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CTH-Net: A CNN and Transformer hybrid
network for skin lesion segmentation

Yuhan Ding,1 Zhenglin Yi,2 Jiatong Xiao,2 Minghui Hu,2 Yu Guo,3,4 Zhifang Liao,1,* and Yongjie Wang3,4,5,*
SUMMARY

Automatically and accurately segmenting skin lesions can be challenging, due to factors such as low
contrast and fuzzy boundaries. This paper proposes a hybrid encoder-decoder model (CTH-Net) based
on convolutional neural network (CNN) and Transformer, capitalizing on the advantages of these ap-
proaches.Wepropose threemodules for skin lesion segmentation and seamlessly connect themwith care-
fully designed model architecture. Better segmentation performance is achieved by introducing SoftPool
in the CNN branch and sandglass block in the bottleneck layer. Extensive experiments were conducted on
four publicly accessible skin lesion datasets, ISIC 2016, ISIC 2017, ISIC 2018, and PH2 to confirm the effi-
cacy and benefits of the proposed strategy. Experimental results show that the proposed CTH-Net pro-
vides better skin lesion segmentation performance in both quantitative and qualitative testing when
compared with state-of-the-art approaches. We believe the CTH-Net design is inspiring and can be
extended to other applications/frameworks.

INTRODUCTION

One of themost common risks to human health around theworld is skin disease,1 for example,melanoma is extremely deadly, with a less than

15% five-year survival rate.2 Studies have shown that when melanoma is diagnosed early, the survival rate is as high as 90%.3 Dermoscopy, a

non-invasive imaging tool, is frequently used to examine skin lesions and their surrounding regions for screening and diagnosing skin ill-

nesses. Traditionally, manual inspection of malignant melanoma based on images generated by dermoscopy has been performed by

specialist dermatologists, but it is considered a time-consuming and skill-intensive endeavor.

Computer-aided diagnosis (CAD) tools have been extensively used to help dermatologists with these issues by increasing diagnostic ac-

curacy and generating reliable outcomes.4 BuildingCAD systems depends heavily on the automatic skin lesion segmentation process.5 This is

because the segmented lesions can provide quantitative information such as location, shape, size, etc., which is verymeaningful for increasing

the effectiveness and precision of skin lesion diagnostics. However, automatic and accurate segmentation of skin lesions is still a complex and

challenging task for the following reasons. In dermoscopic images, for instance, patient-specific characteristics including skin color, texture,

lesion size, lesion location form, and the presence of various artifacts such as body hair, reflections, air bubbles, shadows, uneven illumination,

and markings may change randomly.6 Figure 1 displays typical difficult instances.

Early automatic lesion segmentation techniques were usually based on edge detection and thresholding methods7 and active contour

models.8 It relies on carefully selected handcrafted features and efficient image pre-processing or post-processing algorithms, which lack

robustness, resulting in inadequate performance in challenging scenes. Deep learning algorithms, on the other hand, can automatically

and adaptively learn high-dimensional features,9 evading the drawbacks of conventional techniques and increasingly taking over the field

of skin lesion segmentation.

Convolutional neural network (CNN)-based structures have been proposed in recent years to enhance the accuracy of segmentation. Fully

convolutional neural network (FCN)10 is one of the early attempts at image segmentation. To prevent the loss of shallow information and

obtain outstanding segmentation efficiency, Ronneberger et al.11 presented a U-Net with ‘‘skip connections’’ according to FCN. The net-

work’s performance was then improved by some work that expanded U-Net or introduced new information, including ResU-Net,12 U-

Net++,13 Attention U-Net,14 V-Net,15 etc. To better address the challenge of the skin lesion segmentation problem, Shahin et al.16 embedded

the pyramid pooling module into the deep skip connection to merge the global context information. Similar to this, Hu et al.17 created a

unique attention synergy network by merging spatial and channel attention processes to improve the discriminative performance of

skin lesion segmentation. Despite being successful in a variety of computer vision tasks, CNN models cannot provide global context or
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Figure 1. Commonly difficult situations in the public dermoscopic dataset ISIC 2018, including (A) lesions with artifact interference, (B) poor

background contrast for the lesions, (C) small lesions, (D) irregularly shaped lesions Lesions, (E) Lesions with indistinct borders

The green outline is the ground truth.
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long-distance relationships in images due to their constrained receptive fields and intrinsic inductive biases.18 As a result, its ability to

segment skin lesion images is restricted.

To address the limitations of CNN-based models in terms of global representation, Dosovitskiy et al.19 proposed Vision Transformer (ViT)

to capture global dependencies. Themethod first decomposes the image into token sequences and then injects positional embeddings into

the token sequences when they are fed to the Transformer block. Compared to previous convolution-based algorithms, it achieves superior

performance. The transformer excels at modeling global context, but it has trouble catching fine-grained details, particularly in medical im-

ages.20 Because of the absence of spatial inductive bias when representing local information, pure Transformer-based segmentation net-

works like SETR21 perform poorly. To solve the problem of weak local representation of the Transformer model, a method of constructing

a hybrid CNN-Transformer network is proposed, and it encodes both global and local characteristics using the locality of CNN and the

long-range dependency of the Transformer.22 TransUNet, proposed by Chen et al.,23 is the first model to combine Transformer and

U-Net for the use of segmenting medical images. A large number of parameters and poor computational performance of TransUNet, how-

ever, are a drawback. Some subsequentmethods, such as CoTr,24 SegTran,25 and TransBTS,26 also useCNN-based networks as the backbone

to supplement long-range dependencies with certain parts (such as encoders, bottlenecks, decoders, or skip connections) and achieve good

results. However, due to the particularity of dermoscopic images, lesions often have different sizes, and the boundaries of some lesions are

very blurred and difficult to define due to the lesions and surroundings having little contrast with one another.27 In addition, artifacts such as

ink blots, air bubbles, rulers, and hairs, which are abundantly present, may introduce additional noise. For the ability of skin lesion localization

and fine boundary delineation, the study mentioned previously is by no means sufficient. It continues to be problematic to precisely segment

skin lesions in dermoscopic images in this challenging setting.

Tosolve theproblems listedpreviously,weproposeanencoder-decodermodel (CTH-Net)basedonCNNandTransformer,whicheffectively

utilizes the global long-range relation of Transformer and the local feature representation ofCNN to achieve accurate skin lesion segmentation.

By combining threewell-designedcoremoduleswith anencoder-decoder structure,CTH-Net canbetter handle skin lesion segmentation tasks.

Specifically, inCTH-Net,wefirstdesignaCNN-basedencoderbranchutilizingRes2Net50 for extractingfine-grainedcontextual features. Thena

Transformer encoder branch with channel and spatial dual attention is designed using a dual transformer block to capture long-range depen-

dency information. To better extract local spatial features, we introduce the SoftPoolmethod in the CNNencoder, which can retainmore useful

information during the downsampling process, thereby improving the segmentation performance of fuzzy boundaries. For better cross-fusion

enhancement ofmulti-domain features from two encoder branches, we design amulti-domain feature fusionmodule (MFFM). Next, we embed

theboundary refinementmodule (BRM) and feature adaptive guidedmodule (FAGM) in the skip connection. The former can achieve better per-

formance in fine-grained boundary delineation by utilizing boundary information and neighborhood context information. The latter improves

the learned lesion boundaries and better adaptively matches the feature distribution between the encoder and the decoder through a simple

parallel convolution structure without increasing the number of parameters too much. Finally, the multi-scale encoder features after boundary

refinement and feature adaptation are input into a progressive upsampling decoding layer to gradually obtain the final segmentation mask.

Additionally, we offer a sandglass block that creates a quick connection among linear high-dimensional representations in the bottleneck layer

to lower the number of parameters and better optimize network training. The following is a summary of this paper’s main contributions.
2 iScience 27, 109442, April 19, 2024
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(1) We propose an automatic skin lesion segmentation network called CTH-Net. In the encoder of CTH-Net, we use parallel

dual-encoder branches instead of the traditional single-branch encoder structure. A Transformer branch and a CNN branch

make up the dual encoder. The CNN encoder based on Res2Net and SoftPool28 is mainly used to extract rich local spatial

features. To segment skin lesions, the Transformer branch with a dual attention mechanism is utilized to gather global context

information.

(2) We propose amulti-domain feature fusionmodule (MFFM). It combines self-attention andmulti-domain fusion mechanism, which can

realize feature complementation and fusion between CNN and Transformer. The segmentation accuracy is further improved by

enhancing important information in both feature maps and suppressing insignificant features.

(3) We propose a boundary refinement module (BRM) and feature adaptive guided module (FAGM), which is embedded in skip connec-

tions. The former can achieve better performance in fine-grained boundary delineation by utilizing boundary information and neigh-

borhood context information. The latter can learn and improvemismatched lesion boundaries while reducing the difference in features

between the encoder and decoder.

(4) On four publicly accessible skin lesion datasets, extensive experimental findings show the efficacy and superiority of our proposed

CTH-Net compared to competing approaches.
Related work

CNN-based segmentation networks

Long et al.10 proposed a fully convolutional network for image semantic segmentation, which is the pioneering work of deep learning

in the field of semantic segmentation. The FCN framework was further improved by Ronneberger et al.11’s unique convolutional

segmentation network, known as U-Net, which included skip connections in every level of the encoder-decoder module. It achieves

excellent performance in the segmentation of medical images. Although the U-shaped structure based on the encoder-decoder is

simple, it exhibits powerful performance and is widely used in different image segmentation fields. In U-Net++,29 the idea of deep

supervision is introduced by adding dense connections to the U-Net network. At the same time, more skip connection paths and up-

sampling convolutional blocks are added to bridge the semantic gap between the encoder and decoder. Oktay et al.14 proposed an

Attention U-Net by generating gating signals to emphasize the attention to different spatial location features. It adds an attention sub-

module to each decoder layer to help the model learn more accurately how to distinguish foreground from background. With the use of

atrous convolution, DeeplabV3+30 provides an encoder-decoder structure to broaden the receptive field and increases the precision of

semantic segmentation. MultiResUNet31 mainly addresses two common problems in medical image segmentation: scale diversity and

the semantic gap in the fusion between different levels of features. The MultiRes module and Res Path were proposed to solve it and

achieved excellent performance in multimodal image segmentation. Feng et al.32 proposed a new contextual pyramid fusion network

(CPFNet) based on a U-shaped structure to fuse multi-scale context information by combining two pyramid modules. Karaali et al.33

propose a new deep-learning pipeline that combines the efficiency of residual dense network blocks and residual squeeze and

excitation blocks to achieve superior performance on retinal vessel segmentation. The consistent perception generative adversarial

network (CPGAN34) is a semi-supervised consistent perception generative adversarial network that achieves accurate segmentation

of stroke lesion areas by effectively capturing multi-scale feature information and introducing a consistent perception strategy. The sym-

metric driven generative adversarial network (SD-GAN)35 models various symmetric changes in the normal brain in an unsupervised

manner, completing the segmentation of brain tumors in magnetic resonance (MR) images and reducing reliance on manually labeled

data.36

Transformer-based segmentation networks

Despite the positive outcomes that CNN models have produced, these techniques frequently perform poorly because their small receptive

fields make it difficult to model long-range dependencies. Transformer-based models and CNN and Transformer hybrid models have

recently gained more traction in the field of medical segmentation of images than CNN-only techniques. Chen et al.23 proposed the first

model that integrates the self-attention mechanism into medical image segmentation tasks: TransUNet, which brings together the benefits

of Transformer and U-Net. For accurate localization, the decoder mixes the Transformer-encoded features with high-resolution CNN feature

maps after upsampling them. The first entirely Transformer-based U-architecture is called Swin U-Net.37 With the use of a patch extension

layer and skip connections, a decoder upsamples the recovered contextual features and fuses them with multi-scale data from an encoder

to restore the feature map’s spatial resolution for future segmentation prediction. TransFuse38 effectively captures global relationships and

low-level spatial features in a shallower manner by combining Transformer and CNN in tandem. The multi-level characteristics of the two

branches are effectively fused using a unique feature fusion technique. Azad et al.39 reformulated the self-attention mechanism to extract

spatial and channel relationships to cover all feature dimensions and redesigned skip connection paths to ensure feature reusability and

enhance localization capabilities. A recent method called HiFormer22 connects CNN and Transformer for medical image segmentation in

an effective way. A Swin Transformer module and a CNN-based encoder are used to create twomulti-scale feature representations that care-

fully combine local and global data. By introducing dynamically deformable convolutions in the CNNbranch and combining it with the Trans-

former branch with a shift window adaptive complementary attention module, CiT-Net40 combines the advantages of CNN and Transformer

and performs well in medical image segmentation.
iScience 27, 109442, April 19, 2024 3
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Skin lesion segmentation networks

Methods for segmenting skin lesions traditionally focus primarily on extracting and recognizing low-level image characteristics. CNN-based

algorithms do not need detailed image definitions, in contrast to conventional feature-based techniques. Tang et al.41 proposed a separable

U-Net based on random weight averaging for skin lesion segmentation. It can significantly increase the pixel-level discriminative represen-

tation capability of fully convolutional networks by capturing contextual feature channel correlation and higher semantic feature information.

