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Abstract

Purpose

To build a deep learning model to diagnose glaucoma using fundus photography.

Design

Cross sectional case study Subjects, Participants and Controls: A total of 1,542 photos (786

normal controls, 467 advanced glaucoma and 289 early glaucoma patients) were obtained

by fundus photography.

Method

The whole dataset of 1,542 images were split into 754 training, 324 validation and 464 test

datasets. These datasets were used to construct simple logistic classification and convolu-

tional neural network using Tensorflow. The same datasets were used to fine tune pre-

trained GoogleNet Inception v3 model.

Results

The simple logistic classification model showed a training accuracy of 82.9%, validation accu-

racy of 79.9% and test accuracy of 77.2%. Convolutional neural network achieved accuracy

and area under the receiver operating characteristic curve (AUROC) of 92.2% and 0.98 on the

training data, 88.6% and 0.95 on the validation data, and 87.9% and 0.94 on the test data.

Transfer-learned GoogleNet Inception v3 model achieved accuracy and AUROC of 99.7% and

0.99 on training data, 87.7% and 0.95 on validation data, and 84.5% and 0.93 on test data.

Conclusion

Both advanced and early glaucoma could be correctly detected via machine learning, using

only fundus photographs. Our new model that is trained using convolutional neural network

is more efficient for the diagnosis of early glaucoma than previously published models.
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Introduction

Machine learning is a system of artificial computer intelligence that provides computers with

the ability to automatically learn without being programmed. In the healthcare sector, machine

learning has been used to investigate skin cancer classification, to evaluate complex genetic

interactions in autism, and to perform monitoring within the intensive care unit [1–3]. A

recent study of diabetic retinopathy using deep machine learning revealed that machine learn-

ing exhibited high sensitivity and specificity for the detection of diabetic retinopathy [4].

Glaucoma is a progressive optic nerve disorder consisting of various optic disc changes,

such as the notching of neuroretinal rims and enlarged optic disc cupping. Notably, glaucoma

is one of the leading causes of blindness [5]. Thus, an effective, early investigation of optic disc

changes is important in the diagnosis of glaucoma. Several reports have proven the efficacy of

machine learning in the early detection of glaucoma [6–9]. However, the previous reports have

utilized optical coherence tomography (OCT), red-free retinal-nerve-fiber-layer (RNFL) pho-

tography, or visual field tests. In the clinic, fundus photography is the most familiar and easiest

test. Therefore, we investigated the efficacy of machine learning and deep learning for detec-

tion of both advanced and early glaucoma, using only fundus photography. Firstly, we have

used logistic classification, a traditional machine learning technique, to check the performance

on discriminating glaucoma patients from normal control. Secondly, we have used GoogleNet

Inception v3[10], a pre-trained model, for transfer learning of our data to check the efficacy of

deep learning. Finally, we have constructed our own convolutional neural network and com-

pared the performance.

Methods

Data preparation

Fundus photographs of normal and glaucoma patients were collected from Kim’s Eye Hospi-

tal. Fundus photography was performed using a non-mydriatic auto fundus camera (AFC-330,

Nidek, Japan). A total of 1,542 photos were obtained, including 786 photos from normal

patients and 756 photos from 467 advanced and 289 early glaucoma patients. These photos

had different sizes, and thus were scaled to have fixed width size of 800 pixels. In order to pro-

duce a fixed size input necessary for machine learning models, the photos were cropped at the

region of optic nerve with size of 240X240pixels. The normal patients exhibited normal find-

ings on red-free RNFL photography (Vx-10; Kowa Optimed, Inc., Tokyo, Japan), OCT (Cirrus

HD-OCT, Carl Zeiss Meditec Inc., Dublin, CA), and visual field test (Humphrey 740 visual

field analyzer, Carl Zeiss Meditec Inc., Dublin, CA). The inclusion criteria of the glaucoma

patients were as follows: typical glaucomatous visual field defects, and/or bundle defects of

RNFLs on HD-OCT, and/or bundle defects of RNFLs on red-free RNFL photography. Among

756 glaucoma patients, 467 cases were in advanced stage (near total cupping of the optic nerve,

with or without severe visual field loss within 10˚ of fixation), and 289 cases were early glau-

coma (glaucomatous RNFL defects in red-free RNFL photography, without visual field defects.

