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Abstract

While research supports amyloid-b (Ab) as the etiologic agent of Alzheimer’s disease (AD), the mechanism of action remains
unclear. Evidence indicates that adducts of RNA caused by oxidation also represent an early phenomenon in AD. It is
currently unknown what type of influence these two observations have on each other, if any. We quantified five RNA
adducts by gas chromatography/mass spectroscopy across five brain regions from AD cases and age-matched controls. We
then used a reductive directed analysis to compare the RNA adducts to common indices of AD neuropathology and various
pools of Ab. Using data from four disease-affected brain regions (Brodmann’s Area 9, hippocampus, inferior parietal lobule,
and the superior and middle temporal gyri), we found that the RNA adduct 8-hydroxyguanine (8-OHG) decreased, while 8-
hydroxyadenine (8-OHA) increased in AD. The cerebellum, which is generally spared in AD, did not show disease related
changes, and no RNA adducts correlated with the number of plaques or tangles. Multiple regression analysis revealed that
SDS-soluble Ab42 was the best predictor of changes in 8-OHG, while formic acid-soluble Ab42 was the best predictor of
changes in 8-OHA. This study indicates that although there is a connection between AD related neuropathology and RNA
oxidation, this relationship is not straightforward.
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Introduction

With an increase in the aging population, neurodegenerative

diseases are becoming more prevalent. The most common form of

dementia in the U.S. is Alzheimer’s disease (AD), which is

consistently in the top 10 causes of death in the elderly [1]. While

the mechanism behind the progression of this disease remains

unclear, the importance of amyloid-b (Ab) as a causative factor in

AD is well known [2]. This small peptide is accepted as triggering

the initial event that drives the disease [3]. The Ab peptide is a

product of sequential cleavage of the amyloid-b precursor protein

(APP), and it has a tendency to aggregate. The 40 amino acid

peptide (Ab40) is the most abundant form of Ab, and is not as

aggregate-prone as the less common 42 amino acid peptide (Ab42).

The 42:40 peptide ratio increases in early onset, familial AD [4],

indicating that Ab42 may play a greater role in initial pathology

than Ab40.

The peptide aggregates become more insoluble as they continue

to accumulate - a characteristic that can be discerned by sequential

extraction under progressively more denaturing conditions. This

allows for categorization of Ab by solubility, which can help

provide insights into the pathophysiology of the disease process

[5]. The aggregation process ultimately leads to mature amyloid

fibrils which form deposits known as amyloid plaques. Amyloid

plaques are found in two different forms: diffuse plaques (DPs) and

neuritic plaques (NPs). DPs lack a dense core and are associated

with normal aging. NPs possess an amyloid core, associate with

dystrophic neurites [6], and increase in AD [7]. NPs, coupled with

tangles of hyperphosphorylated tau (neurofibrillary tangles

(NFTs)), are the basis of an AD diagnosis in postmortem tissue [8].

Apart from Ab accumulation, many other factors may

contribute to the disease process. An increase in oxidative stress

found in the form of oxidized DNA, RNA, and protein adducts

may also contribute to the progression of the disease [9,10]. The

occurrence of nucleotide oxidation has the greatest potential for

long-term, pathophysiologic consequences, as nucleotide muta-

tions may result in incorrect synthesis of numerous proteins

repeated over the life of the cell. For example, 8-hydroxyguanine

(8-OHG) can incorrectly base pair with adenine and introduce

mutations during DNA synthesis [11]. The effects of oxidative

stress on DNA has been focused on more than RNA, even though

RNA may be more vulnerable to oxidative insults than DNA given

its generally single-stranded state and accessibility to the oxidant-

producing mitochondria [12]. RNA oxidation is increased in AD

[12,13] and certain adducts are more abundant than others. The

most commonly quantified nucleotide adducts include 8-OHG, 8-
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hydroxyadenine (8-OHA), 5-hydroxycytosine (5-OHC), 2,6-di-

amino-4-hydroxy-5-formamidopyrimidine (fapyguanine), and 4,6-

diamino-5-formamidopyrimidine (fapyadenine) [14,15], all of

which are found in both DNA and RNA. Determining the role

of these adducts in AD is important to understanding the

progression of the disease.