Dai et al.42 created a brand-new network for residual encoding and decoding on many scales to segment skin lesions, which can efficiently

segment various lesions accurately and reliably. Using a coarse-to-fine approach, Liu et al.27 developed a neighborhood contextual refine-

ment network to accomplish accurate skin lesion segmentation. To localize skin lesions and define lesion boundaries, it comprises a shared

encoder and two distinct but related decoders. Efficient group enhancedUNet (EGE-UNet)43 combines the groupmulti-axis Hadamard prod-

uct attentionmodule (GHPA) and group aggregation bridgemodule (GAB) in a lightweight manner based on U-Net, achieving excellent per-

formance in skin lesion segmentation.

Wu et al.44 presented a feature adaptive Transformer network based on the encoder-decoder architecture, known as FAT-Net, to better

capture local detail information and long-range relationships. It incorporates a further Transformer branch to effectively gather data on global

context and distant dependencies. J. Wang et al.45 integrated a boundary attention gate into Transformer, which not only allows the network

as a whole to efficiently model global long-range dependencies not only through Transformer but also capturesmore local detail prior knowl-

edge. The pyramid Transformer inter-pixel correlation module and the local neighborhood metric learning module were created by Cao

et al.46 as part of their innovative technique for learning and modeling inter-pixel correlation from global and local factors. The majority of

earlier works either use Transformers with restricted local feature representation or CNNswithout global features for feature extraction, which

lacks an effective complementarity between long-distance dependencies and local features. In the hybrid model, for the multi-domain fea-

tures extracted in different fields, only a simple feature fusionmechanism is used, which cannot guarantee the consistency of features between

different scales. In the information transmission of the codec, contextual information cannot be used to describe and guide the fuzzy bound-

aries of skin lesions in a fine-grained manner. Therefore, we propose an encoder-decoder framework CTH-Net based on CNN and Trans-

former, which effectively utilizes Transformer’s global long-range relation and CNN’s local feature representation for an accurate skin lesion

segmentation task. For better cross-fusion enhancement of multi-domain features from two encoder branches, we design a multi-domain

feature fusion module. Next, we embed the boundary refinement module and feature adaptive guided module in the skip connection. To

accurately segment skin lesion boundaries, they can learn from and improve mismatched lesion boundaries while narrowing the feature

gap that exists between the encoder and decoder.
RESULTS

Datasets

Using four publicly available skin lesion segmentation datasets, we undertake comprehensive experiments: ISIC 2016,47 ISIC 2017,48 ISIC

2018,49 and PH2 50 to demonstrate the effectiveness of our method. The International Skin Imaging Collaboration (ISIC) archive offers ISIC

2016, ISIC 2017, and ISIC 2018. The International Symposiumon Biomedical Imaging (ISBI) sponsored three challenge datasets for ‘‘skin lesion

analysis toward melanoma detection’’ in 2016, 2017, and 2018, respectively. The dermatology department of Hospital Pedro Hispano pro-

vides the PH2 dataset, which is the other dataset (Matosinhos, Portugal). The four datasets’ combined image counts and data partitions

are as follows:

ISIC 2016: In the ISIC 2016 dataset, there are 1,279 RGB skin lesion images, 900 of which are used for training and 379 for testing.

ISIC 2017: There are 2,750 RGB skin lesion images in the ISIC 2017 dataset; 2,000 of them are used for training, 150 for validation, and the

remaining 600 for testing.

ISIC 2018: A total of 3,694 RGB skin lesion images make up the ISIC 2018 dataset, of which 2,594 are utilized for training, 100 are used for

validation, and the remaining 1,000 are used for testing. We re-partition ISIC 2018 into a training set (70%), validation set (10%), and test set at

random (20%).

PH2: The 200 8-bit RGB color dermoscopic images in the PH2 dataset have a resolution of 768 3 560 pixels. We choose 140 images at

random as the training set, 20 images for the validation set, and 40 images for the test set.
Evaluation metrics

To assess the effectiveness of various algorithms, we employed seven standard semantic segmentation measures, including precision, recall,

dice socre, Jaccard index, accuracy, frequency weighted intersection over union (FWIoU), and 95% Hausdorff distance (95%HD). The defini-

tions are shown in Equations 1, 2, 3, 4, 5, 6, 7, and 8:

Precision =
TP

TP+FP
(Equation 1)
Recall =
TP

TP+FN
(Equation 2)
4 iScience 27, 109442, April 19, 2024



Table 1. Comparison of skin lesion segmentation performance of different networks on ISIC 2016

Methods Dice Score Jaccard Index Accuracy Params(M)

Rank #1 0.910 0.843 0.953 –

Rank #2 0.897 0.829 0.949 –

Rank #3 0.895 0.822 0.952 –

Rank #4 0.885 0.811 0.944 –

Rank #5 0.888 0.810 0.946 –

DeepLabV3+30 0.926 0.843 0.952 59.5

Swin Unet37 0.935 0.857 0.954 27.2

nnUnet51 0.938 0.868 0.955 29.9

HiFormer22 0.943 0.867 0.960 25.5

DAE-Former39 0.948 0.876 0.962 48.1

Ours 0.954 0.887 0.968 27.4

The best outcomes are highlighted in bold.
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Dice Socre =
2$TP

2$TP+FN+FP
(Equation 3)
Jaccard Index =
TP

TP+FN+FP
(Equation 4)
Accuracy =
TP+TN

TP+TN+FP+FN
(Equation 5)
FWIoU =
ðTP+FNÞ$TP

ðTP+TN+FP+FNÞ$ðTP+FP+FNÞ (Equation 6)
hd95ðG;PÞ = max
�
min

�
d
�
g;p

��
; 1 � 0:95

�
(Equation 7)
95% HDðG;PÞ = maxðhd95ðG;PÞ; hd95ðP;GÞÞ (Equation 8)

where TP;TN;FP; FN represent true positive, true negative, false positive, and false negative, respectively. G;P represent the boundary point

sets of ground truth and predictedmask, respectively, g˛G, p˛P, and dðg;pÞ represent the Euclidean distance from point g to point p, 0.95

represents a 95% confidence level, i.e., the percentage of the distance considered. The two most significant segmentation evaluation factors

for rating the competitors in the ISIC Challenge are the dice score and the Jaccard index. We will thus give the dice score and Jaccard index

more weight when statistically measuring network performance.
Results on the ISIC 2016 and ISIC 2017 dataset

Quantitative study

On the predefined ISIC 2016 and ISIC 2017 datasets, Tables 1 and 2 objectively compare CTH-Net’s performance to that of the top five

competing approaches and five popular semantic segmentation models. The competition’s top five finishers are based on the results of

the official leaderboard. Compared with other state-of-the-art methods, CTH-Net always keeps ahead in various indicators. In ISIC 2016,

compared with the first place in the challenge, CTH-Net significantly improved the dice socre and Jaccard index from 0.910 to 0.843 to

0.954 and 0.887, respectively. At the same time, compared with the most competitive DAE-Former, our model improves dice score, Jaccard

index, and accuracy by 0.6%, 1.1%, and 0.6%, respectively. Comparedwith HiFormer with a size of 25.5M, ourmethod increases the dice score

and Jaccard index by 1.1% and 2.0%, respectively, while only increasing the number of parameters by 1.9M. This shows that CTH-Net has

achieved a good balance between computing resources and performance. In ISIC 2017, there are more types andmore complex skin lesions,

with blurred borders and indistinguishable from the background. Compared with the first-ranked solution, CTH-Net improved the dice socre

and Jaccard index from 0.849 and 0.765 to 0.934 and 0.819, respectively. Compared with the most competitive nnUnet and DAE-Former, our

method improves dice score, Jaccard index, and accuracy by 1.2%, 1.0%, and 0.9%, respectively. It is noteworthy that compared with DAE-

Former, the number of parameters of ourmethod is reduced by 43.0%. Comparedwith theDAE-Former of the pure Transformer architecture,

the excellent performance of CTH-Net benefits from the design of parallel dual encoders, which can exactly segment the boundaries of skin

lesions by combining local context features while capturing global context information.
iScience 27, 109442, April 19, 2024 5



Table 2. Comparison of skin lesion segmentation performance of different networks on ISIC 2017

Methods Dice Score Jaccard Index Accuracy Params(M)

Rank #1 0.849 0.765 0.934 –

Rank #2 0.847 0.762 0.932 –

Rank #3 0.844 0.760 0.934 –

Rank #4 0.842 0.758 0.934 –

Rank #5 0.839 0.754 0.931 –

DeepLabV3+30 0.911 0.776 0.950 59.5

TransUNet23 0.919 0.790 0.955 105.3

nnUnet51 0.921 0.801 0.957 29.9

FAT-Net44 0.919 0.804 0.953 30.0

DAE-Former39 0.922 0.809 0.955 48.1

Ours 0.934 0.819 0.966 27.4

The best outcomes are highlighted in bold.
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Qualitative study

The results of the visual segmentation using various models on the ISIC 2016 and ISIC 2017 are qualitatively compared in Figures 2 and 3. In

ISIC 2016, we conducted a visual comparison of several approaches for several common hard circumstances, such as blurring boundaries,

poor background contrast, and the presence of artifacts. We selected DeepLabV3+, Swin Unet, nnUnet, HiFormer, and DAE-Former as com-

parisons. It can be seen that compared with the other five competitors, our method has achieved superior segmentation results in skin lesion

segmentation. Even in the case where the lesion is light in color and indistinguishable from the background (the image in the first row of
Figure 2. Visual comparison with the state-of-the-art on ISIC 2016

The red outline represents the segmentation outcome of the corresponding algorithm, and the green outline represents the ground truth.

