cortex was predicted based on behavior in the late

70’s [19,20], further reports on polar angle differences have been scarce. One fMRI study

reported a higher V1 BOLD amplitude for stimuli on the lower than the upper visual meridian

[100] and two studies found more cortical surface area devoted to the horizontal than the verti-

cal meridian [101,102]. Our recent studies suggest that V1 surface area is highly correlated to

spatial frequency thresholds [78] and contrast sensitivity [103]. Yet several studies have

assumed little to no polar angle differences in macaque V1 CMF [104,105] or did not account

for polar angle differences in human V1 CMF [46,96] to explain differences in behavior.

Computational models that include retinal and/or V1 sampling across visual space generally

exclude polar angle asymmetries (e.g., [106,107]). A few cases do incorporate polar angle asym-

metries in the retinal ganglion cell distribution, but they assume that these asymmetries are

not amplified in cortex [108–110].

Early visual cortex does not sample the retina uniformly

It is well documented that the convergence of cones to retinal ganglion cells varies with eccen-

tricity (e.g., see [91]). In the fovea of both primates and humans, there is one cone per pair of

bipolar cells and pair of midget RGCs, with pairs comprised of an “ON” and an “OFF” cell. In

contrast, in the periphery, there are many cones per pair of bipolar cells and midget RGCs,

with the ratio depending on the eccentricity. In the far periphery, there can be dozens of cones

per ganglion cell [9].

It has been long debated whether V1 further distorts the visual field representation, or if V1

samples uniformly from RGCs, as reviewed previously [71,72]. Our analysis showed more cor-

tical surface area devoted to the fovea than the parafovea and to the horizontal than vertical

meridian, supporting previous findings using retinotopy informed by anatomy [101] and

functional MRI [78,102,103,111]. Importantly, these eccentricity and polar angle non-unifor-

mities are larger in V1 than they are in mRGC density, in agreement with findings from mon-

key [61,73–75,112,113]. Whether these non-uniformities arise in cortex, or depend on the

mapping from retina to LGN, LGN to V1, or both, is a question of interest in both human

[114,115] and monkey [116–120], but beyond the scope of this paper. The implication of the

increased spatial non-uniformities in the cortical representation is that cortex cannot be

understood as a canonical wiring circuit from the retina repeated across locations.

Because visual field distortions are larger as a function of eccentricity than polar angle, one

might surmise that polar angle asymmetries contribute little to visual performance. Even

though the polar angle asymmetries are smaller than the eccentricity effects, they can in fact be

large. For example, within the central eight degrees, the surface area in V1 is about 60% larger

for the horizontal meridian than the vertical meridian [78]. Given that virtually all visual tasks

must pass through V1 neurons, these cortical asymmetries are likely to have a large effect on

perception. The number of cortical cells could be important for extracting information quickly

[121], for increasing the signal-to-noise ratio, and for tiling visual space and visual features

(e.g., orientation, spatial frequency) more finely [122]. To know how the number of V1

neurons affect performance, there is a need for a computational model that explicitly links cor-

tical resources to performance around the visual field.
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Temporal summation in cone photocurrent accentuates polar angle

asymmetries

We found one physiological factor in the retina—gain control in the cone photocurrent—that

appears to accentuate the polar angle asymmetries. This is because at matched eccentricities,

cone density varies with polar angle (i.e., cone density is higher on the horizontal meridian),

and cone aperture size varies inversely with density. Specifically, at lower densities, the aper-

tures are larger, capturing more photons per receptor. As a result of the higher absorption

rates, there is greater downregulation of the photocurrent gain. Cottaris et al. [51] observed in

their modeling work that the lower gain in the photocurrent for larger cones caused a reduc-

tion in the signal-to-noise ratio. In their simulations, this resulted in sensitivity loss for stimuli

that extended further into the periphery. In our simulations, lower density results in lower sen-

sitivity, therefore contributing to the difference in performance as a function of polar angle.

Overall, while adding a photocurrent stage decreases overall thresholds, bringing them

closer to human performance (especially for simulations with low cone density mosaics), it

still leaves a large gap between the predicted and observed psychophysical asymmetries as a

function of polar angle. Moreover, the photocurrent model does not explain any of the vertical

meridian asymmetry, as cone density, and presumably aperture size, do not differ between

lower and upper vertical meridian in a way that matches behavior.

Model limitations

Despite implementing known facts about the eye, our model, like any model, is a simplifica-

tion. The lack of comprehensiveness trades off with interpretability. For this model, we make

the trade-off between complexity and understanding by treating a local patch of mRGCs as a

linear, shift-invariant system (i.e., a spatial filter). As several components of the model here are

identical to our previous model, we will focus on the limitations of those components that are

different (addition of cone photocurrent and mRGC layer, and exclusion of eye movements),

and refer to Kupers, Carrasco, and Winawer [50] for model limitations related to the pathways

from scene to cone absorptions and the inference engine.