Despite studies of RNA oxidation in various neurodegenerative

diseases [12,16,17], few studies have attempted to relate oxidation

with Ab. Furthermore, variations between studies in methodology,

as well as differences in attributes such as post mortem interval

(PMI), brain region, and subject population make it difficult to

determine the relative importance of different RNA adducts in the

progression of the disease, and how these adducts may relate to

other aspects of AD neuropathology. In this study, we performed a

systematic analysis of multiple forms of Ab and RNA adducts

across several brain regions in a well-characterized cohort of late

stage AD cases and non-cognitively impaired control cases.

Materials and Methods

Ethics Statement
Human tissue collection and handling conformed to Public

Health Service and University of Kentucky Institutional Review

Board guidelines, including written informed consent from all

participants.

Tissue Collection
Tissue samples were obtained from the Alzheimer’s Disease

Center at the University of Kentucky. All subjects were assessed

using our standard neuropsychological test battery. Details of

subject monitoring have been described previously [18]. Control

subjects (N = 10) were age-matched to AD subjects (N = 12), with

similar post mortem intervals (PMI) for both groups (see Table 1
for demographic statistics). Autopsy methods and quantitative

neuroanatomy measures have been previously published [19].

Briefly, brain weight was determined at time of autopsy and a

neuropathological evaluation was performed. Samples from four

disease-affected areas (Brodmann’s Area 9, the hippocampal

formation, the inferior parietal lobule, and the superior and

middle temporal gyri) and one disease-unaffected region (cerebel-

lum) were used for the analysis.

Measurement of Ab
We used a well-known method of serial extraction and

quantification of Ab based on solubility [20]. Briefly, tissue was

homogenized via polytron in PBS (pH 7.4; 1.0 mL/200 mg wet

tissue weight) with a complete protease inhibitor cocktail (PIC,

Amresco; Solon, OH) and centrifuged at 20,8006 g for 30 min at

4uC. The supernatant (PBS-soluble pool) was collected and the

remaining pellet was sonicated (1060.5 sec pulses at 100 W,

Fisher Sonic Dismembrator, Fisher; Pittsburgh, PA) in 2% (w/v)

SDS with PIC and centrifuged as above at 14uC. This supernatant

(SDS-soluble pool) was collected, and the pellet was sonicated a

final time in 70% (v/v) formic acid, and then centrifuged at

20,8006 g for 60 min at 4uC. The remaining supernatant fraction

was collected (FA-soluble pool). All samples were stored at 280uC
until time of assay.

Quantification of total Ab was performed using a two-site

sandwich ELISA [21], whereas oligomeric Ab was quantified

using a single-site sandwich ELISA (4G8/4G8) [22]. Immulon

4HBX plates (Nunc; Rochester, NY) were coated with 0.5 mg/well

antibody Ab9 (Ab 1–16, two-site ELISA) or 4G8 (Ab 17–24,

single-site ELISA; Covance; Princeton, NJ) and incubated

overnight at 4uC [23,24]. Wells were blocked with SynblockH
(AbD Serotec; Oxford, UK) according to manufacturer’s direc-

tions. Standard curves were prepared using synthetic Ab peptide

(rPeptide; Bogart, GA). PBS samples were diluted 1:4 in Antigen

Capture (AC) buffer (20 mM Na3PO4, 0.4% Block Ace (AbD

Serotec), 0.05% NaN3, 2 mM EDTA, 0.4 M NaCl, 0.2% BSA,

0.05% CHAPS, pH 7). SDS samples were diluted between 1:20

and 1:100 in AC buffer, and formic acid samples were first

neutralized 1:20 in TP buffer (1.0 M Tris base, 0.5 M Na2HPO4)

then further diluted between 1:5 and 1:20 in AC buffer. Standards

and samples were run at least in duplicate and were incubated at

4uC overnight. Biotinylated detection antibodies were Ab13.1.1

(Ab40-end specific), 12F4 (Ab42-end specific; Covance) or 4G8

(Ab17–24), followed by the addition of NeutrAvidin-HRP (Pierce

Biotechnologies; Rockford, IL). Colorimetric detection used

3,39,5,59-tetramethylbenzidine reagent (TMB; Kirkegaard & Perry

Laboratories; Gaithersburg, MD). The reaction was stopped via

acidification (6% o-phosphoric acid) and read using a BioTek

Powerwave XS (Winooski, VT) plate reader at 450 nm.