6 iScience 27, 109442, April 19, 2024



Figure 3. Visual comparison with the state-of-the-art on ISIC 2017

The red outline represents the segmentation outcome of the corresponding algorithm, and the green outline represents the ground truth.
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Figure 2), our method can still accurately locate the boundary, which is very close to the real situation. While at ISIC 2017, we utilized

DeepLabV3+, TransUNet, nnUnet, FAT-Net, and DAE-Former with our method to generate visual comparison results for typical challenging

cases. Compared with FAT-Net, which is also specially designed for skin lesion segmentation, CTH-Net has achieved better performance in

lesion identification and fine-grained boundary delineation in the face of dermoscopic imageswith artifacts and small lesions (the image in the

sixth row of Figure 3). The efficiency of the suggested strategy in the task of skin lesion segmentation is completely demonstrated by these

outcomes. In contrast to FAT-Net, our proposed multi-domain feature fusion module is used to effectively fuse and complement the infor-

mation extracted from CNN and Transformer branches.
Results on the ISIC 2018 dataset

Quantitative study

Table 3 quantitatively shows the comparison of skin lesion segmentation performance between CTH-Net and 10 mainstream segmentation

algorithms on ISIC 2018, including U-Net, U-Net++, Attention U-Net, DeepLabV3+, TransUNet, Swin Unet, nnUnet, FAT-Net, HiFormer, and

DAE-Former. To ensure a fair comparison, all competitors in our comparative experiments run on the same computing environment and un-

dergo the same data processing, and the scores of all evaluation indicators are obtained via 5-fold cross-validation. Based on the classic

U-Net, U-Net++ introduces more upsampling nodes and skip connections to achieve better results. To extract multi-scale features,

DeepLabV3+ combines dilated convolution and inception structures based on the encoder-decoder structure and suggests an improved

atrous spatial pyramid pooling module. As a result, its performance is better than U-Net and its variations. The Transformer overcomes

the relatively limited shortcomings of CNN in modeling global information. Compared with pure Transformers such as Swin Unet, CTH-

Net is robust to noise. Compared with the most competitive methods such as nnUnet, FAT-Net, and HiFormer, our approach has produced

the best results across all indicators. Especially in terms of dice score, Jaccard index, accuracy, and FWIoU, it reached 0.959, 0.893, 0.975, and

0.952, respectively, and compared with HiFormer at 95% Hausdorff distance, it increased by 0.606 mm. Compared with DeepLabV3+ based

on the CNNmethod, our method reduces the number of parameters by 32.1Mwhile increasing the dice score and Jaccard index by 2.0% and

5.0%, respectively. This once again shows that CTH-Net achieves a good balance between the number of model parameters and segmen-

tation performance. The results of the comparative experiments clearly show how successful the dual encoder design and multi-domain
iScience 27, 109442, April 19, 2024 7



Table 3. Skin lesion segmentation performance of different networks on ISIC 2018

Methods Precision Recall Dice Score Jaccard Index Accuracy FWIoU 95%HD Params(M)

U-Net11 0.910 G 0.013 0.903 G 0.016 0.926 G 0.005 0.820 G 0.004 0.956 G 0.005 0.924 G 0.006 8.238 G 2.081 32.9

U-Net++13 0.916 G 0.010 0.904 G 0.017 0.933 G 0.005 0.827 G 0.013 0.960 G 0.004 0.929 G 0.007 6.984 G 1.086 34.9

Attention U-Net14 0.909 G 0.015 0.923 G 0.018 0.934 G 0.009 0.836 G 0.022 0.958 G 0.008 0.925 G 0.012 5.287 G 1.027 33.3

DeepLabV3+30 0.908 G 0.014 0.928 G 0.007 0.939 G 0.003 0.843 G 0.013 0.964 G 0.002 0.934 G 0.004 5.212 G 1.517 59.5

TransUNet23 0.914 G 0.012 0.929 G 0.007 0.941 G 0.004 0.849 G 0.013 0.964 G 0.003 0.934 G 0.004 4.308 G 1.308 105.3

Swin Unet37 0.922 G 0.007 0.927 G 0.007 0.947 G 0.006 0.857 G 0.008 0.968 G 0.007 0.942 G 0.011 3.953 G 1.790 27.2

nnUnet51 0.929 G 0.010 0.944 G 0.010 0.953 G 0.005 0.877 G 0.012 0.969 G 0.003 0.943 G 0.004 3.485 G 1.712 29.9

FAT-Net44 0.927 G 0.011 0.943 G 0.013 0.952 G 0.003 0.875 G 0.002 0.969 G 0.004 0.944 G 0.007 3.801 G 1.258 30.0

HiFormer22 0.941 G 0.007 0.938 G 0.007 0.954 G 0.003 0.883 G 0.008 0.969 G 0.002 0.943 G 0.003 2.160 G 0.289 25.5

DAE-Former39 0.931 G 0.005 0.943 G 0.011 0.952 G 0.004 0.878 G 0.009 0.969 G 0.004 0.943 G 0.006 2.750 G 0.922 48.1

Ours 0.944G0.011 0.946G0.006 0.959G0.002 0.893G0.007 0.975G0.002 0.952G0.003 1.554G0.262 27.4

The best outcomes are highlighted in bold. Data are represented as mean G std.
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feature fusion module in CTH-Net are at accurately segmenting skin lesions using the global distant relationship of the Transformer and the

local feature representation of CNN.

We conducted descriptive statistics on the two important indicators of the dice score and Jaccard index at ISIC 2018. Figure 4 shows the

boxplots of all the important indicators of the above models. It can be shown that CTH-Net has the highest median value and the best score

distribution, demonstrating the superiority of our method over other comparable networks.

We use the frequently used paired t test for evaluation to confirm the validity of the performance increase of the suggested strategy over

competingmethods. Table 4 displays the analysis findings for the four performance evaluation indicators we used for statistical analysis (dice so-

cre, Jaccard index, FWIoU, and 95%HD). The fact that all of the paired t tests’ p values are less than 0.05 clearly shows that the proposedmodel’s

performance increase is statistically significant. As a result, the viability and dependability of the suggested CTH-Net are further confirmed.

Qualitative study

On the ISIC 2018 dataset, the performance of various networks is qualitatively compared in Figure 5. Typical difficult samples include tiny

lesions, artifact interference, blurred borders, blurred lesions, and blurred borders. The images in the first row of Figure 5 display the segmen-

tation outcomes of various models in the presence of boundary-blurred images with low contrast. Whether the network can extract richer

feature representations will determine how well it can segment blurred objects. U-Net, U-Net++, and DeepLabV3+made wrong predictions

for the transitional color difference regions around the lesion because they all failed to effectively identify the boundary between the lesion

and the background. Our CTH-Net shows the best performance in low-contrast fuzzy boundary recognition, thanks to our boundary refine-

ment module and feature adaptive guided module used in skip connections. Without adding too many parameters, it can improve the

learned lesion border and more adaptively match the feature distribution between the encoder and decoder. The segmentation outcomes
Figure 4. Performance comparison of different networks on ISIC 2018

Boxes in different color indicate the score range of different models, the line inside each box represents the median value, box limits include interquartile ranges

Q1 and Q3 (from 25% to 75% of samples), upper and lower whiskers are computed as 1.5 times the distance of upper and lower limits of the box, and all values

outside the whiskers are considered outliers.
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Table 4. Statistical analysis (p value) of the proposed CTH-Net and other state-of-the-art methods

Methods Dice Score Jaccard Index FWIoU 95%HD

U-Net vs. Proposed 1.360E-04 2.480E-06 1.141E-04 9.065E-04

U-Net++ vs. Proposed 1.794E-04 1.025E-04 1.108E-03 1.666E-04

Attention U-Net vs. Proposed 2.027E-03 1.690E-03 3.645E-03 1.163E-03

DeepLabV3+ vs. Proposed 1.376E-04 8.033E-04 1.025E-03 3.732E-03

TransUNet vs. Proposed 2.921E-04 2.018E-04 2.333E-04 3.750E-03

Swin Unet vs. Proposed 4.356E-03 1.320E-03 2.786E-02 2.238E-02

nnUnet vs. Proposed 2.766E-02 3.381E-02 9.548E-03 4.803E-02

FAT-Net vs. Proposed 6.254E-03 2.861E-03 5.614E-03 1.373E-02

HiFormer vs. Proposed 1.097E-03 1.786E-03 4.221E-03 1.451E-02

DAE-Former vs. Proposed 1.543E-02 1.747E-02 7.951E-03 2.849E-02
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of various networks for large lesions with clear color differences inside are shown in the image in the fifth row of Figure 5. It can be seen that

most of the results of the network are seriously under-segmented, and the features cannot be understood from the perspective of combining

the global and the local, and the ability to capture the overall shape is poor. Through the combination of dual encoder and MFFM, the multi-

domain features of CNN and Transformer can be effectively fused to obtain more comprehensive and compact fusion features, to get the

closest ground truth and the best segmentation results.

Overall, our approach outperforms rivals’ segmentation techniques on ISIC 2018, notably for difficult instances with weak background

contrast and hazy boundary lines.
Results on the PH2 dataset

Quantitative study

The segmentation performance of various networks on the PH2 dataset is quantitatively displayed in Table 5. CTH-Net, DAE-Former, and

HiFormer have the top three comprehensive results in Table 5. Owing to the utilization of different useful modules such as MFFM, BRM,

and FAGM, CTH-Net’s dice score, Jaccard index, accuracy, FWIoU, and 95%HD reached 0.960, 0.908, 0.971, 0.945, and 0.785 mm, respec-

tively, which is substantially superior over alternative networks. Compared with the most competitive DAE-Former, our method improves

the dice score and Jaccard index by 0.5% and 1.1%, respectively, and the 95% HD is reduced by 0.607cmm. Experimental results show

that CTH-Net also performs well on small datasets.

We performed descriptive statistics on two important indicators on PH2: dice score and Jaccard index. Figure 6 shows the boxplots of all

the important indicators of the aforementionedmodels. It is clear that CTH-Net has the highest median value and the best score distribution,

and the deviation is minimal, demonstrating the superiority of our method over other networks.
Figure 5. Visual comparison with the state-of-the-art on ISIC 2018

The red outline represents the segmentation outcome of the corresponding algorithm, and the green outline represents the ground truth.
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Table 5. Skin lesion segmentation performance of different networks on PH2

Methods Precision Recall Dice Score Jaccard Index Accuracy FWIoU 95%HD Params(M)

U-Net11 0.924 G 0.055 0.913 G 0.028 0.918 G 0.040 0.840 G 0.063 0.938 G 0.031 0.900 G 0.036 6.448 G 0.760 32.9

U-Net++13 0.928 G 0.072 0.921 G 0.024 0.924 G 0.035 0.855 G 0.063 0.944 G 0.028 0.907 G 0.037 5.294 G 1.438 34.9

Attention U-Net14 0.941 G 0.048 0.917 G 0.014 0.923 G 0.038 0.861 G 0.055 0.941 G 0.032 0.906 G 0.038 4.480 G 1.127 33.3

DeepLabV3+30 0.946 G 0.043 0.915 G 0.022 0.929 G 0.023 0.865 G 0.040 0.948 G 0.019 0.914 G 0.021 4.070 G 0.559 59.5

TransUNet23 0.936 G 0.046 0.929 G 0.017 0.936 G 0.020 0.869 G 0.047 0.956 G 0.014 0.922 G 0.018 3.247 G 1.233 105.3

Swin Unet37 0.956 G 0.021 0.918 G 0.020 0.936 G 0.036 0.876 G 0.038 0.955 G 0.025 0.924 G 0.031 3.885 G 1.666 27.2

nnUnet51 0.949 G 0.041 0.925 G 0.017 0.937 G 0.026 0.877 G 0.051 0.956 G 0.019 0.925 G 0.025 2.851 G 0.560 29.9

FAT-Net44 0.949 G 0.041 0.928 G 0.015 0.938 G 0.026 0.879 G 0.047 0.957 G 0.018 0.927 G 0.024 2.862 G 1.605 30.0

HiFormer22 0.957 G 0.022 0.924 G 0.021 0.943 G 0.019 0.886 G 0.022 0.958 G 0.016 0.923 G 0.024 1.845 G 0.742 25.5

DAE-Former39 0.958 G 0.012 0.936 G 0.024 0.955 G 0.007 0.897 G 0.026 0.967 G 0.007 0.937 G 0.011 1.392 G 0.939 48.1

Ours 0.966G0.01 0.939G0.017 0.96G0.003 0.908G0.022 0.971G0.005 0.945G0.008 0.785G0.584 27.4

The best outcomes are highlighted in bold. Data are represented as mean G std.
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Qualitative study