Spatial properties: Uniform sampling within a patch and subunits. Hexagonal cone

arrays that include within-patch density gradients have been implemented in ISETBIO by Cot-

taris et al. (e.g., [51,67]). Nonetheless, our mRGC layer is implemented as a rectangular patch

of retina, initially with the same size as the cone mosaic. This allows for filtering by convolu-

tion and then linear subsampling to account for mRGC density, making the model computa-

tionally efficient. We do not incorporate several known complexities of RGC sampling in the

retina: (i) density gradients within a patch, (ii) irregular sampling, and (iii) spatial RGC sub-

units. (i) Given our relatively small patch size (2x2˚ field-of-view) in the parafovea (centered at

4.5˚), the change in density across the patch would be small (~10%). We found that a much

larger change in mRGC density (spanning a 5-fold range) had only a modest effect on perfor-

mance of our observer model, so it is unlikely that accounting for a small gradient within a

patch would have significantly influenced our results. (ii) Given the relatively low spatial fre-

quency content of our test stimulus (4 cycles per degree), it is unlikely that irregular sampling

would have resulted in a substantial difference from the regular sampling we implemented.

(iii) Our low spatial frequency test stimuli also reduce concerns of omitting spatial subunits

[123–126], as these non-linearities are most likely to be important for stimuli at high spatial

frequencies (reviewed by [127]). Moreover, we showed for our linear RGC filters that sensitiv-

ity differences are only large at high spatial frequencies (around 8 cycles per degree and

higher); even when receptive field sizes differ by a factor of 3 (as shown in Fig 4B). Hence for

the relatively low spatial frequency stimuli modeled here, the detailed spatial properties that
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we excluded would likely not have large enough effects to make up the difference between the

predicted model performance and human behavior.

Temporal properties and eye movements. In contrast to our previous work [50], our

current model includes temporal integration but omits fixational eye movements and multiple

cone types. The omission of eye movements made the model more tractable and the computa-

tions more efficient. We think this omission is unlikely to have a large effect on our results. In

recent related work, it was shown that fixational eye movements combined with temporal inte-

gration resulted in spatial blur and degraded performance, causing a loss in contrast sensitivity

up to a factor of 2.5 [51]. However, the largest losses were for stimulus spatial frequencies over

8 cycles per degree, with little loss from eye movements for stimuli with lower peak spatial fre-

quency (2–4 cycles per degree). Given that the spatial frequency of our test stimulus falls within

this range, the influence of fixational eye movements on the computational observer perfor-

mance would have been modest.

Noise implementation. Our expectation was that the largest effect of mRGCs on perfor-

mance as a function of polar angle would arise from variation in cell density: where mRGC

density is higher, SNR will be higher, thus performance will be better. This effect of density on

performance emerged in our simulations from the noise added after spatial filtering, before

subsampling: without this additional noise component, the spatial filtering of the mRGC

would just be a linear transform of the cone outputs, which would have little or no effect on

performance of a linear classifier. We simulated this late noise as additive Gaussian noise

rather than the stochastic nature of spiking, as we were not trying to fit spiking data but rather

predict behavior. While we also did not build in correlated noise between RGCs (e.g., [128]),

there is nonetheless some shared noise in our mRGCs due to common inputs from cones,

which is the major source of noise correlations in RGCs [129]. Moreover, we found that the

general pattern of model performance was unchanged over a large range of noise levels (up to

an overall scale factor in performance), suggesting that the effect of density is likely to hold in

many noise regimes.

Other retinal cell types. Midgets are not the only retinal ganglion cells that process the

visual field. Parasol (pRGCs) and bistratified retinal ganglion cells are less numerous but also

cover the entire retina. pRGCs are the next most common retinal ganglion cells, and have gen-

erally larger cell bodies and dendritic field sizes than mRGCs, both increasing with eccentricity

[54]. These differences cause parasols to be more sensitive to relative contrast changes and

have higher temporal resolution, with the consequence of losing spatial resolution [130]. For

this reason, the small mRGCs are much more likely to put a limit on spatial vision, and thus

our model does not include pRGCs.

The discussion above raises the question, had we incorporated more known features of the

retina in our model, would the model make predictions more closely matched to human per-

formance? We think it is unlikely that doing so would fully explain the observed asymmetries

in behavior, because we measured substantially larger asymmetries in cortex than in retina. If

the retinal simulations entirely accounted for behavior, this would leave no room for the addi-

tional cortical asymmetries on behavior.