Pittsburgh compound B (PiB) binding in post-mortem human

specimens has been used to detect fibrillar Ab, the most advanced

form of Ab aggregation [25]. The degree of PiB binding may

differentiate between detrimental and benign fibrillar Ab aggre-

gates [26]. Quantification of PiB binding in the PBS homogenate

was performed as described by Rosen et al. [26]. Homogenate

(5 ml) was added to 250 ml PBS in a 96-well polypropylene plate on

ice. Twenty microliters of this diluted homogenate was then

transferred to another plate in triplicate. In two wells, 200 ml of

1.2 nM 3H-PIB in PBS+5% (v/v) EtOH was added to measure

total binding. In the third well, 1.2 nM 3H-PIB in PBS+5% (v/v)

EtOH plus 1 mM BTA-1 was added to correct for non-specific

binding. The contents of the plate were transferred to a

Multiscreen-FB (GF/B) (Millipore; Billerica, MA) plate and

washed with PBS. The glass fiber filters were soaked overnight

in Budget-Solve (RPI; Mount Prospect, IL) scintillation fluid,

counted, and standardized to the BTA-containing wells.

Table 1. Summary of Subject Demographic Data.

Neuropathologic Variables

Sex Age (y) Brain Weight (g)
Post Mortem
Interval (h) MMSE Score

Neurofibrillary
Tangles

Neuritic
Plaques

Diffuse
Plaques

Control 1M/9F 90.065.6 11346118 2.960.6 28.061.6 1.563.8 0.461.0 1.362.1

AD 2M/10F 83.066.7 10406104 3.060.7 6.967.2* 49.3617.4* 17.765.5* 32.3611.1*

All AD cases were Braak stage VI; control cases were all stage II or less. Neuropathologic variables were averaged across several disease affected brain regions (inferior parietal
lobule, midfrontal gyrus, superior and middle termporal gyri, hippocampal area CA1, and the subiculum). Values are mean +/2 standard deviation;
* = p,0.01 relative to control cases, adjusted for multiple comparisons.
doi:10.1371/journal.pone.0024930.t001

RNA Oxidation Changes in Alzheimer’s Disease
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RNA isolation and Sample Preparation
RNA isolation was performed using TRIzolH (Invitrogen;

Carlsbad, CA) as described in Rio et. al. [27]. Briefly, tissue was

homogenized in TRIzolH (1 mL/100 mg; Invitrogen) as per

manufacturer’s instructions, followed by an additional phenol-

chloroform extraction and ethanol precipitation.

To prepare samples for gas chromatography (GC), we used a

procedure similar to that described in Wang et al. [28]. RNA (10–

20 mg) was analyzed by GC/mass spectrometry (GC/MS) with

selective ion monitoring (see below). Stable-labeled oxidized base

internal standards (10 nmol) including 8-[8-13C,7,9-15N2] hydro-

xyguanine, 8-[8-13C,6,9-diamino-15N2] hydroxyadenine, 5-

[2-13C,1,3-15N2] hydroxycytosine, [formyl-13C, diamino-15N2]

fapyadenine and [formyl-13C, diamino-15N2] fapyguanine (Cam-

bridge Isotope Laboratories; Andover, MA) were added to

lyophilized RNA samples and were hydrolyzed with 250 mL

90% formic acid at 145uC for 30 min in evacuated 5 mL conical

glass tubes. After hydrolysis, samples were lyophilized and

derivatized with a mixture of N,O-bis-trimethylsilyltrifluoroaceta-

mide/pyridine (1:1) at 25uC for 2 h in evacuated tubes. The

derivatized products were dried under a constant stream of

nitrogen using an OA-SYS heating system (Organomation

Associates; Berlin, MA). Derivatized RNA base adducts were

dissolved in 20 mL N,O-bis-trimethylsilyltrifluoroacetamide and

transferred to GC autosampler vials.