The classification of early glaucoma and advanced glaucoma was determined by agreement of

two specialists.

For the classification of glaucoma images from normal images even with the presence of

early glaucoma images, the entire set of 1,542 images were split into 754 training, 324 valida-

tion, and 464 test datasets (images) (Table 1). The test dataset comprises about 30% of the

whole dataset. The remaining dataset was split to about 70% training and 30% validation data-

sets. The study was approved by the Institutional Review Board of Kim’s Eye Hospital and was

conducted in accordance with the tenets of the Declaration of Helsinki.
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Logistic classification

Since fundus photographs are color images, they consist of three-dimensional arrays

(240×240×3). To perform logistic regression, images were flattened into a one-dimensional

array of 1×(240×240×3). A single layer of weights was used to produce logits; the softmax func-

tion was applied to obtain the probability of being classified as a normal or advanced glaucoma

image. These probabilities were compared to one-hot encoded labels and loss was calculated

using cross entropy. A gradient descent optimizer, with a learning rate of 0.5, was used for

optimization. Fig 1 shows the detailed architecture. The model was constructed using Google’s

Tensorflow deep learning framework[11].

Convolutional Neural Network (CNN)

Data augmentation. Since the images comprised a small dataset, we applied augmenta-

tion to each image to overcome overfitting. Each image was cropped at all four corners, as well

as in the middle, to generate five images with fixed size of 224X224. This cropping process was

repeated after flipping the image, thereby generating 10 images per photograph. Data augmen-

tation can help overcome overfitting by showing the computer an image from various views to

aid in making a decision[12].

Training model. We used a GoogleNet Inception v3 pre-trained model for transfer learn-

ing, which included training our data with a predefined (trained) existing model. We modified

the last classification layer of the Inception v3 model to fit our classification needs, and then

fine-tuned using our data. For backpropagation, the Adam optimizer, an adaptive learning

rate method, was used as an optimization function, while cross entropy was used as a loss func-

tion. Fig 2 shows the original architecture of the Inception v3 model.

We also constructed our own Convolutional Neural Network, using Google’s Tensorflow

as backend. Two convolutional layers, with patch sizes of 2020 and 4040, were used with a

Table 1. Sample numbers for the machine learning.

Advanced Glaucoma Early Glaucoma Normal Total

Entire Data 467 289 786 1,542

Training Data 228 141 385 754

Validation Data 98 61 165 324

Test Data 141 87 236 464

https://doi.org/10.1371/journal.pone.0207982.t001

Fig 1. Logistic classification model architecture: A schematic view of the logistic classification model used in this

study. Flattened fundus photography refers to transformation of three-dimensional array photography to a one-

dimensional array in order to perform logistic regression and produce logits.

https://doi.org/10.1371/journal.pone.0207982.g001

Machine learning for glaucoma

PLOS ONE | https://doi.org/10.1371/journal.pone.0207982 November 27, 2018 3 / 8

https://doi.org/10.1371/journal.pone.0207982.t001
https://doi.org/10.1371/journal.pone.0207982.g001
https://doi.org/10.1371/journal.pone.0207982


stride of 1 and depths of 16 and 32. Max pooling was applied, with a patch size of 22 and a

stride of 2. Two hidden layers, with 32 and 64 hidden units, were used as fully connected lay-

ers. A dropout rate of 0.5 was used in convolutional and fully connected layers to overcome

overfitting; ReLu (Rectifier Linear unit) was used as an activation function. For backpropaga-

tion, cross entropy was used as a loss function and the Adagrad optimizer was used as an opti-

mization function. All weights were initialized using the Xavier initializer[13]. Fig 3 shows the

architecture of our model.

Evaluation. Our models accept an image as input and output the probability that the

image represents a photograph of a glaucoma or normal patient. Since we have used aug-

mented data (10 images per photography), we generate 10 probabilities from a single image.

By averaging this probability, we can obtain the single probability that the image represents a

glaucoma or normal patient, based on each image (Fig 4). Using this strategy, we have evalu-

ated our own model and GoogleNet Inception v3 model based on ROC (receiver operating

characteristic) curve by calculating sensitivity and specificity of the models. Moreover, we

measured the area under the ROC curve (AUC) as our performance indicator.