A case for cortical contributions to visual performance asymmetries

Recent retinal modeling of contrast sensitivity in the fovea showed that very little information

used for behavior seems to be lost from the retinal output [51]. This may not be the case for

the parafovea and periphery. Incorporating temporal properties of phototransduction and spa-

tial properties of mRGC followed by additive noise could explain about half the differences in

behavior of HVA and ~1/6 of VMA. These differences indicate a contribution from
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downstream processing, such as early visual cortex. V1 cortex has several characteristics that

suggest a tight link between cortical topography and polar angle visual performance asymme-

tries. Hence a model that incorporates properties of early visual cortex is likely to provide a

substantially better account of polar angle asymmetries in behavior than one that only incor-

porates properties of the eye. We have not developed such a model but outline some of the rea-

sons that cortex-specific properties are important for explaining polar angle asymmetries.

First, the representation of the visual field is split across hemispheres in visual cortex along

the vertical, but not horizontal meridian. This split may require longer temporal integration

windows for visual input that spans the vertical meridian, as information needs to travel

between hemispheres. For example, the response in the left visual word form area is delayed by

~100 ms compared to the right visual word form area when presenting a stimulus in the left

visual field [131]. Longer integration windows may in turn impair performance on some tasks,

as eye movements during integration will blur the representation. Longer integration time of

visual information spanning the vertical meridian is consistent with behavior, as accrual time

is slower when stimuli are presented at the vertical than the horizontal meridian [38]. Interest-

ingly, the hemispheric split is not precise: there is some ipsilateral representation of the visual

field along the vertical meridian in early visual cortex. The amount of ipsilateral coverage is

larger along the lower than upper vertical meridian and increases from 1–6˚ eccentricity [132].

It is possible that the split representation affects performance for stimuli on the vertical merid-

ian (contributing to the HVA), and that the asymmetry in ipsilateral coverage between the

lower and upper vertical meridian contributes to the VMA.

Second, there is good correspondence between the angular patterns of asymmetries in V1

cortex and behavior. Polar angle asymmetries in the CMF of early visual cortex are largest

along the cardinal meridians (i.e., horizontal vs vertical and upper vertical vs lower vertical).

The asymmetries gradually fall-off with angular distance from the meridians [78]. This gradual

decrease in polar angle asymmetry in cortex parallels the gradual decrease in contrast sensitiv-

ity [12,29,30] and spatial frequency sensitivity [16] with angular distance from the cardinal

meridians. Measurements of cone density and retinal ganglion cell density have emphasized

the meridians, so there is less information regarding how the asymmetries vary with angular

distance from the meridians.

Third, there is good correspondence between cortical properties and behavior in the

domain of spatial frequency and contrast sensitivity. Polar angle asymmetries in spatial fre-

quency sensitivity observed by Barbot et al. [16] parallel spatial frequency tuning in V1 cortex.

Specifically, fMRI measurements show that in V1, in behavior spatial frequency thresholds are

higher on the horizontal than vertical visual meridian [16] and the preferred spatial frequency

tuning is higher along the horizontal meridian than vertical visual meridian [133]. Addition-

ally, polar angle asymmetries in contrast sensitivity covary with polar angle asymmetries in V1

cortical magnification [103]: Observers with larger horizontal-vertical asymmetries in contrast

sensitivity (i.e., better performance on the horizontal vs vertical visual meridian at matched

eccentricities), tend to have larger horizontal-vertical asymmetries in V1 cortical magnification

at corresponding locations in the visual field.

Fourth, polar angle asymmetries in behavior are maintained when tested monocularly

[12,16], but thresholds are slightly higher compared to binocular testing (at least for spatial fre-

quency sensitivity [16]). Higher thresholds (i.e., poorer performance) show that performance

benefits from combining information of the two eyes, as twice the amount of information

increases the signal-to-noise ratio [134]. This summation is likely to arise in early visual cortex,

as V1 is the first stage in the visual processing pathways where information of the left and right

visual field merges [135–137].
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Conclusion

Overall, we have shown that the well-documented polar angle asymmetries in visual perfor-

mance are associated with differences in the structural organization of cells throughout the

early visual pathway. Polar angle asymmetries in cone density are amplified in downstream

processing, from cones to RGCs and again from RGCs to early visual cortex. Further, we have

extended our computational observer model to include temporal filtering when converting

cone absorptions to photocurrent and spatial filtering of mRGCs, and found that both contri-

butions, although larger than those of cones, are far from explaining behavior. In future

research, we will aim to integrate cortical data within the computational observer model to

explain whether a significant amount of the polar angle asymmetries can be accounted for by

the organization of cortical space in early visual cortex.

Methods

Reproducible computation and code sharing

All analyses were conducted in MATLAB (MathWorks, MA, USA). Data and code for our pre-

viously published and extended computational observer model, including density computa-

tions and figure scripts, are made publicly available via the Open Science Framework at the

URL: https://osf.io/mygvu/ (previously published) and https://osf.io/ywu5v/ (this study).