Using the results of the visual segmentation, Figure 7 qualitatively analyzes the performance of various networks on PH2. The segmentation

outcomes of various networks for skin lesions, when there is hair interference in the dermoscopic image, are shown in the image in the third

row of Figure 7.Most of the contrastmethods will mistake the surrounding hair for the lesion. The lesion’s border is still precisely delineated by

CTH-Net, which is also quite near to reality. The segmentation outcomes from several networks in the presence of hazy borders are depicted

in line 6 of Figure 7. CTH-Net performs better at segmentation even when there is very little difference between the disease area and the

surrounding healthy skin. The size of the PH2 dataset is very small, containing only 200 dermoscopic images, we used 140 images as the

training set and 40 images as the testing set. Despite having fewer samples andmore challenging training, the proposedCTH-Net performed

exceptionally well in terms of evaluation index scores and visual segmentation outcomes. This demonstrates oncemore how very efficient and

effective CTH-Net is at segmenting skin lesions.
Cross-validation on ISIC 2018 and PH2

We performed cross-validation on ISIC 2018 and PH2 to further confirm the generalization capability of CTH-Net on various data distribu-

tions. Table 6 displays how well various models generalize when cross-validated using ISIC 2018 and PH2. ‘‘ISIC 2018 / PH2’’ indicates the

performance tested on the full PH2 dataset using the model obtained in ISIC 2018. And ‘‘PH2 / ISIC 2018’’ shows how well the model

developed in PH2 performed on 40 randomly chosen ISIC 2018 test data. In the comparative experiment of PH2, 40 images were extracted

from the PH2 dataset as the test set, which accounted for 20% of the dataset. Table 6 demonstrates that CTH-Net outperforms other com-

parison models in terms of generalization performance. Among them, the model obtained in ISIC 2018 has shown good generalization

ability on the PH2 dataset, while the model obtained in PH2 has a poor generalization effect on the ISIC 2018 dataset. This is so that
Figure 6. Performance comparison of different networks on PH2

Boxes in different color indicate the score range of different models, the line inside each box represents the median value, box limits include interquartile ranges

Q1 and Q3 (from 25% to 75% of samples), upper and lower whiskers are computed as 1.5 times the distance of upper and lower limits of the box, and all values

outside the whiskers are considered outliers.
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Figure 7. Visual comparison with the state-of-the-art on PH2

The red outline represents the segmentation outcome of the corresponding algorithm, and the green outline represents the ground truth.
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the model can better understand the properties of many forms of skin lesions. The ISIC 2018 dataset comprises a total of 3,694 images of

skin lesions, covering a wide variety of skin lesion types. The PH2 dataset only contains 200 dermoscopic images, and most of the lesions

have obvious contrast with the background, and the segmentation difficulty is low, so it cannot be well generalized to test images with

different distributions. The excellent performance of CTH-Net in the bidirectional generalization experiment, on the one hand, benefits

from the fact that the CNN encoder based on Res2Net and SoftPool can extract rich local spatial features. The Transformer branch im-

plemented by the dual attention mechanism can capture the global context information of skin lesion segmentation. On the other

hand, it can learn and enhance the mismatched lesion boundary while minimizing the feature gap between the encoder and decoder

due to the boundary refinement module and feature adaptive guided module contained in the skip connection. This is crucial to enhancing

the model’s capacity for generalization.
DISCUSSION

Ablation analysis

We conduct an extensive ablation analysis on CTH-Net to show the efficacy of various components in the proposed model, including the

encoder network, dual encoder, key components, MFFM, bottleneck layer, and upsampling method. The ISIC 2018 dataset is used for all

experiments, and 5-fold cross-validation is used to determine the average performance of each assessment indicator.
Table 6. Cross-validate the generalization ability of different methods on ISIC 2018 and PH2

Methods

ISIC 2018 / PH2 PH2 / ISIC 2018

Dice Score Jaccard Index Accuracy FWIoU 95%HD Dice Score Jaccard Index Accuracy FWIoU 95%HD

U-Net11 0.905 0.824 0.924 0.881 6.286 0.721 0.622 0.840 0.782 39.552

U-Net++13 0.917 0.830 0.934 0.885 5.827 0.794 0.631 0.853 0.796 36.548

Attention U-Net14 0.925 0.840 0.944 0.903 4.636 0.785 0.637 0.846 0.783 38.080

DeepLabV3+30 0.929 0.844 0.945 0.904 4.152 0.806 0.632 0.875 0.821 35.885

TransUNet23 0.931 0.852 0.948 0.910 2.649 0.803 0.646 0.861 0.802 40.141

Swin Unet37 0.940 0.859 0.955 0.919 3.400 0.791 0.659 0.864 0.806 39.345

nnUnet51 0.937 0.864 0.949 0.911 2.867 0.745 0.668 0.886 0.831 34.692

FAT-Net44 0.941 0.870 0.956 0.919 1.758 0.775 0.676 0.879 0.822 38.750

HiFormer22 0.936 0.871 0.949 0.908 2.638 0.818 0.685 0.870 0.811 33.162

DAE-Former39 0.947 0.877 0.960 0.927 2.494 0.845 0.681 0.906 0.861 26.163

Ours 0.948 0.882 0.962 0.930 1.627 0.857 0.714 0.910 0.865 32.031

The best outcomes are highlighted in bold.
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Table 7. Performance comparison between different cnn encoder networks

Encoder Network Precision Recall Dice Score Jaccard Index Accuracy FWIoU 95%HD

ResNet5053 0.930 G 0.012 0.924 G 0.007 0.945 G 0.005 0.859 G 0.01 0.966 G 0.004 0.939 G 0.006 3.723 G 1.707

ResNeXt5054 0.929 G 0.008 0.923 G 0.017 0.944 G 0.004 0.856 G 0.012 0.965 G 0.002 0.937 G 0.003 3.959 G 1.315

DenseNet12155 0.935 G 0.011 0.921 G 0.018 0.945 G 0.005 0.860 G 0.012 0.966 G 0.004 0.938 G 0.006 3.928 G 1.157

EfficientNet-B056 0.927 G 0.016 0.924 G 0.012 0.945 G 0.003 0.856 G 0.010 0.967 G 0.002 0.940 G 0.002 2.962 G 0.725

Res2Net5052 0.929 G 0.008 0.931 G 0.021 0.946 G 0.008 0.865 G 0.013 0.967 G 0.003 0.940 G 0.005 2.78 G 0.494

MobileNet57 0.926 G 0.018 0.927 G 0.008 0.945 G 0.004 0.858 G 0.012 0.967 G 0.004 0.940 G 0.006 3.545 G 1.851

Ours 0.944G0.011 0.946G0.006 0.959G0.002 0.893G0.007 0.975G0.002 0.952G0.003 1.554G0.262

The best outcomes are highlighted in bold. Data are represented as mean G std.
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Ablation study for CNN encoder network

Because different pre-trained encoder networks will extract local features of varying quality, choosing the right CNN encoder network is

essential for CTH-Net. Table 7 shows the ablation experiment results of different encoder networks on ISIC 2018.We selected six mainstream

backbone networks for comparative experiments. Compared to other networks, Res2Net50 52 is regarded as themost competitivemethod. It

builds a feature pyramid structure inside each residual block and performs multi-scale convolution inside the feature layer to form different

receptive fields, thereby obtaining different fine-grained features. Compared with the original Res2Net50, the dice score and Jaccard index

have greatly improved using our method from 0.946 and 0.865 to 0.959 and 0.893, respectively. On FWIoU and 95% HD, it increased by 1.2%

and 1.226%, respectively. Such performance improvement is due to the fast and efficient SoftPool, which in the downsampling activationmap

keeps more information and can obtain better pixel-by-pixel classification accuracy.
Ablation study for dual encoder

We conducted an ablation study to compare the dual encoder’s performance to a single-branch encoder that only contains the Transformer

encoder or the CNN encoder to further confirm the dual encoder’s efficacy. Table 8 quantitatively shows the comparison of the performance

results of encoders from different branches on ISIC 2018. In contrast to a single CNNs encoder, our dual-encoder method achieves 1.6%,

4.0%, and 0.9% improvements in dice score, Jaccard index, and accuracy, respectively. At the same time, the FWIoU and 95% HD were

increased from 0.937 and 3.924 mm to 0.952 and 1.554 mm respectively. Moreover, our dual-encoder approach accomplishes 1.3%, 0.6%,

1.1%, 1.9%, and 0.296 mm improvement compared to the single Transformer encoder in dice score, Jaccard index, accuracy, FWIoU, and

95%HD. CNN is better at extracting spatially relevant information andmaintaining spatial details than Transformer, and Transformer is better

at capturing long-range dependencies than CNN. As a result, integrating CNN and Transformer branches as the encoder of the model can

mitigate the drawbacks of the two models while enhancing their strengths, enhancing the model’s ability to segment skin lesions.

We depict the attention map of the output of the final layer of the CNN encoder and Transformer encoder, as shown in Figure 8, to more

easily comprehend which feature regions are highlighted by the CNN encoder branch and the Transformer encoder branch. The accuracy of

CTH-Net to recognize skin lesions from the global receptive field can be greatly increased by using our Transformer encoder, which employs

dual attention to capture long-range dependencies. Transformer’s abilities to capture long-range relationships are determined by its calcu-

lation principle, which also limits its capacity to capture local aspects. TheCNNencoder, which simultaneouslymodels the local receptive field

of the input image through progressive convolution and pooling processes, is better able to identify local details and features. Thus, by incor-

porating high-efficiency CNN and dual-attention Transformer branches into CTH-Net, it is possible to extract rich local features and crucial

global contextual data for skin lesion segmentation.
Ablation study for key components

To assess each critical component’s performance in the proposed network, we conduct a step-by-step ablation study using several compar-

ative models:

Baseline: Choose TransFuse38 as the baseline, and complete our network design based on this.

Model 1: Use CNN and Transformer dual encoder instead of the original encoder in TransFuse.

Model 2: Use the multi-domain feature fusion module instead of the feature fusion module in TransFuse.

Model 3: Add a multi-domain feature fusion module based on Model 1.

Model 4: Add sandglass block based on Model 3.

Model 5: Add boundary refinement module based on Model 4.

Model 6 (Ours): Add feature adaptive guided module based on Model 5.

Table 9 displays the comprehensive quantitative experimental results for the baseline and the six designs we proposed. Compared to the

starting point, Model 1 improves the performance by 0.7%, 2.0%, 0.2%, 0.3%, and 1.66 mm in terms of dice score, Jaccard index, accuracy,

FWIoU, and 95%HD by using dual encoders. Compared to the baseline, the dice score and Jaccard index of Model 2 have increased by 0.8%
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Table 8. Performance comparison of the dual encoder

Methods Precision Recall Dice Score Jaccard Index Accuracy FWIoU 95%HD

A single CNNs encoder 0.935 G 0.017 0.913 G 0.026 0.943 G 0.006 0.853 G 0.011 0.966 G 0.005 0.937 G 0.008 3.924 G 0.822

A single transformer encoder 0.938 G 0.003 0.945 G 0.008 0.946 G 0.001 0.887 G 0.006 0.964 G 0.001 0.933 G 0.002 1.850 G 0.369

Dual encoder with CNNs

and transformer (Ours)

0.944G0.011 0.946G0.006 0.959G0.002 0.893G0.007 0.975G0.002 0.952G0.003 1.554G0.262

The best outcomes are highlighted in bold. Data are represented as mean G std.
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and 2.0%, respectively, which proves the usefulness of the multi-domain feature fusion module. Compared with Model 1 andModel 2, Model

3 improves dice score and Jaccard index by 1.1%, 1.0%, 2.6%, and 2.6%, respectively, indicating that using dual encoders and multi-domain

feature fusion module at the same time can enhance the model’s performance even more. Compared with Model 3, Model 4 improves Jac-

card index and 95% HD by 0.7% and 0.589 mm, respectively, which proves that sandglass block can effectively minimize the chance of infor-

mation loss and gradient confusion. Compared with Model 4, Model 5 improves the performance scores of dice score, Jaccard index, and

FWIoU by 0.5%, 0.4%, and 0.9%, which shows that boundary refinement module has a significant effect on the fine-grained description of the

boundary of the skin lesion area. Compared with the baseline, the dice score, Jaccard index, accuracy, FWIoU, and 95%HD of CTH-Net are

significantly improved by 2.6%, 6.4%, 1.5%, 2.4%, and 3.889 mm, respectively. This demonstrates the great segmentation performance of the

suggested network.
Figure 8. Visual comparison of different attention maps

(A) Input image.