Results

Traditional machine learning (Logistic classification) approach

Our simple logistic classification model exhibited a training accuracy of 82.9%, a validation accu-

racy of 79.9% and a test accuracy of 77.2%. To check whether logistic classification model can dis-

criminate advanced glaucoma from normal control without early glaucoma images, advanced

glaucoma images were selected from entire dataset to be used to train the logistic classification

model. Among 756 glaucoma images, 467 images were advanced glaucoma. 495 normal images

were also selected from 786 normal images to avoid imbalanced data problem. About 30% of the

467 advanced glaucoma images and 495 normal control images were randomly split into the test

Fig 2. Google Inception v3 architecture: A schematic view of the Inception v3 model. Each layer consists of an

inception module along with merging, and a fully connected layer at the end.

https://doi.org/10.1371/journal.pone.0207982.g002

Fig 3. Convolutional neural network architecture: A schematic view of our convolutional neural network used in

this study. It consists of three convolutional layers with max pooling applied at each layer, along with two fully

connected layers.

https://doi.org/10.1371/journal.pone.0207982.g003
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dataset. This resulted in training accuracy of 99.7% and test accuracy of 98.6%. We also checked

whether logistic classification model can discriminate early glaucoma from normal control with-

out advanced glaucoma images. Among 756 glaucoma images, 289 images were early glaucoma.

289 normal images were selected from 786 normal images to avoid imbalanced data problem.

About 30% of the 289 early glaucoma images and 289 normal control images were randomly split

into the test dataset. This resulted in training accuracy of 83.7% and test accuracy of 73.0%

(Table 2). This suggests the needs of complex algorithm such as deep learning technique to dis-

criminate both advanced glaucoma and early glaucoma from normal control.

Deep learning (convolutional neural network) approach

Table 3 shows summarized results from our own model and from the Inception v3 model.

Accuracy refers to the raw accuracy of augmented data, whereas average accuracy refers to

ensemble predicted accuracy (Fig 4). Inception v3 transfer learning model achieved accuracy

and AUC of 99.7% and 0.99, respectively, on the training data, 87.7% and 0.95 on the validation

data, and 84.5% and 0.93 on the test data. To improve test accuracy, we have developed our

own convolutional neural network model. In order to build a new model, we have tuned manu-

ally various combinations of the hyper-parameters such as convolution patch size, strides, filter

size, number of convolution layers, number of fully connected layers, number of hidden nodes,

which optimizer to use, learning rate and so on. Our final model achieved accuracy and AUC of

92.2% and 0.98 on the training data, 88.6% and 0.95 on the validation data, and 87.9% and 0.94

on the test data. Both our own model and Inception v3 transferred model showed slightly

higher ensemble accuracy than raw accuracy. The ROC curve for each model is depicted in Fig

5. The training stage was considered finished when the average loss for each epoch started to

increase for the validation data. Our Convolutional Neural Network needed 29 epochs for opti-

mization whereas Inception v3 transferred model needed 14 epochs for optimization.

Discussion

This study demonstrates that deep learning techniques can be combined with fundus photog-

raphy as an effective approach to distinguish between normal controls and glaucoma patients,

Fig 4. Overview of evaluation strategy: A schematic view of our convolutional neural network evaluation strategy.

The probability for each augmented image is outputted by our model and averaged for the final evaluation.

https://doi.org/10.1371/journal.pone.0207982.g004

Table 2. Evaluation of the simple logistic classification model.

Advanced

and Early Glaucoma

Advanced

Glaucoma only

Early Glaucoma only

Training Data 82.9% 99.7% 83.7%

Test Data 77.2% 98.6% 73%

https://doi.org/10.1371/journal.pone.0207982.t002

Machine learning for glaucoma

PLOS ONE | https://doi.org/10.1371/journal.pone.0207982 November 27, 2018 5 / 8

https://doi.org/10.1371/journal.pone.0207982.g004
https://doi.org/10.1371/journal.pone.0207982.t002
https://doi.org/10.1371/journal.pone.0207982


even at early stages. A simple traditional machine learning approach, such as logistic classifica-

tion, was sufficient for classifying advanced glaucoma patients. However, discrimination of

both advanced glaucoma and early glaucoma from normal control required a complex deep

learning approach, such as CNN. Using a complex deep learning model yields a vast array of

parameters that may cause overfitting of the training data. Thus, we incorporated regulariza-

tion techniques, such as dropout and data augmentation. Dropout randomly corrupts hidden

nodes, which are passed to the succeeding layers. Since this process is random, the detailed

architecture of the model changes at each iteration of training, leading to a generalized model

with a sufficient number of training iterations. Data augmentation allows the machine to learn

an image from a different view; using this approach, we generated 10 images per fundus photo-

graph and averaged the results for the final evaluation. This ensemble prediction process

yielded an improved model (Table 3).