Data sources

Data on cone density, midget RGC density, and V1 cortical surface area previously published

or from publicly available analysis toolboxes. Both cone and mRGC densities were computed

as cells/deg2 for 0–40˚ eccentricities (step size 0.05˚), at the cardinal meridians (0˚, 90˚, 180˚,

and 270˚ polar angle, corresponding to nasal, superior, temporal, and inferior retina of the left

eye. Fig 1 contains averaged cone and mRGC densities across all meridians as a function of

eccentricity. Fig 2 contains cone and mRGC densities converted to visual field coordinates,

where the horizontal visual field meridian is the average of nasal and temporal retina, upper

visual field meridian corresponds to the inferior retina and lower visual field meridian to the

superior retina.

Cone density. Cone density data for the main results were extracted from post-mortem

retinal tissue of 8 human retina’s published by Curcio et al. [9] using the analysis

toolbox ISETBIO [65–67], publicly available via GitHub (https://github.com/isetbio/isetbio).

Cone density in S1 Fig shows two datasets computed by two analysis toolboxes. To extract

post-mortem data from Curcio et al. [9], we either use ISETBIO or the rgcDisplacementMap

toolbox [76], publicly available at GitHub (https://github.com/gkaguirrelab/

rgcDisplacementMap). A second cone density dataset comes from an adaptive optics study

published by Song et al. [10]. From this work, we use “Group 1” (young individuals, 22–35

years old) implemented in ISETBIO.

Midget retinal ganglion cell receptive field density. Midget RGC density for the main

results were computed with the quantitative model by Watson [64] implemented in ISETBIO.

This model combines cone density data from Curcio et al. [9], mRGC cell body data from Cur-

cio and Allen [53] and the displacement model by Drasdo et al. [57], to predict the midget

RGC receptive fields (RFs).

Midget RGC data in S1 Fig computes mRGC density with two computational models: Wat-

son [64] from ISETBIO and the displacement model by Barnett and Aguirre [76] implemented

in the rgcDisplacementMap toolbox.
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Cortical magnification factor in early visual cortex. To quantify the fovea-to-periphery

gradient in the V1 cortical magnification factor (CMF), we used the areal CMF function pub-

lished in Horton and Hoyt [68] for 0–40˚ eccentricity (Fig 1). Because this function does not

make separate predictions for the cardinal meridians (Fig 2), we used data from the Human

Connectome Project (HCP) 7 Tesla retinotopy dataset (n = 163), which were first published by

Ugurbil, van Essen, and colleagues [138,139] and analyzed with population receptive field

models by Benson et al. [79]). V1 CMF surface area data are from Benson et al. [78] segmented

into bins using hand-drawn ROIs from Benson et al. [140] and computed as follows.

To compute V1 CMF from retinotopy data, we used the extracted surface area for ±10˚ and

±20˚ wedge ROIs centered on the cardinal meridians in each individual’s hemisphere. The

wedges on the horizontal, dorsal, and ventral locations represented the horizontal, lower, and

upper visual field meridians respectively. Wedge ROIs were computed in the following steps:

First, area V1 and V2 were manually labeled with iso-eccentricity and iso-polar angle contour

lines using the measured retinotopic maps of each hemisphere [140]. Second, for each cardinal

meridian and each 1˚-eccentricity bin, we calculated the mean distance along the cortex to

reach a 10˚ or 20˚ polar angle. All vertices that fell within the eccentricity bin and polar angle

distance were included in the particular ROI. We computed wedge strips, rather than an entire

wedge or line, to avoid localization errors in defining the exact boundaries.

The wedges were separated into 5 eccentricity bins between 1–6˚ (1˚ step size) using the

hand-drawn ROIs from Benson et al. [140], marking eccentricity lines at 1˚, 2˚, 4˚, and 7˚. The

3˚, 5˚ and 6˚ eccentricity lines were deduced from the 2˚, 4˚ and 7˚ lines using isotropic inter-

polation (independently for ±10˚ and ±20˚ wedge ROIs, for more details see Benson et al.
[78]), and hence are likely to be less accurate than the data points at the exact hand-drawn

eccentricity lines. The cortical surface area (mm2) was summed across hemispheres within

each subject and divided by the visual field area (deg2). For each eccentricity bin and cardinal

meridian, mean and standard error V1 CMF were computed from bootstrapped data across

subjects (1,000 iterations). Mean data for each cardinal meridian were fit with a linear function

in log-log space (i.e., power law function in linear coordinates) for 1–6˚ eccentricity.

The initial ROIs used for the upper and lower vertical meridian included both V1 and V2

sections of the vertical meridian, and therefore contain twice as much visual area as the hori-

zontal ROI. To have a fair comparison between the horizontal and upper and lower visual field

ROIs, we corrected the upper and lower ROIs as follows. For each subject and eccentricity bin,

we computed a vertical surface area ROI (with both upper and lower visual fields) that

excluded V2 sections of the vertical meridian. When summed over both hemispheres, this ver-

tical ROI has a size comparable to the horizontal ROI. We then calculated a scale factor for

each subject and eccentricity, by dividing the vertical ROI by the sum of upper and lower sur-

face area ROIs. This scale factor was on average ~0.5. To get the corrected V1 CMF, we multi-

plied the scale factor to corresponding ventral and dorsal surface areas and divided by the

corresponding visual field area. By scaling dorsal and ventral ROIs to only include the V1-side,

we made the assumption that V2 is approximately the same size as V1. These vertical ROIs

may be slightly less precise than the horizontal meridian ROI and affect the horizontal-vertical

asymmetry (HVA). We did not compare differences in pRF sizes for the cardinal meridians.