(B) Ground truth.

(C) The attention map of the last layer of the CNN encoder.

(D) The attention map of the last layer of the Transformer encoder.
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Table 9. Performance comparison between baseline and different proposed models

Methods Precision Recall Dice Score Jaccard Index Accuracy FWIoU 95%HD

Baseline 0.905 G 0.013 0.916 G 0.026 0.933 G 0.006 0.829 G 0.013 0.960 G 0.004 0.928 G 0.007 5.443 G 2.125

Model 1 0.909 G 0.011 0.934 G 0.013 0.940 G 0.006 0.849 G 0.016 0.962 G 0.003 0.931 G 0.005 3.783 G 1.008

Model 2 0.918 G 0.011 0.922 G 0.008 0.941 G 0.003 0.849 G 0.011 0.964 G 0.003 0.934 G 0.005 3.537 G 0.387

Model 3 0.926 G 0.005 0.942 G 0.008 0.951 G 0.004 0.875 G 0.007 0.967 G 0.005 0.938 G 0.009 3.019 G 0.291

Model 4 0.932 G 0.005 0.945 G 0.007 0.952 G 0.004 0.882 G 0.007 0.968 G 0.004 0.940 G 0.006 2.430 G 0.538

Model 5 0.939 G 0.004 0.943 G 0.009 0.957 G 0.003 0.886 G 0.007 0.973 G 0.003 0.949 G 0.005 2.004 G 0.583

Model 6(Ours) 0.944G0.011 0.946G0.006 0.959G0.002 0.893G0.007 0.975G0.002 0.952G0.003 1.554G0.262

The best outcomes are highlighted in bold. Data are represented as mean G std.
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Figure 9 qualitatively shows the visual segmentation results of the baseline and the proposed models. The segmentation outcomes for

small-area lesions are displayed in the image in the first row of Figure 9. After the addition of two encoders, the model’s capacity to find

and recognize small lesion sites improved as compared to the baseline. The segmentation outcomes of lesions with irregular shapes are dis-

played in the image in the fourth row of Figure 9. WhenModel 3 and Model 1 findings are compared, it is clear that the multi-domain feature

fusion module considerably enhanced the network’s performance for irregularly shaped lesions. This confirms that MFFM can realize the

feature complementation and fusion between CNN and Transformer, enhance the important information in the two feature maps suppress

the insignificant features, and further enhance the segmentation ability of the model. The segmentation outcomes of low-contrast lesions are

displayed in the images in the fifth and sixth rows of Figure 9. ComparingModel 4,Model 5, andOurs, it can be seen that after the introduction

of the boundary refinement module and feature adaptive guided module, the model has achieved significant improvement in the fine depic-

tion of the segmentation result boundary. This confirms that our boundary refinement module and feature adaptive guided module

embedded in the skip connection can narrow the difference in features between encoders and decoders. At the same time, it learns and im-

proves the mismatched lesion boundaries, and obtains more accurate skin lesion boundary segmentation results.

To better observe the feature representations learned by CTH-Net at each stage of the encoder-decoder, we give the visualization re-

sults、the corresponding ground truth, and the predicted mask of the attention map of CTH-Net in various phases of the encoder and

decoder in Figure 10. It can be seen that with the deepening of the encoder level, the visualization results of the attention map gradually

present more accurate lesion localization and boundary delineation effects. The focus is gradually transformed from shallow features such
Figure 9. Visual comparison between baseline and different proposed models

White, green, and red, respectively, stand for proper segmentation, under-segmentation, and over-segmentation.
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Figure 10. Visual comparison of different attention maps for each stage in CTH-Net
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as edges and textures to high-level semantic features for overall position and context. And with the deepening of the decoder layer, the

model can better utilize the contextual information in the encoder to guide the prediction at the pixel level. To get more precise pixel-by-

pixel segmentation results features from various levels are integrated simultaneously to create amore comprehensive semantic context. Visu-

alizing the attention maps of each stage in the model can not only help understand the attention distribution of the encoder and decoder at

different stages but also make the segmentation findings more understandable.
Ablation study for MFFM

To check out the performance of each block in the multi-domain feature fusion module, we designed an ablation experiment by gradually

increasing different blocks. Table 10 quantitatively shows the step-by-step ablation results of channel attention block (CAB), spatial attention

block (SAB), cross-domain enhancement block (CDEB), and feature fusion block (FFB) inMFFM. Table 10 shows the segmentation results after

using both the channel attention block and the spatial attention block. Compared with the result of only using the feature fusion block, the

dice score, Jaccard index, and 95% HD are significantly improved by 1.1%, 2.9%, and 2.694 mm. It has been amply demonstrated that the

simultaneous usage of CAB and SAB may successfully achieve the mixing of channels and self-attention while also promoting global infor-

mation from the Transformer branch. Additionally, it can accentuate regional specifics while suppressing unimportant areas. Our method

achieves the best performance in ablation studies, improving the Jaccard index by 3.6%, 1.5%, and 0.7%, respectively, compared to the other

three variants. It demonstrates how each MFFM component exhibits its distinct benefits.

The visual segmentation outcomes of various approaches in the MFFM step-by-step ablation investigation are qualitatively displayed in

Figure 11. The segmentation outcomes for minor lesions are displayed in the images in the top row of Figure 11. It can be seen that compared

with the misjudgment of other skin regions in (a), there are more under-segmented or over-segmented areas in (b) and (c). In (d), by using

CDEB, the important information in the two feature maps of the dual-branch encoder is fused and enhanced and the insignificant features

are suppressed. The segmentation outcomes of lesions with irregular edges are displayed in the images in the second, third, and sixth rows of

Figure 11. In (a), only the segmentation results of FFB are used, and the outline of complex irregular boundaries is far from meeting the re-

quirements of accurate skin lesion segmentation. In contrast, more boundary information is mined and the lesion boundary is optimizedmore

successfully in (c) to produce more precise segmentation visualization. All in all, both quantitative and qualitative experiments have fully

proved that MFFM plays an important role in CTH-Net.
Ablation study for bottleneck

To verify the effectiveness of sandglass block, we conducted ablation studies on different types of bottleneck layers, including no bottleneck

layer, residual block,53 inverted residual block,58 and sandglass block. Table 11 shows the segmentation performance comparison of models

using different bottleneck layers on ISIC 2018. It can be seen that comparedwith the case of not using the bottleneck layer, the CTH-Net using

residual block and inverted residual block performs better in various performance indicators. Themodel using sandglass bbock obtained the
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Table 10. Performance comparison of different block combinations in MFFM

Methods Precision Recall Dice Score Jaccard Index Accuracy FWIoU 95%HD

FFB 0.926 G 0.011 0.926 G 0.009 0.945 G 0.005 0.857 G 0.008 0.967 G 0.006 0.939 G 0.009 4.57 G 1.579

+ CAB 0.936 G 0.008 0.939 G 0.005 0.948 G 0.002 0.878 G 0.007 0.968 G 0.002 0.94 G 0.004 2.046 G 0.439

+ SAB 0.939 G 0.004 0.943 G 0.009 0.956 G 0.005 0.886 G 0.009 0.972 G 0.004 0.948 G 0.006 1.876 G 0.449

+ CDEB 0.944G0.011 0.946G0.006 0.959G0.002 0.893G0.007 0.975G0.002 0.952G0.003 1.554G0.262

The best outcomes are highlighted in bold. Data are represented as mean G std.
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best performance score in the experiment. Compared with the most competitive inverted residual block, the dice score, Jaccard index, ac-

curacy, FWIoU and 95% HD are improved by 0.3%, 0.6%, 0.3%, 0.4%, and 0.267 mm, respectively. It shows that sandglass block can assist the

network’s expressiveness and segmentation performance.
Ablation study for upsampling

In each decoding stage of the CTH-Net decoder, the features of the decoder are first concat with the feature map of the corresponding layer

skip connection of the encoder. Convolute the spliced map next to change the number of channels, and then use the upsampling technique
Figure 11. Visual comparison of different block combinations in MFF

(A) FFB.

(B) + CAB.

(C) + SAB.

(D) + CDEB. White, green, and red, respectively, stand for proper segmentation, under-segmentation, and over-segmentation.
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Table 11. Performance comparison between different bottleneck layers

Methods Precision Recall Dice Score Jaccard Index Accuracy FWIoU 95%HD

w/o Bottleneck layer 0.936 G 0.007 0.936 G 0.012 0.946 G 0.004 0.877 G 0.008 0.966 G 0.004 0.937 G 0.007 2.065 G 0.623

Residual Block 0.937 G 0.006 0.942 G 0.008 0.948 G 0.002 0.883 G 0.009 0.968 G 0.002 0.939 G 0.004 2.597 G 0.999

Inverted Residual Block 0.940 G 0.002 0.941 G 0.007 0.956 G 0.003 0.887 G 0.006 0.972 G 0.003 0.948 G 0.006 1.821 G 0.439

Sandglass Block 0.944G0.011 0.946G0.006 0.959G0.002 0.893G0.007 0.975G0.002 0.952G0.003 1.554G0.262

The best outcomes are highlighted in bold. Data are represented as mean G std.
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to double the size of the featuremap and cut in half the number of featuremap channels before sending it to the following decoding stage. To

explore the most effective upsampling method, Table 12 shows the ablation study on the performance of skin lesion segmentation using

different upsampling methods in the decoder. Transposed convolution has demonstrated the best performance, as can be observed, which

is significantly improved by 3.9% and 4.6% in terms of the Jaccard index compared with bilinear iInterpolation and UnPooling.

Comparison between different loss functions

We select the weighted loss function of binary cross entropy (BCE) and SoftDice to optimize the network throughout the end-to-end training

of CTH-Net. First, we designed comparative experiments to find the optimal correlation importance weights l. Figure 12 intuitively shows the

changing trend of the scores of different evaluation indicators in the process of l increasing from 0.1 to 0.9. It can be seen that when the value l

is set to 0.8, CTH-Net obtains better segmentation performance.

We employed five loss functions to optimize the network to examine the effects of various loss functions on the performance of CTH-Net,

including BCE loss (loss 1), Dice loss (loss 2), SoftDice loss (loss 3), BCE+Dice loss (loss 4), and BCE+SoftDice loss (loss 5). The performance

comparison results of five different loss functions on skin lesion segmentation are shown in Table 13 and Figure 13. It is clear that loss 5 has

outperformed the other loss functions in terms of performance. When using loss 1 and loss 2 to optimize the performance of the network, the

performance of the network is comparable, but loss 4 after the combination of the two has achieved a performance improvement of 0.7% and

0.5% respectively on the Jaccard index. This is because different loss functions have different concerns for different aspects of model training,

and each loss function can capture different feature information. By using a weighted combination of multiple loss functions, the needs of

multiple aspects can be considered comprehensively, providing more comprehensive and accurate training signals, and helping the model

learn more details. At the same time, it strengthens the model’s robustness and lessens reliance on a single loss function. Additionally, it can

be seen that the performance for loss 3 is superior to the performance for loss 2, and the performance for loss 5 is superior to the performance

for loss 4. This is because SoftDice loss introduces a smoothing factor based on Dice loss, which converts the binary Dice coefficient into a

continuous probability value. This smoothness can alleviate the extreme binarization of the prediction results, making the model more stable

during the gradient descent process. Overall, in ISIC 2018, by using the weighted loss function of BCE+SoftDice, the segmentation perfor-

mance of the model can be improved.