Transfer learning, using the Google Inception v3 model, required less epochs for training

than our CNN model. Since transfer learning requires the use of an existing trained model, all

the parameters that are provided within Inception v3 were used as initial parameters[14].

Notably, these parameters have already been optimized for detecting natural images, such as

edges and curves, and may require fewer epochs for optimization than a model that began

from random parameters. Further, considering that the Inception v3 models are trained using

extremely large numbers of images (approximately 1.28 million images), the initial convolu-

tional patches are more generalized at detecting features; thus, these will provide a more gener-

alized model when trained with small amounts of data. In the case of large volume data, it may

take a long time to build and optimize a new model. Therefore, many studies on developing

image classification model, have used transfer learning based on the state of the art Convolu-

tional Neural Network models [1,15,16]. These models include GoogleNet Inception v3, Very

Deep Convolution Network from Visual Geometry group(VGG)[17] and ResNet[18]. Recent

study using large scale fundus photography used ensemble of AlexNet[19], VGG and Incep-

tion v3 transferred learned model to classify age related eye disease[20].

Table 3. Comparison of our own model (convolutional neural network) and the Inception v3 model.

Our new model Inception v3

Raw accuracy Average accuracy AUROC Raw accuracy Average accuracy AUROC

Training data 91.7% 92.2% 0.98 99.7% 99.7% 0.99

Validation data 88.6% 88.6% 0.95 87.0% 87.7% 0.95

Test Data 86.9% 87.9% 0.94 83.9% 84.5% 0.93

Number of Epochs 29 14

https://doi.org/10.1371/journal.pone.0207982.t003

Fig 5. Comparative of classification performance between our Convolutional Neural Network (CNN) model and

the Inception v3 model. Receiver Operating Characteristic curve for our CNN model and the transfer-learned

Inception v3 model. Blue dotted line represents the training data, red dotted line represents the validation data, and

yellow line represents the test data.

https://doi.org/10.1371/journal.pone.0207982.g005
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While transfer learning is an attractive option in building image classification model regard-

less of how big the data is, an alternative strategy for a small scale data would be to develop

one’s own convolutional neural network model with a simpler architecture. In fact, our convo-

lutional neural network model with far less parameters worked slightly better than the Google

Inception v3 transfer learning model in terms of test accuracy (Table 3). This may be due to

complexity of the Inception v3 algorithm. Since our purpose is to discriminate glaucoma and

normal control, a model architecture like Inception v3, which is designed to classify 1000 cate-

gories, can be too heavy. On the other hand, our model, which was specifically tuned in terms

of architecture for binary classification of glaucoma and normal control, showed improved test

accuracy on a small scale. However, many trials and errors, along with a substantial amount of

hyper-parameter tuning time, were required to build a new, optimized model.

Due to the complexity of neural network and many feature maps created during training time,

further analysis is required to explain why a machine-trained model classified the image as a glau-

coma or normal patient. Such analysis can be performed by viewing the image after each convolu-

tional layer, along with plotting the image using a technique such as t-distributed Stochastic

Neighboring Embedding (t-SNE)[21]. However, this method does not provide a score of variable

importance, as in the random forest technique; thus, it may require an expert assistance.

Kim et al[22]. reported that the classification accuracy, sensitivity, specificity, and AUC for

glaucoma, using machine learning, were 0.98, 0.983, 0.975, and 0.979, respectively. However,

their study used multimodal imaging, including fundus photography, red-free fundus photog-

raphy, visual field testing, and spectral domain OCT. While their study showed higher accu-

racy, sensitivity, and AUC than the present study, the latter used only fundus photography,

achieving similar accuracy in cases of advanced glaucoma and only a slight difference in cases

of early glaucoma.

In conclusion, deep learning using only fundus photography could be an ancillary test for

the diagnosis of glaucoma. In addition, if the algorithm becomes more sophisticated, it may

serve as a robust aid for detection of the early stages of glaucoma.
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