Although the narrower ±10˚ wedge ROIs are in closer correspondence to the single line

estimations of cone and mRGC density, we use ±20˚ wedge ROIs in Fig 2 as those data are

more robust. This is because narrow wedge ROIs are prone to overestimation of the vertical

meridian surface, caused by ipsilateral representations near the boundaries. Such ipsilateral

representations are sometimes incorrectly counted as part of the ±20˚ ROI for the ipsilateral

hemisphere, instead of as part of the ±10˚ ROI for the contralateral hemisphere, and this effect
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is exacerbated for smaller wedges. We visualize V1 asymmetries for both ±10˚ and ±20˚ wedge

ROI S1 Fig.

Convergence ratios

The cone:mRGC ratio was computed by dividing mRGC density (cells/deg2) by cone density

(cells/deg2) for 0–40˚ eccentricity, in 0.05˚ bins. The mRGC:CMF ratio was computed in cells/

mm2. When comparing mRGC density to Horton and Hoyt’s CMF prediction, mRGC density

(cells/deg2) was divided by V1 CMF (deg2/mm2) for 0–40˚ eccentricity, in 0.05˚ bins. When

comparing HCP’s retinotopy CMF to mRGC density, mRGC density was restricted to 1–6˚

eccentricity, and divided by the power law functions fitted to the V1 CMF. To compute the

transformation ratios relative to horizontal visual field meridian for cone:mRGC or mRGC:V1

CMF ratios in S2 Fig, we divide the lower and upper visual field transformation ratio sepa-

rately by the horizontal visual field transformation ratio.

Asymmetry computation

Polar angle asymmetries between meridians for cone density and mRGC density were calcu-

lated as percent change in retinal coordinates as in Eqs 1 and 2, and then converted to visual

field coordinates (i.e., nasal and temporal retina are left and right visual field meridians, and

superior and inferior retina are lower and upper visual field meridians):

Horizontal Vertical Asymmetry ¼ 100 �
meanðnasal; temporalÞ � meanðsuperior; inferiorÞ

meanðnasal; temporal; superior; inferiorÞ
ð1Þ

Vertical Meridian Asymmetry ¼ 100 �
superior � inferior

meanðsuperior; inferiorÞ
ð2Þ

Polar angle asymmetries in V1 CMF and behavior were computed with the same equations,

but for visual field coordinates.

Computational observer model

The computational observer uses and extends a published model [50]. The extensions include

(1) a phototransduction stage in the cone outer segment (transforming absorptions to photo-

current) and (2) a midget RGC layer (transforming photocurrent to mRGC responses)

between the cone isomerization stage and the behavioral inference stage. To compensate for

the increase in computational load and to keep the model tractable, we also made two simplifi-

cations: We used an L-cone only mosaic (instead of L-, M-, S-cone mosaic), and removed any

stimulus location uncertainty by omitting fixational eye movements and stimulus phase shifts

within a single stimulus orientation. With our extended model, we generated new cone

absorption and photocurrent data using a fixed random number generator.

Given that several stages of the model are identical to those to the previous study, we refer

to those methods on Scene radiance, Retinal irradiance, and Cone mosaic and absorptions.
Unlike in our previous study [50], we did not vary the level of defocus in the Retinal irradiance
stage nor the ratio of different cone types within a cone mosaic.

Stimulus parameters. The computational model simulates a 2-AFC orientation discrimi-

nation task while varying stimulus contrast. The stimulus parameters are chosen to match the

baseline condition of the psychophysical study by Himmelberg et al. [15], whose results have

replicated the psychophysical study used for comparison in our previous computational

observer model [13]. The recent psychophysics experiment used achromatic oriented Gabor
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patches, ±15˚ oriented from vertical, with a spatial frequency of 4 cycles per degree. Stimuli

were presented at 4.5˚ iso-eccentric locations on the cardinal meridians, with a size of 3x3˚

visual angle (σ = 0.43˚) and duration of 120 ms. These stimulus parameters were identical to

those the model, except for size, duration, and phase randomization of the Gabor. The simu-

lated stimulus by the model was smaller (2x2˚ visual angle (σ = 0.25˚), shorter (54-ms on, 2-ms

sampling) followed by a 164-ms blank period (mean luminance). We simulated these addi-

tional time points without a stimulus because photocurrent data are temporally delayed (see

next section on Photocurrent). There was no stimulus onset period, and the phase of the Gabor

patches were identical across all trials (90˚). Instead of simulating 5 experiments with 200 trials

per stimulus orientation as in our previous paper, we simulated one experiment with 5x more

trials (i.e., 1,000 trials per stimulus orientation, 2,000 trials in total) to ensure that our behav-

ioral inference stage had sufficient number of trials to successfully learn and classify stimulus

orientation. To assure psychometric functions with lower and upper asymptotes, stimulus con-

trasts ranged from 0–100%.