Efficiency study

Learning efficiency

To compare the learning efficiency of different models in the training and verification process, we monitored the changing trend of the Jac-

card lndex and loss values with epochs. The outcomes are displayed in Figure 14. It is clear that CTH-Net is simpler to train and converge than

alternative approaches. Compared with HiFormer, which is the most competitive performance in ISIC 2018, our method has faster learning

speed and lower training loss during the training process and only needs 60 epochs on the training set to complete the convergence. When

using 2,586 images as training samples, CTH-Net only needs 68 s to train an epoch on a single NVIDIA GeForce RTX 4090 GPU. This indicates

that after training for roughly 70 min, a skin lesion segmentation model with good performance can be obtained. The aforementioned exper-

imental findings conclusively show that the proposed CTH-Net is simple to train.

Pre-trained and data augmentation

By choosing appropriate learning techniques, such as pre-training and data augmentation operations, the performance of the model can be

improved to a certain extent and reach peak performance. We performed a comparative experiment on ISIC 2018 to assess the impact of
Table 12. Performance comparison between different upsampling

Methods Precision Recall Dice Score Jaccard Index Accuracy FWIoU 95%HD

Bilinear Interpolation 0.933 G 0.013 0.914 G 0.014 0.944 G 0.004 0.854 G 0.01 0.966 G 0.004 0.938 G 0.007 3.409 G 0.742

UnPooling 0.919 G 0.014 0.921 G 0.012 0.941 G 0.005 0.847 G 0.012 0.966 G 0.004 0.937 G 0.007 3.856 G 0.876

Transposed Convolution 0.944G0.011 0.946G0.006 0.959G0.002 0.893G0.007 0.975G0.002 0.952G0.003 1.554G0.262

The best outcomes are highlighted in bold. Data are represented as mean G std.
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Figure 12. Performance comparison between different importance weights
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pre-training and data augmentation operations on CTH-Net. The pre-trained model is obtained by training the encoder of CTH-Net on

ImageNet 201259 and then fine-tuning the specific skin lesion segmentation task. Data augmentation strategies used horizontal or vertical

flipping, random rotation (�20 to 20�), cropping, scaling, and adjusting brightness and contrast (�3%–3%). The effect of using the pre-trained

model and the data augmentation operation on themodel performance is intuitively illustrated in Figure 15. According to the results, the pre-

trainingmodel and data augmentation both assist CTH-Net in performingbetter. Comparedwith the case of not using the pre-trainingmodel

and data augmentation, the dice score, Jaccard index, accuracy, and FWIoU of CTH-Net increased by 2.6%, 6.5%, 1.6%, and 2.5%, respec-

tively. This shows that CTH-Net has strong learning ability, and by combining some appropriate learning techniques, it can achieve excellent

segmentation performance.

Inspired by the powerful representation capabilities of CNN and Transformer, this paper proposes a new hybrid encoder-decoder model

CTH-Net based on CNN and Transformer. It can effectively utilize Transformer’s global long-range relationship and CNN’s local feature rep-

resentation to achieve accurate and reliable skin lesion segmentation. Specifically, we build a CNN encoder branch based on Res2Net50 and

SoftPool that can extract fine-grained features, while using a Transformer branch with channel and spatial dual attention in parallel to capture

long-range dependencies. We create a multi-domain feature fusion mdule to more effectively cross-fuse multi-domain features from two

encoder branches. Next, we embed a boundary refinement module and a feature adaptive guided module in skip connections. By using

contextual information to fine-grained outline the lesion boundary, the learned lesion boundary is improved, and the feature distribution be-

tween the encoder and decoder is better adaptively matched. Extensive tests on four datasets of skin lesions that are available to the public

show that the proposed CTH-Net provides cutting-edge segmentation performance in both quantitative and qualitative analysis. We will

extend CTH-Net in the future to support medical image segmentation tasks in other fields based on the great performance of the current

technology.
Limitations of the study

Although our method achieved satisfactory segmentation results, however, it still has some limitations. Similar to most existing state-of-

the-art methods, our method still fails to accurately outline the boundaries of skin lesion areas when the contrast between the
Table 13. Performance comparison between different loss functions

Methods Precision Recall Dice Score Jaccard Index Accuracy FWIoU 95%HD

BCE (loss 1) 0.933 G 0.006 0.938 G 0.006 0.943 G 0.005 0.876 G 0.011 0.963 G 0.004 0.932 G 0.008 2.256 G 0.520

Dice (loss 2) 0.924 G 0.010 0.949G0.011 0.945 G 0.003 0.878 G 0.012 0.965 G 0.002 0.935 G 0.003 2.129 G 0.786

SoftDice (loss 3) 0.942 G 0.009 0.936 G 0.007 0.946 G 0.003 0.883 G 0.011 0.965 G 0.002 0.935 G 0.003 1.948 G 0.471

BCE + Dice (loss 4) 0.938 G 0.009 0.937 G 0.011 0.947 G 0.004 0.879 G 0.014 0.966 G 0.004 0.937 G 0.007 1.722 G 0.504

BCE+SoftDice (loss 5) 0.944G0.011 0.946 G 0.006 0.959G0.002 0.893G0.007 0.975G0.002 0.952G0.003 1.554G0.262

The best outcomes are highlighted in bold. Data are represented as mean G std.
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Figure 13. Performance comparison between different loss functions on ISIC 2018

Loss 1 is BCE, loss 2 is Dice, loss 3 is SoftDice, loss 4 is BCE + Dice, loss 5 is BCE + SoftDice. Boxes in different color indicate the score range of different models,

the line inside each box represents the median value, box limits include interquartile ranges Q1 and Q3 (from 25% to 75% of samples), upper and lower whiskers

are computed as 1.5 times the distance of upper and lower limits of the box, and all values outside the whiskers are considered outliers.
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skin lesion and the background tissue in the dermatoscopic image is extremely low, or when the color inside the skin lesion changes too

much. However, the segmentation effect of our method is closest to the real situation and outperforms other competitors. Second, CTH-

Net is specifically designed for the task of skin lesion segmentation and has not yet explored its potential for other medical image seg-

mentation tasks. To address the above limitations, in our future work, we will explore more model structure design and boundary
Figure 14. Comparison of the learning efficiency between different models on the training set and the validation set
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Figure 15. Performance comparison of whether to use the pre-trained model and data augmentation
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refinement strategies to further improve the performance of skin lesion segmentation in dermoscopy images. Meanwhile, we will

continue to explore the potential of the proposed CTH-Net and apply it to medical image segmentation tasks in other fields.
STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
20
B Lead contact

B Materials availability

B Data and code availability

d METHOD DETAILS

B Network architecture

B CNN and Transformer dual encoder

B Multi-domain feature fusion module

B Sandglass Block

B Boundary Refinement Module

B Feature Adaptive Guided Module

d QUANTIFICATION AND STATISTICAL ANALYSIS
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2024.109442.
ACKNOWLEDGMENTS

This work was supported by the grant from Hunan Provincial Natural Science Foundation of China (2021JJ41026) and the Fundamental

Research Funds for the Central Universities of Central South University.
AUTHOR CONTRIBUTIONS

D.Y.H., W.Y.J., and L.Z.F. conceived and supervised the study. Y.Z.L., H.M.H., and G.Y. contributed to data collection and assembly. D.Y.H.,

Y.Z.L., and X.J.T. performed data analysis and interpretation. D.Y.H., H.M.H., and G.Y. performed software, visualization, and validation. All

authors contributed to writing the manuscript. All authors reviewed and approved the final manuscript.
DECLARATION OF INTERESTS

The authors declare no competing interests.
iScience 27, 109442, April 19, 2024

https://doi.org/10.1016/j.isci.2024.109442


ll
OPEN ACCESS

iScience
Article
Received: November 22, 2023

Revised: January 25, 2024

Accepted: March 4, 2024

Published: March 6, 2024
REFERENCES

1. Siegel, R.L., Miller, K.D., and Jemal, A. (2019).

Cancer statistics, 2019. CA. Cancer J. Clin. 69,
7–34. https://doi.org/10.3322/caac.21551.

2. Wang, X., Jiang, X., Ding, H., and Liu, J.
(2019). Bi-Directional Dermoscopic Feature
Learning andMulti-Scale Consistent Decision
Fusion for Skin Lesion Segmentation. IEEE
Trans. Image Process. 29, 3039–3051. https://
doi.org/10.1109/TIP.2019.2955297.

3. Ge, Z., Demyanov, S., Chakravorty, R.,
Bowling, A., and Garnavi, R. (2017). Skin
Disease Recognition Using Deep Saliency
Features and Multimodal Learning of
Dermoscopy and Clinical Images. In Medical
Image Computing and Computer Assisted
Intervention�MICCAI 2017 Lecture Notes in
Computer Science, M. Descoteaux, L. Maier-
Hein, A. Franz, P. Jannin, D.L. Collins, and S.
Duchesne, eds. (Springer International
Publishing), pp. 250–258. https://doi.org/10.
1007/978-3-319-66179-7_29.

4. Sarker, M.M.K., Rashwan, H.A., Akram, F.,
Banu, S.F., Saleh, A., Singh, V.K., Chowdhury,
F.U.H., Abdulwahab, S., Romani, S., Radeva,
P., et al. (2018). SLSDeep: Skin Lesion
Segmentation Based on Dilated Residual and
Pyramid Pooling Networks. In Medical Image
Computing and Computer Assisted
Intervention – MICCAI 2018 Lecture Notes in
Computer Science, A.F. Frangi, J.A.
Schnabel, C. Davatzikos, C. Alberola-López,
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51. Isensee, F., Jäger, P.F., Kohl, S.A.A., Petersen,
J., and Maier-Hein, K.H. (2021). Automated
Design of Deep Learning Methods for
Biomedical Image Segmentation. Nat.
Methods 18, 203–211. https://doi.org/10.
1038/s41592-020-01008-z.

52. Gao, S.-H., Cheng, M.-M., Zhao, K., Zhang,
X.-Y., Yang, M.-H., and Torr, P. (2021).
Res2Net: A New Multi-Scale Backbone
Architecture. IEEE Trans. Pattern Anal. Mach.
Intell. 43, 652–662. https://doi.org/10.1109/
TPAMI.2019.2938758.

53. He, K., Zhang, X., Ren, S., and Sun, J. (2015).
Deep Residual Learning for Image
Recognition. Preprint at arXiv. https://doi.
org/10.48550/arXiv.1512.03385.

54. Xie, S., Girshick, R., Dollar, P., Tu, Z., and He,
K. (2017). Aggregated Residual
Transformations for Deep Neural Networks.
In Proceedings of the IEEE conference on
computer vision and pattern recognition,
pp. 1492–1500.

55. Huang, G., Liu, Z., van der Maaten, L., and
Weinberger, K.Q. (2018). Densely Connected
Convolutional Networks. Preprint at arXiv.
https://doi.org/10.48550/arXiv.2112.10108.

56. Tan, M., and Le, Q.V. (2020). EfficientNet:
Rethinking Model Scaling for
Convolutional Neural Networks. Preprint at
arXiv. https://doi.org/10.48550/arXiv.1905.
11946.
57. Howard, A., Sandler, M., Chu, G., Chen, L.-C.,
Chen, B., Tan, M., Wang,W., Zhu, Y., Pang, R.,
Vasudevan, V., et al. (2019). Searching for
MobileNetV3. Preprint at arXiv. https://doi.
org/10.48550/arXiv.1905.02244.

58. Sandler, M., Howard, A., Zhu, M., Zhmoginov,
A., and Chen, L.-C. (2018). MobileNetV2:
Inverted Residuals and Linear Bottlenecks. In
2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (IEEE),
pp. 4510–4520. https://doi.org/10.1109/
CVPR.2018.00474.

59. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K.,
and Fei-Fei, L. (2009). Imagenet: A large-scale
hierarchical image database. In 2009 IEEE
conference on computer vision and pattern
recognition (IEEE), pp. 248–255.

60. Kingma, D.P., and Ba, J. (2017). Adam: A
Method for Stochastic Optimization. Preprint
at arXiv. https://doi.org/10.48550/arXiv.
1412.6980.

61. Chen, L.-C., Papandreou, G., Kokkinos, I.,
Murphy, K., and Yuille, A.L. (2018). DeepLab:
Semantic Image Segmentation with Deep
Convolutional Nets, Atrous Convolution, and
Fully Connected CRFs. IEEE Trans. Pattern
Anal. Mach. Intell. 40, 834–848. https://doi.
org/10.1109/TPAMI.2017.2699184.

62. Huang, X., Deng, Z., Li, D., and Yuan, X.
(2021). MISSFormer: An Effective Medical
Image Segmentation Transformer. Preprint at
arXiv. https://doi.org/10.48550/arXiv.
2109.0716.

63. Guo, M.-H., Xu, T.-X., Liu, J.-J., Liu, Z.-N.,
Jiang, P.-T., Mu, T.-J., Zhang, S.-H., Martin,
R.R., Cheng, M.-M., and Hu, S.-M. (2022).
Attention Mechanisms in Computer Vision.
Comput. Vis. Media (Beijing) 8, 331–368.
https://doi.org/10.1007/s41095-022-0271-y.

64. Zhuoran, S., Mingyuan, Z., Haiyu, Z., Shuai, Y.,
and Hongsheng, L. (2021). Efficient Attention:
Attention with Linear Complexities. In 2021
IEEE Winter Conference on Applications of
Computer Vision (WACV) (IEEE), pp. 3530–
3538. https://doi.org/10.1109/WACV48630.
2021.00357.

65. El-Nouby, A., Touvron, H., Caron, M.,
Bojanowski, P., Douze, M., Joulin, A., Laptev,
I., Neverova, N., Synnaeve, G., Verbeek, J.,
et al. (2021). XCiT: Cross-Covariance Image
Transformers. Preprint at arXiv. https://doi.
org/10.48550/arXiv.2106.09681.

66. Hendrycks, D., and Gimpel, K. (2016).
Bridging Nonlinearities and Stochastic
Regularizers with Gaussian Error Linear Units.

67. Chollet, F. (2017). Xception: Deep Learning
with Depthwise Separable Convolutions. In
2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (IEEE),
pp. 1800–1807. https://doi.org/10.1109/
CVPR.2017.195.

68. Qin, Z., Zhang, P., Wu, F., and Li, X. (2021).
FcaNet: Frequency Channel Attention
Networks. Preprint at arXiv. https://doi.org/
10.48550/arXiv.2012.11879.

69. Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., and Lu,
H. (2021). Scene Segmentation With Dual
Relation-Aware Attention Network. IEEE
Transact. Neural Networks Learn. Syst. 32,
2547–2560. https://doi.org/10.1109/TNNLS.
2020.3006524.

70. Zhou, J., Wang, P., Wang, F., Liu, Q., Li, H.,
and Jin, R. (2021). ELSA: Enhanced Local Self-
Attention for Vision Transformer. Preprint at
arXiv. https://doi.org/10.48550/arXiv.2112.
12786.

71. Daquan, Z., Hou, Q., Chen, Y., Feng, J., and
Yan, S. (2020). Rethinking Bottleneck
Structure for Efficient Mobile Network

https://doi.org/10.1109/TMI.2020.2983721
https://doi.org/10.1007/978-3-031-09037-0_17
https://doi.org/10.1007/978-3-031-09037-0_17
https://doi.org/10.1007/s00521-021-06816-8
https://doi.org/10.1007/s00521-021-06816-8
http://refhub.elsevier.com/S2589-0042(24)00663-1/sref35
http://refhub.elsevier.com/S2589-0042(24)00663-1/sref35
http://refhub.elsevier.com/S2589-0042(24)00663-1/sref35
http://refhub.elsevier.com/S2589-0042(24)00663-1/sref35
http://refhub.elsevier.com/S2589-0042(24)00663-1/sref35
http://refhub.elsevier.com/S2589-0042(24)00663-1/sref36
http://refhub.elsevier.com/S2589-0042(24)00663-1/sref36
http://refhub.elsevier.com/S2589-0042(24)00663-1/sref36
http://refhub.elsevier.com/S2589-0042(24)00663-1/sref36
http://refhub.elsevier.com/S2589-0042(24)00663-1/sref36
http://refhub.elsevier.com/S2589-0042(24)00663-1/sref36
https://doi.org/10.48550/arXiv.2105.05537
https://doi.org/10.48550/arXiv.2105.05537
https://doi.org/10.48550/arXiv.2102.08005
https://doi.org/10.48550/arXiv.2102.08005
https://doi.org/10.48550/arXiv.2212.13504
https://doi.org/10.48550/arXiv.2212.13504
https://doi.org/10.48550/arXiv.2306.03373
https://doi.org/10.48550/arXiv.2306.03373
https://doi.org/10.1016/j.cmpb.2019.07.005
https://doi.org/10.1016/j.cmpb.2019.07.005
https://doi.org/10.1016/j.media.2021.102293
https://doi.org/10.1016/j.media.2021.102293
http://refhub.elsevier.com/S2589-0042(24)00663-1/sref43
http://refhub.elsevier.com/S2589-0042(24)00663-1/sref43
http://refhub.elsevier.com/S2589-0042(24)00663-1/sref43
http://refhub.elsevier.com/S2589-0042(24)00663-1/sref43
http://refhub.elsevier.com/S2589-0042(24)00663-1/sref43
http://refhub.elsevier.com/S2589-0042(24)00663-1/sref43
http://refhub.elsevier.com/S2589-0042(24)00663-1/sref44
http://refhub.elsevier.com/S2589-0042(24)00663-1/sref44
http://refhub.elsevier.com/S2589-0042(24)00663-1/sref44
http://refhub.elsevier.com/S2589-0042(24)00663-1/sref44
http://refhub.elsevier.com/S2589-0042(24)00663-1/sref44
https://doi.org/10.1007/978-3-030-87193-2_20
https://doi.org/10.1007/978-3-030-87193-2_20
https://doi.org/10.1109/JBHI.2022.3162342
https://doi.org/10.1109/JBHI.2022.3162342
https://doi.org/10.48550/arXiv.1605.01397
https://doi.org/10.48550/arXiv.1605.01397
https://doi.org/10.48550/arXiv.1710.05006
https://doi.org/10.48550/arXiv.1710.05006
https://doi.org/10.48550/arXiv.1902.03368
https://doi.org/10.48550/arXiv.1902.03368
https://doi.org/10.1109/EMBC.2013.6610779
https://doi.org/10.1109/EMBC.2013.6610779
https://doi.org/10.1038/s41592-020-01008-z
https://doi.org/10.1038/s41592-020-01008-z
https://doi.org/10.1109/TPAMI.2019.2938758
https://doi.org/10.1109/TPAMI.2019.2938758
https://doi.org/10.48550/arXiv.1512.03385
https://doi.org/10.48550/arXiv.1512.03385
http://refhub.elsevier.com/S2589-0042(24)00663-1/sref56
http://refhub.elsevier.com/S2589-0042(24)00663-1/sref56
http://refhub.elsevier.com/S2589-0042(24)00663-1/sref56
http://refhub.elsevier.com/S2589-0042(24)00663-1/sref56
http://refhub.elsevier.com/S2589-0042(24)00663-1/sref56
http://refhub.elsevier.com/S2589-0042(24)00663-1/sref56
https://doi.org/10.48550/arXiv.2112.10108
https://doi.org/10.48550/arXiv.1905.11946
https://doi.org/10.48550/arXiv.1905.11946
https://doi.org/10.48550/arXiv.1905.02244
https://doi.org/10.48550/arXiv.1905.02244
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1109/CVPR.2018.00474
http://refhub.elsevier.com/S2589-0042(24)00663-1/sref54
http://refhub.elsevier.com/S2589-0042(24)00663-1/sref54
http://refhub.elsevier.com/S2589-0042(24)00663-1/sref54
http://refhub.elsevier.com/S2589-0042(24)00663-1/sref54
http://refhub.elsevier.com/S2589-0042(24)00663-1/sref54
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1109/TPAMI.2017.2699184
https://doi.org/10.1109/TPAMI.2017.2699184
https://doi.org/10.48550/arXiv.2109.0716
https://doi.org/10.48550/arXiv.2109.0716
https://doi.org/10.1007/s41095-022-0271-y
https://doi.org/10.1109/WACV48630.2021.00357
https://doi.org/10.1109/WACV48630.2021.00357
https://doi.org/10.48550/arXiv.2106.09681
https://doi.org/10.48550/arXiv.2106.09681
http://refhub.elsevier.com/S2589-0042(24)00663-1/sref66
http://refhub.elsevier.com/S2589-0042(24)00663-1/sref66
http://refhub.elsevier.com/S2589-0042(24)00663-1/sref66
https://doi.org/10.1109/CVPR.2017.195
https://doi.org/10.1109/CVPR.2017.195
https://doi.org/10.48550/arXiv.2012.11879
https://doi.org/10.48550/arXiv.2012.11879
https://doi.org/10.1109/TNNLS.2020.3006524
https://doi.org/10.1109/TNNLS.2020.3006524
https://doi.org/10.48550/arXiv.2112.12786
https://doi.org/10.48550/arXiv.2112.12786


ll
OPEN ACCESS

iScience
Article
Design. Preprint at arXiv. https://doi.org/10.
48550/arXiv.2007.02269.

72. Sankararaman, K.A., De, S., Xu, Z., Huang,
W.R., and Goldstein, T. (2020). The
Impact of Neural Network
Overparameterization on Gradient
Confusion and Stochastic Gradient
Descent. In Proceedings of the 37th
International Conference on Machine
Learning (PMLR), pp. 8469–8479.

73. He, K., Lian, C., Zhang, B., Zhang, X., Cao, X.,
Nie, D., Gao, Y., Zhang, J., and Shen, D.
(2021). HF-UNet: Learning Hierarchically
Inter-Task Relevance in Multi-Task U-Net for
Accurate Prostate Segmentation in CT
Images. IEEE Trans. Med. Imag. 40, 2118–
2128. https://doi.org/10.1109/TMI.2021.
3072956.

74. Basak, H., Kundu, R., and Sarkar, R. (2022).
MFSNet: Amulti focus segmentation network
for skin lesion segmentation. Pattern Recogn.
128, 108673. https://doi.org/10.1016/j.
patcog.2022.108673.
75. Dayananda, C., Yamanakkanavar, N.,
Nguyen, T., and Lee, B. (2023). AMCC-Net:
An asymmetric multi-cross convolution for
skin lesion segmentation on dermoscopic
images. Eng. Appl. Artif. Intell. 122, 106154.