Gas chromatography/mass spectrometry with selective
ion monitoring analysis

Derivatized samples (2 mL) were analyzed using an Agilent

7800A gas chromatograph (Agilient Technologies; Santa Clara,

CA) on an HP 5 ms capillary column (0.25 mm internal

diameter, 0.25 mm film thickness, and 30 m length; Hewlett

Packard, Palo Alto, CA, USA) as previously described [28].

Chromatographic parameters were as follows: ultra high purity

helium was used as a carrier gas at an inlet pressure of 11.8 psi,

and used constant flow and split-less mode. The injection port

was maintained at 250uC. The initial temperature was held for

2 min at 100uC after sample injection with the following ramps:

ramp 1, 100–178uC at 3uC/min; ramp 2, 178–181uC at 0.3uC/

min; ramp 3, 181–208uC at 3uC/min and ramp 4, 208–280 at

10uC/min. The final temperature was maintained for 2 min, the

run time was 56.2 min for each sample, and the temperature of

the ion source inside the mass spectrometer was 180uC.

Derivatized nitrogenous base spectra were acquired in selective

ion monitoring mode at m/z ratios of 331 5-[2-13C,1,3-15N2]

hydroxycytosine and m/z 328 5-hydroxycytosine; m/z 357

[formyl-13C, diamino-15N2] fapyadenine and m/z 354 fapyade-

nine; m/z 355 8-[8-13C,6,9-diamino-15N2] hydroxyadenine and

m/z 352 8-hydroxyadenine; m/z 445 [formyl-13C, diamino-
15N2] fapyguanine and 442 fapyguanine: and m/z 443 8-

[8-13C,7,9-15N2] hydroxyguanine and m/z 440 8-hydroxygua-

nine. Instrument response plots of the integrated peaks of stable

isotope-labeled analyte signal added were determined over a

range of 0.5 nmol to 10.0 nmol per stable isotope-labeled

analyte. Plots of instrument response versus concentration

showed positive significant correlations for stable label isotopes:

5-[2-13C,1,3-15N2] hydroxycytosine (r = 0.94): [formyl-13C,

diamino-15N2] fapyadenine (r = 0.97): 8-[8-13C,6,9-diami-

no-15N2] hydroxyadenine (r = 0.91); [formyl-13C, diamino-15N2]

fapyguanine (r = 0.92); 8-[8-13C,7,9-15N2] hydroxyguanine

(r = 1.00). The integrated area of each analyte signal was

normalized with respect to the integrated area of the corre-

sponding internal standards for all samples and corrected based

on instrument response plots.

Data Analysis
We used a reductive approach to determine relative significance

(Figure 1). A Spearman correlation was used to determine the

relationships between the five RNA adducts and the other

measures of pathology across multiple brain regions. These

pathology measures included NFTs, DPs, NPs, PiB binding

(fibrillar Ab), Ab oligomers, and the various soluble pools of Ab. A

multivariate analysis (which included gender as a variable, and

both PMI and age as covariates) was performed to determine

which variables were significantly different in the AD-affected

individuals. These variables were analyzed by stepwise multiple

regression to determine if any variable or combination of variables

were associated with changes in the RNA adducts of interest.

Known differences in group demographics were verified by

Student’s t-test or Mann-Whitney U-test where appropriate,

adjusting for multiple testing using the Holm-Bonferroni method

[29]. All data were analyzed using PASWH 18 (IBM; Somers, NY).

Graphs and regression lines were calculated and produced in

SigmaPlotH (Systat; San Jose, CA).

Figure 1. Flowchart depicting the steps comprising the data analysis. A directed analysis of the data was used to reduce the large data set
to its significant components. A multivariate analysis determined which variables were significantly different in AD using PMI and age as covariates
and gender as a variable; only significant variables were included in further analysis. A Spearman correlation was used to determine the relationships
between the five RNA adducts of interest and the other measures of AD pathology. Finally, these significant variables were analyzed by stepwise
multiple regression to determine if they predicted the changes in the RNA adducts.
doi:10.1371/journal.pone.0024930.g001

RNA Oxidation Changes in Alzheimer’s Disease
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Results and Discussion

While oxidatively modified RNA is increased in AD [12,13],

when compared to both oxidatively modified DNA and protein,

RNA is understudied. However, RNA may be a better marker of

oxidative stress (e.g. more susceptible to damage) in the AD brain.