Photocurrent. After the cone isomerization stage, we applied ISETBIO’s built-in osLinear
photocurrent functionality implemented by Cottaris et al. [51] to our cone absorption data

(separate for each simulation varying in cone density). This photocurrent stage converts cone

excitations into photocurrent in pA in a linear manner (in contrast to the osBiophys function-

ality in ISETBIO which contains a more complex and computationally intensive biophysical

model to calculate cone current).

The phototransduction stage takes the cone absorptions and applies three computations.

First, it convolves cone absorptions trials with a linear temporal impulse response specific to

L-cones (see Fig 3, panel in between absorptions and photocurrent stage). This temporal filter

delays and blurs the cone photocurrent in time. Second, photocurrent gain is downregulated

by light input, for instance due to increased luminance levels or larger cone apertures. Third,

photocurrents are subject to an additional source of white Gaussian noise, which are deter-

mined by photocurrent measurement by [80] (for more details, see Cottaris et al. [51]). This

resulted in a 4D array with m rows by n columns by 109 2-ms time points by 2,000 trials.

Because our simulated experiments do not contain any uncertainty about the stimulus loca-

tion (no fixational eye movements or stimulus phase randomization), we were able to average

both cone absorptions and photocurrent data across stimulus time points. We computed

mean cone absorption data by taking the average across the first 54 ms (ignoring the time

points without stimulus). For mean cone photocurrent data, we took a weighted mean across

all 218 ms time points using a temporally delayed stimulus time course. This time course was

constructed by convolving the stimulus on-off boxcar with the temporal photocurrent filter.

This resulted in a 3D array with time-averaged cone photocurrent m rows by n columns by

2,000 trials.

Midget RGC layer. Prior to the mRGC layer, Gabor stimuli were simulated as spectral

scene radiance from a visual display, passed through the simulated human optics, subject to

isomerization and phototransduction by the cones in a rectangular mosaic (2x2˚ field-of-view)

and saved as separate files for each stimulus contrast. The mRGC layer loaded the simulated

2D cone absorptions and photocurrent data.

The mRGC layer was built as a rectangular array, with the identical size mosaic as the cone

mosaic (2x2˚). Spatial summation by RGC RFs was implemented as 2D Difference of Gaus-

sians (DoG) filters [81,82]. The DoG RF was defined on a support of 31 rows by 31 columns.

The DoG size was based on Croner and Kaplan [83]: the standard deviation of the center

Gaussian (σc) was 1/3 times the cone spacing and the standard deviation of the surround

Gaussian (σs) was 6 times the center standard deviation. The center/surround weights were

0.64:0.36, hence unbalanced. These parameters create neighboring DoG RFs that overlap at 1.3
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standard deviation from their centers, approximating RGC tiling in human retina based on

overlap of dendrites fields [55]. The support of the DoG filter did not change size, however,

because the mRGC array is matched to the cone array and cone density affects cone spacing

(i.e., a lower cone density results in a sparser array), the width of the DoG varies with cone

density and can be expressed in units of degree visual angle (i.e., scaling with the number of

cones per degree within the cone array).

In the primate fovea, there is one ON and one OFF mRGC cell per cone, for a ratio of 2

mRGCs per cone. Unlike in the eye, our model mRGCs are not rectified, hence one of our

mRGCs can signal either increments or decrements. For comparison to the literature, we mul-

tiply our mRGC counts by 2. We do not model ON- and OFF-center mRGCs separately, but

rather consider one linear mRGC (no rectification) as a pair of rectified ON- and OFF-centers.

For example, we consider an mRGC layer with no subsampling as having an mRGC:cone ratio

of 2:1 (2 mRGCs per cone). The mRGC:cone ratios, counted in this way, were 2:1, 0.5:1, 0.22:1,

0.125:1, 0.08:1. The highest ratio (2:1) is similar to the observed in the fovea and the lowest

ratio (0.08:1) is similar to the observed at ~40˚ eccentricity [64]. We tested a wide range of

ratios because the purpose of the modeling was to assess how variation in mRGC density

affects performance. The relationships between cone density and performance, or between

mRGC:cone ratio and performance, are more robustly assessed by testing a wide range of

parameters.

The spatial computations of the mRGC layer were implemented in three stages. In the first

stage, the 2D DoG filter was convolved with each time-averaged 2D cone photocurrent frame

separately for each trial. The photocurrent images were padded to avoid border artifacts. We

padded the array with the mean of the photocurrent cone array, where the padding doubled

the width and height of the array. The post-convolution array maintained the same size as the

cone array without padding.

In the second stage, white Gaussian noise was added to each time point of the filtered cone

photocurrent response, sampled from a distribution with a standard deviation of 1. This noise

level was determined after testing a range of values showed that doubling or halving the width

of the Gaussian only scaled the absolute performance levels, not the effect as a function of cone

density or mRGC:cone ratios (for results using a standard deviation of 0.5 and 2, see S4 Fig).

We added noise to our mRGC responses at this stage, because our mRGC layer without noise

would perform a linear transform of the photocurrent responses (linear filtering and linear

subsampling). A transform that a linear support vector machine classifier should be able to

learn the optimal hyperplane with enough training trials to “untangle” the two stimulus classes.

This would mean that our model would not predict any loss of information introduced by the

mRGC layer, the effect we are most interested in. Had we used a limited number of trials

instead, our model would have performed suboptimal and showed differences in classification

accuracy. In such case, it would be difficult to distinguish the extent to which these perfor-

mance differences are caused by spatial variations in mRGCs on visual performance versus the

general ability of the SVM algorithm.

In the third stage, the filtered cone responses were linearly subsampled. This was imple-

mented by resampling each row and column of the filtered cone responses with a sample rate

equal to the mRGC:cone ratio. For instance, an array with an mRGC:cone ratio of 0.5:1 sam-

ples from every other cone. The mRGCs are centered on the cones, limiting the resampling of

filtered cone responses to integer numbers of cones. These spatially filtered and subsampled

responses are the mRGC responses in arbitrary units, as we added an arbitrary level of Gauss-

ian white noise on the filtered photocurrent responses and did not implement spiking non-lin-

earity in this transformation.
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Simulated experiments. A single simulated experiment had a total of 64,000 trials: 2,000

trials per contrast level, 1,000 clockwise and 1,000 counter-clockwise. Stimulus contrast was

systematically varied from 0 to 100% Michelson contrast, using 32 contrast levels. The cone

mosaic was identical across contrast levels, only including L-cones, cone density and cone

spacing. There were no eye movements. Cone absorptions and photocurrent simulations used

a fixed random number generator seed. Data from a single contrast level were represented as a

4D array (m rows by n columns by 218 time points by 2,000 trials). The size of the m by n
frame depended on the defined subsampling ratio used for the mRGC layer.

This single experiment was repeated for 17 different cone mosaics, which varied systemati-

cally in cone density and spacing. The cone density variation was implemented by simulating

cone mosaics at different eccentricities, ranging from a density as high as at the 1˚ (4.9 x103

cells/deg2) to as low as at 40˚ eccentricity on the horizontal meridian (0.047 x104 cells/deg2).

This resulted in a total of 1,088,000 simulated trials (64,000 trials x 17 cone densities).

Simulated experiments for each of the 17 different cone densities were averaged across

time, resulting in a 3D array (m rows by n columns by 2,000 trials). In the mRGC layer, each

3D array was spatially subsampled by 5 different mRGC:cone ratios. This resulted in a total of

5,440,000 simulated trials (64,000 trials x 17 cone densities x 5 ratios).

Inference engines. The simulated trials were fed into an inference engine. The task of the

inference engine was to classify if a trial contained a clockwise or counter-clockwise oriented

Gabor stimulus given the cone or mRGC responses. Classification was performed separately

for every 2,000 trials, i.e., separately for each contrast level, cone density, and mRGC:cone

ratio.

We used a linear SVM classifier as implemented in MATLAB’s fitcsvm with 10-fold cross-

validation and built-in z-scoring. This procedure is identical to our previously published

model [50]. In contrast to our previous model implementation, we did not transform each 2D

frame of mRGC responses to the Fourier domain and did not discard phase information prior

to classification, because the stimulus was static and did not contain any uncertainty about

stimulus location nor simulated fixational eye movements. The mRGC responses were

concatenated across space, resulting in a matrix of 2,000 trials by mRGC responses. The order

of the trials within this vector was randomized and fed into the linear SVM classifier with a set

of stimulus labels. The classifier trained its weights on 90% of the trials, and tested on the 10%

left-out trials. This resulted in accuracy (percent correct) for each given contrast level, cone

density and ratio.

Accuracy data for a single simulated experiment were fitted with a Weibull function to

extract the contrast threshold. The threshold was defined as the power of 1 over the slope of

the Weibull function, which comes out approximately ~80% correct, given that chance is 50%

for a 2-AFC task and our slope was defined as β = 3.