In spite of several studies documenting changes in RNA oxidation

in the AD brain, it is not clear which adducts are more important.

It can be difficult to compare reported results because of variations

in methods, tissue sample quality, and brain regions among

separate studies. In this study, we took a systematic approach to

answer these questions.

Using GC/MS, we quantified five forms of oxidatively modified

RNA in the AD brain (8-OHG, 8-OHA, 5-OHC, fapyadenine,

and fapyguanine). We analyzed the relationship between these

RNA adducts and the common neuropathological markers used to

diagnose AD (neuritic plaques, diffuse plaques, and neurofibrillary

tangles). A correlational analysis of the data did not indicate any

significant relationships between any of these markers and any of

the five RNA adducts (p.0.1 in all cases). This was true across all

cases, even when the analysis was restricted to AD cases alone.

Therefore, although all three markers of neuropathology are

significantly higher in the AD cases, they are independent of RNA

oxidation.

We performed a multivariate analysis to determine if any of the

RNA adducts differed between AD cases and controls. We did not

detect any difference in RNA adducts between disease states in the

cerebellum. This was not unexpected, as the cerebellum does not

typically exhibit substantial pathology in AD. An analysis

restricted to the disease- affected regions (Brodman’s Area 9,

hippocampus, inferior parietal lobule, and the superior and middle

temporal gyri) showed that two of the five RNA adducts changed

in AD cases when compared to controls (Figure 2). 8-OHA

lesions increased [F(1,16) = 5.12, p,0.04], whereas 8-OHG

decreased [F(1,16) = 4.66, p,0.05].

Abundant oxidation of guanine is attributed to its high

oxidation potential. However, the oxidation potential of guanine

has been shown to be modulated based on location (59 vs. 39),

stacking base interactions, existing mismatched base pairing, and

flanking nucleic acid sequence in double-stranded DNA

[30,31,32]. To date, modulation of oxidation potentials have not

been evaluated in an RNA model similar to polyadenylated

mRNA. The possibility of modulated oxidation potentials and the

abundance of adenine may contribute to the dichotomy observed

in these RNA adducts. Alternatively, this may represent a

temporal process, whereby 8-OHG accumulates earlier during

the disease and then declines, while 8-OHA increases later in the

disease. Evidence from Nunomura et. al. [31] suggests Ab
accumulation directly reduces oxidative adducts, resulting in

decreased 8-OHG levels with increased pathology. Since the

current study only includes late stage AD cases, answering this

question would require an examination of multiple RNA adducts

across several brain regions in very early or preclinical AD cases.

As expected, a multivariate analysis showed increased total Ab
in AD, in all regions except the cerebellum [F(1,16) = 5.08,

Figure 2. 8-OHG and 8-OHA change in opposite directions in
the late-stage AD brain. The 8-OHG adduct decreased (p = 0.046) in
the disease state, whereas the 8-OHA adduct increased in AD brain
(p = 0.038). Data are expressed as the number of oxidatively modified
bases per 1000 bases of total RNA. The analysis included gender, age
and PMI. Values were averaged over several disease-affected brain
regions (c.f. Table 1); no significant changes were seen in cerebellum.
NCI: No Cognitive Impairment; AD: Alzheimer’s disease. Rotated
Hourglass: mean.
doi:10.1371/journal.pone.0024930.g002

Figure 3. Oxidation adducts are modeled by single but
separate pools of Ab. Using multiple stepwise regression, the
decrease in 8-OHG was correlated to SDS-soluble Ab42 (top; adj-
R2 = 0.257; p,0.01) while the increase in 8-OHA lesions was correlated
to formic acid-soluble Ab42 (bottom; adj-R2 = 0.141; p,0.05). Data are
expressed as the number of oxidatively modified bases per 1000 bases
of total RNA. Open Symbol: NCI; Closed Symbol: AD.
doi:10.1371/journal.pone.0024930.g003

RNA Oxidation Changes in Alzheimer’s Disease
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p,0.04]. The amount of post-mortem PiB binding was also

significantly increased [F(1,16) = 17.84, p,0.001]. Surprisingly,

we did not find higher total amounts of oligomeric Ab in the AD

cases compared to the control cases [F(1,16) = 2.45, p,0.14]. This

was unexpected, since there is typically an abundance of

oligomeric Ab in the AD brain, which can be visualized by a

variety of methods [25,33]. Since our assay primarily measures

larger oligomers (.40 kDa) [22], this may indicate that the

increase in oligomeric Ab in AD is mostly smaller forms that we do

not detect. Ab oligomers cause cell death and changes in

morphology and function [34,35], and recent reports show that

Ab dimers may play a major role in AD pathophysiology [36].