Comparing model performance to behavior. To quantify the contribution of the spatial

filtering by mRGCs, we compared the model performance to behavior reported by Himmel-

berg et al. [15]. To do so, we extracted the mean contrast thresholds across all simulated cone

densities and mRGC:cone ratios. This resulted in a matrix of 17 cone densities x 5 mRGC:cone

ratios. We placed these data points in a 3D coordinate space: log cone density (x-dimension)

by log mRGC:cone ratio (y-dimension) by log contrast thresholds (z-dimension). We fitted a

3D mesh using a regression with locally weighted scatterplot smoothing with MATLAB’s fit.m
(using a LOWESS fit type with a span = 0.2, built-in normalization and the ‘bisquare’ robust

fitting options). This 3D mesh fit is used to visualize the effect of cone density at a single

mRGC:cone ratio by extracting a single curve from the mesh at that particular ratio (Fig 6A).

We then used the 3D mesh fit to predict contrast thresholds for the four cardinal meridians at
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4.5˚ eccentricity, evaluating the model at the four observed [cone, mRGC:cone ratio]-density

coordinates reported by Curcio et al. [9] and Watson [64].

Predicted thresholds for the model up to cone isomerizations and photocurrent were com-

puted using contrast thresholds for each cone density. These data were fitted separately per

model stage, with the same 3D mesh fit as mRGC responses using a dummy variable for the

mRGC:cone ratio. This fit was used to predict thresholds for each model stage given the

observed cone densities at the four cardinal meridians at 4.5˚ eccentricity.

Contrast thresholds were converted into contrast sensitivity by taking the reciprocal. Nasal

and temporal retina were averaged to represent the horizontal meridian. Because cone density

can vary dramatically across observers [141,142], we computed error bars that represent the

amount of variability in predicted sensitivity based on a difference in underlying cone density.

The upper/lower bound of the error bars in cone and mRGC model predictions were

defined by assuming that our estimates of cone density on the meridians are imperfect. Specifi-

cally, we assumed that the measured asymmetries might be off by as much as a factor of 2. So,

for example, if the reported density for the horizontal meridian is 20% above the mean, and

for the vertical meridian is 20% below the mean, we considered the possibility that they were

in fact 40% above or below the mean, or 10% above or below the mean.

Supporting information

S1 Fig. Polar angle asymmetries for cone density, mRGC density and V1 surface area com-

puted from different publicly available datasets. Asymmetries are in percent change, calcu-

lated as the difference between horizontal and vertical meridians divided by their mean (left

column), the difference between upper and lower vertical meridians divided by their means

(right column). Positive asymmetries would positively correlate with observed differences in

behavior. (Top row) Cone data are from either Curcio et al. [9] (black lines) or Song et al. [10]

(orange line) computed with either ISETBIO (solid lines) or rgcDisplacementMap

toolbox (dotted lines). (Middle row) Midget RGC RF data are computed using the computa-

tional model by Watson (2014) implemented in the ISETBIO toolbox (solid black line) or Bar-

nett and Aguirre [76] implemented in the rgcDisplacementMap toolbox (dotted black line).

(Bottom row) V1 surface is computed from the Human Connectome Project 7T retinotopy

dataset (n = 163), using the analyzed dataset by Benson et al. [78,79]. Surface areas are defined

as ±10˚ (black) and ±20˚ (red) wedge ROIs from 1–6˚ eccentricity around the meridians,

avoiding the central one degree and stimulus border (7–8˚) as those data can be noisy. Note

that the x-axis is truncated as cortical measurements are limited by the field-of-view in the

fMRI experiment. Data are fit with a 2nd degree polynomial, R2 = 0.48 (±10˚) and R2 = 0.89

(±20˚) for horizontal-vertical and R2 = 0.94 (±10˚) and R2 = 0.72 (±20˚) for vertical-meridian

asymmetries).

(EPS)

S2 Fig. Transformation ratios relative to horizontal visual field meridian. Relative ratio is

computed taking the lower or upper visual field transformation ratio and horizontal visual

field transformation ratio from panel B, and divide the two for cone:mRGC ratios (left panel)

and mRGC:V1 CMF ratios (right panel).

(EPS)

S3 Fig. Classifier performance varying with cone density, separately for each mRGC:cone

ratio. Linear SVM classifier accuracy is computed for each contrast level in a simulated experi-

ment with 1,000 clockwise and 1,000 counter-clockwise trials. Average accuracy data are fitted
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with a Weibull function.

(EPS)

S4 Fig. The effect of noise in mRGC layer on contrast thresholds as a function of cone den-

sity, separately for each mRGC:cone ratio. (A) Contrast thresholds as a function of cone den-

sity when adding white noise following a Gaussian distribution with a standard deviation of

0.5 (left panel), 1 (middle panel), 2 (right panel). Data are fit with a locally weighted regression

using the same procedure as the fit shown in Fig 6. Middle panel (1 std) is identical to Fig 6A.

(B) Same data as panel A, visualizing the three mRGC noise levels separately per mRGC:cone

ratio. Decreasing opacity of fits and data correspond to decreasing levels of noise.

(EPS)
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