Further study is required to assess the relative contribution of

smaller oligomeric species to RNA oxidation in the AD brain.

Ab has been suggested as a prime etiological agent of AD, and

thus may relate to or even drive nucleotide oxidation [2]. We

performed a stepwise multiple regression analysis to determine if

any pools of Ab were linked to changes in the two RNA adducts

(8-OHA and 8-OHG). For the analysis, we deconvoluted the total

Ab measure to its individual component measures (PBS-, SDS- or

FA-soluble Ab40 and Ab42) to identify the major contributor to

disease-associated variance. We have shown previously that the

solubility of the Ab peptide is an important variable in AD [20,37].

The PBS-soluble fraction primarily contains monomeric and low-

weight Ab oligomers, the SDS-soluble fraction contains higher

order Ab multimers and is associated with the amount of DPs, and

the FA-soluble fraction contains highly insoluble accumulated Ab
associated with NPs [20].

Neither fibrillar Ab, as measured by PiB binding, nor any pools

(PBS-, SDS- or FA-soluble) of Ab40 were significantly related to the

changes in 8-OHA or 8-OHG in AD. This was not unexpected, as

the Ab40 species is generally accepted as the less toxic form, and is

less implicated in the disease process. However, the disease-related

changes in the two RNA adducts were associated with SDS-soluble

and FA-soluble levels of Ab42: SDS-soluble Ab42 was inversely

related to 8-OHG [F(1,20) = 8.28,p,0.01] and FA-soluble Ab42

was directly related to 8-OHA [F(1,20) = 4.44,p,0.05] (Figure 3).

As might be expected from the Spearman correlational analysis, no

form of Ab predicted the amount of the other three RNA adducts

(fapyadenine, fapyguanine, or 5-OHC) in the brain; AD neuro-

pathologic markers (DPs, NPs, NFTs) also did not predict the

amount of these adducts.

The reason behind the opposite directionality of these adducts is

unclear. However, the fact that they relate to different soluble

levels of Ab42 may indicate that the adducts form at different

stages of AD progression, as the amount of FA-soluble Ab
increases more in late stage disease [20]. Of the disease-affected

brain regions studied, the RNA adducts in the hippocampus had

the strongest correlation to disease effect. The hippocampus is an

early structure which is affected in the disease process, and exhibits

severe atrophy in later stages of the disease [38]. It is possible that

8-OHG increases here initially in the disease, but then declines. If

this is true, then an evaluation of an expanded cohort of subjects in

earlier disease states such as preclinical AD and mild cognitive

impairment would be needed to confirm this.

Of the five RNA adducts analyzed, only 8-OHG and 8-OHA

were significantly altered in late stage AD, and each related to a

single extractable pool of Ab42: 8-OHG was related to SDS-

soluble Ab42, and 8-OHA was related to FA-soluble Ab42. These

adducts were not related to other pools of Ab nor to any standard

neuropathological markers of AD. Interestingly, while 8-OHA

increased in late-stage AD, 8-OHG decreased. It is possible that

the different behavior of the two RNA adducts is explained by a

temporal mechanism. Our examination of only non-cognitively

impaired subjects and late-stage AD cases omits a time span where

an increase in 8-OHG may occur and then decline. Indeed, 8-

OHG is increased in several disease affected regions in earlier

stage AD [39], including the hippocampus [40]. The decrease of

8-OHG may be explained by the extensive cell death which occurs

in late-stage AD, although this can be difficult to deal with

analytically [41,42]. The decrease may also be a result of the direct

influence of Ab as a compensatory mechanism [31]. This work

raises several interesting avenues for mechanistic studies. The

specific relationship between toxic Ab aggregates and problematic

RNA derivatives remains to be explored.
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