76. Huang, H., Lin, L., Tong, R., Hu, H., Zhang, Q.,
Iwamoto, Y., Han, X., Chen, Y.-W., and Wu, J.
(2020). UNet 3+: A Full-Scale Connected
UNet for Medical Image Segmentation.
Preprint at arXiv. https://doi.org/10.48550/
arXiv.2004.08790.
iScience 27, 109442, April 19, 2024 23

https://doi.org/10.48550/arXiv.2007.02269
https://doi.org/10.48550/arXiv.2007.02269
http://refhub.elsevier.com/S2589-0042(24)00663-1/sref72
http://refhub.elsevier.com/S2589-0042(24)00663-1/sref72
http://refhub.elsevier.com/S2589-0042(24)00663-1/sref72
http://refhub.elsevier.com/S2589-0042(24)00663-1/sref72
http://refhub.elsevier.com/S2589-0042(24)00663-1/sref72
http://refhub.elsevier.com/S2589-0042(24)00663-1/sref72
http://refhub.elsevier.com/S2589-0042(24)00663-1/sref72
http://refhub.elsevier.com/S2589-0042(24)00663-1/sref72
https://doi.org/10.1109/TMI.2021.3072956
https://doi.org/10.1109/TMI.2021.3072956
https://doi.org/10.1016/j.patcog.2022.108673
https://doi.org/10.1016/j.patcog.2022.108673
http://refhub.elsevier.com/S2589-0042(24)00663-1/sref75
http://refhub.elsevier.com/S2589-0042(24)00663-1/sref75
http://refhub.elsevier.com/S2589-0042(24)00663-1/sref75
http://refhub.elsevier.com/S2589-0042(24)00663-1/sref75
http://refhub.elsevier.com/S2589-0042(24)00663-1/sref75
https://doi.org/10.48550/arXiv.2004.08790
https://doi.org/10.48550/arXiv.2004.08790


ll
OPEN ACCESS

iScience
Article
STAR+METHODS

KEY RESOURCES TABLE
REAGENT or RESOURCE RESOURCE SOURCE IDENTIFIER

Deposited data

ISIC 2016 Gutman et al.47 https://challenge.isic-archive.com/data/#2016

ISIC 2017 Codella et al.48 https://challenge.isic-archive.com/data/#2017

ISIC 2018 Codella et al.49 https://challenge.isic-archive.com/data/#2018

PH2 Mendonca et al.50 https://www.fc.up.pt/addi/ph2%20database.html

Software and algorithms

Python Python Software Foundation https://www.python.org/

PyTorch PyTorch Foundation https://pytorch.org/

Pycharm JetBrains https://www.jetbrains.com/pycharm/

CTH-Net This paper https://doi.org/10.5281/zenodo.10732004
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Yongjie Wang

(yongjiewang@csu.edu.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed in the key resources table.
� All original code has been deposited at Github (https://github.com/0LeahD/CTH-Net) and is publicly available as of the date of pub-

lication. DOIs are listed in the key resources table.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

The PyTorch library is used to implement our suggested method end-to-end, and an NVIDIA GeForce RTX 4090 GPU is used for training.

Training epochs are set at 100 and the batch size is 32. The stochastic optimization method of Adam60 is adopted, the learning rate is initial-

ized to 1e-4, the weight decay is 1e-7, and the "poly" learning rate strategy61 is used for decay.

Referring to the setting in Dai et al.,42 considering that the aspect ratio of most dermoscopic images is approximately 3:4, all datasets were

resampled to 2243320 pixels and normalized. To broaden the variety of image samples, we also adopted a variety of data augmentation

strategies, including horizontal or vertical flip, random rotation (-20 to 20 degrees), cropping, scaling, adjusting brightness, and contrast

(-3% to 3%).

We carry out 5-fold cross-validation on ISIC 2018 and PH2 and give the average performance of all assessment criteria to lessen the impact

of randomness and create a fair comparison with other approaches.

Network architecture

Inspired by the powerful representation capabilities of CNN and Transformer, we propose a hybrid network (CTH-Net) based on CNN and

Transformer to precisely and dependably segment dermoscopic images of skin lesions. The overall architecture is shown in Figure S1. Our

approach primarily comprises five parts, including a dual encoder for enhanced feature encoding, a Multi-domain Feature Fusion Module

(MFFM) for efficiently fusing encoded features of CNN and Transformer, a Boundary Refinement Module (BRM), Feature Adaptive Guided

Module (FAGM), and a decoder that can perform feature decoding layer by layer. Meanwhile, we introduce two efficient methods:

SoftPool and Sandglass Block.

Specifically, rich local characteristics as well as significant global contextual information for skin lesion segmentation can be extracted by

merging high-efficiency CNN and dual-attention Transformer branches into CTH-Net. The Softpool method introduced in the CNN branch

can preserve more information in the downsampled activation map, resulting in better classification accuracy, while being computationally
24 iScience 27, 109442, April 19, 2024
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and memory efficient. Secondly, MFFM can effectively fuse the multi-domain features of CNN and Transformer to obtain more comprehen-

sive and compact fusion features. We use a Sandglass Block in the bottleneck layer to increasemodel performance and decrease the number

of parameters and calculations. This block is effective in reducing gradient confusion and information loss. Furthermore, we design a Bound-

ary Refinement Module (BRM) to precisely guide and delineate the fuzzy contours of lesion boundaries by utilizing the fine-grained neighbor-

hood contextual information and boundary information of the dual encoder fusion features. Combined with the use of a Feature Adaptive

Guided Module (FAGM), the mismatched lesion boundaries can be learned and improved while reducing the feature gap between the

encoder and decoder. Finally, the processedmulti-scale features enter the decoder for layer-by-layer progressive upsampling feature decod-

ing to obtain the dense prediction segmentation results.
CNN and Transformer dual encoder

Transformer branch

The design of the Transformer branch follows the classic encoder-decoder structure. For the input image X˛RH3W3C , firstly, overlapping

patch tokens of size 434 are extracted from the input image using the overlapping patch embedding module.62 Then, the tokenized input

z˛Rn3d passes through the Transformer encoder to generate multi-scale features, where n is the number of patches and d is the embedding

dimension. The Transformer encoder is made up of three stacked encoder blocks, each of which is made up of two sequential dual trans-

former blocks and a patch merging layer and d is set to 64, 128, 320 and 512 respectively.

According to attention mechanism research,63 combining spatial attention and channel attention can allow the model to catch more

contextual features than it can with just a single attention. Therefore, we use a dual transformer block that combines efficient attention (spatial

attention) and transpose attention (channel attention).39

Compared with the standard self-attention with quadratic computational complexity, the complexity of the dual transformer block is

greatly reduced to the linear dimension. In Figure S2, the detailed structure is shown.

Efficient attention is proposed by Zhuoran et al.,64 which proposes an efficient method for computing the self-attention process for the

case where conventional self-attention will generate redundant context matrices. Efficient attention produces a new representation by first

normalizing the key and query, then multiplying the key and value, and finally multiplying the resulting global context vector with the query.

See Equation 9 for the calculation process:

EðQ;K;VÞ = rqðQÞ
�
rkðKÞTV

�
(Equation 9)

where Q, K and V denote query, key, and value vectors, respectively, and rq and rk are softmax regularization functions for queries and keys,

respectively. When using rq and rk , this process produces an equivalent dot-product attention output.

Transpose attention, a channel attentionmechanism that can effectively capture the full channel dimension, was originally proposed by El-

Nouby et al.65 as shown in Equations 10 and 11:

TðQ;K;VÞ = VCT ðK;QÞ (Equation 10)
CT ðK;QÞ = Softmax
�
KTQ

�
t
�

(Equation 11)

where CT is the context vector of transpose attention, and t is the temperature parameter. The temperature parameter was introduced to

counteract the scaling of the l2 norm applied to queries and keys before computing attention weights.

Therefore, the dual transformer block is made up of efficient attention followed by an add&norm, and transpose attention followed by an

add&norm. The calculation process is shown in Equations 12, 13, 14, 15, and 16:

EblockðX;Q1;K1;V1Þ = EðQ1;K1;V1Þ+X (Equation 12)
FFN1ðEblock Þ = FFNðLNðEblock ÞÞ (Equation 13)
Tblock ðEblock ;Q2;K2;V2Þ = TðFFN1ðEblock Þ + Eblock Þ+ FFN1ðEblock Þ (Equation 14)
FFN2ðTblock Þ = FFNðLNðTblock ÞÞ (Equation 15)
DualTransformer ðTblock Þ = FFN2ðTblock Þ+Tblock (Equation 16)

where Eð $Þ and Tð $Þ represent efficient attention and transpose attention respectively, Eblock represents efficient attention block, and Tblock

represents transpose attention block. Q1;K1;V1 are the keys, queries, and values calculated based on the input feature X, and Q2;K2;V2 are

the keys, queries, and values calculated based on the input of the transpose attention block. FFN stands for Mix-FFN feedforward network.62

The computation method is presented in Equation 17:

FFNðXÞ = FCðGELUðDW � ConvðFCðXÞÞÞÞ (Equation 17)

where FC stands for fully connected layer, GELU stands for GELU activation function,66 and DW-Conv stands for depth convolution.67
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In patch merging, we combine 232 patch tokens to minimize the spatial dimension while doubling the channel dimension, similar to how

CNN frequently uses pooling to execute downsampling operations to gather contextual data. This enables the Transformer encoder to

obtain hierarchical multi-scale representations.18 The output of the last encoder block is subjected to layer normalization to produce the en-

coded sequence zL ˛Rn3d . Next, the encoder features are decoded using a progressive upsampling method.21 Specifically, we first reshape

the encoder output to t0 ˛R
H
163

W
1634C , which can be viewed as a 2D feature map with 4C channels. Then, to restore the spatial resolution, two

successive standard upsampled convolutional layers are employed,38 resulting in features t1 ˛R
H
83

W
832C and t2 ˛R

H
43

W
43C , respectively. The de-

coder’s multi-scale feature maps t0, t1 and t2, along with the matching feature maps extracted by the CNN branch, will be fused.

CNN branch

To capture contextual features and preserve certain spatial details through convolutional neural networks, we use Res2Net50 52 as the backbone

network of the CNN encoder. Traditionally, encoder features are progressively downsampled to H
323

W
32. Combined with the advantage that the

Transformer can capture the global context information, wedelete the last encoding block of the original CNN, and the remaining four encoding

blockseachperformadownsamplingoperationwitha ratioof 2.We fuse theoutputsof the fourth (f0 ˛R
H
163

W
1634C ), third (f1 ˛R

H
83

W
832C ), and second

(f2 ˛R
H
43

W
43C ) encoding blocks with the corresponding Transformer-decoder feature maps t0, t1 and t2. These three maps, namely f0, f1 and f2,

contain rich spatial details and contextual semantics for improving the feature representation of the Transformer decoder.

Meanwhile, to make the network retain more useful information and improve the performance of boundary segmentation during down-

sampling, we present the SoftPool innovative pooling algorithm in the CNN encoder. Commonly used pooling layers mainly include two

types: maximum pooling and average pooling. However, a large number of experimental analyses indicated that these two processes will

significantly degrade the performance of the entire network by losing the majority of the image information when pooling. Unlike maximum

pooling and average pooling, SoftPool is a fast and efficient pooling method, and SoftPool can accumulate activations in an exponentially

weighted manner. More information is preserved in the downsampled activation map, which leads to better classification accuracy while be-

ing computationally and memory efficient.

SoftPool uses a smooth maximum approximation of the activation value in the kernel area R, and each activation value of the index i to ai
will be multiplied by a weight wi, which is equal to the natural exponent of the activation value divided by the natural exponent sum of all

activation values. In the area adjacent to the kernel R, the output value ~a of SoftPool can be obtained by summing all the weighted activation

values. For the specific operation process, see Equations 18 and 19:

wi =
eaiP

j˛R

eaj
(Equation 18)
~a =
X
i˛R

wi � ai (Equation 19)

Multi-domain feature fusion module

The Transformer method designed for NLP tasks and the CNNmethod designed for vision tasks have completely different feature extraction

methods and generation domains. We provide a unique Multi-domain Feature Fusion Module (MFFM) to efficiently combine the encoded

features of CNN and Transformer. It combines self-attention andmulti-domain fusion mechanism, which can realize the feature complemen-

tary function between CNN and Transformer and consists of Channel Attention Block (CAB), Spatial Attention Block (SAB), Cross-Domain

Enhancement Block (CDEB), and Feature Fusion Block (FFB). The Figure S3 shows the detailed structure.

Channel Attention Block

Channel Attention Block (CAB) refers to Multi-Spectral Channel Attention.68 It introduces more information by promoting the global average

pooling (GAP) with more frequency components to promote the global information from the Transformer branch, effectively achieving a

mixture of channels and self-attention. First, the input X (ti) is divided into multiple blocks along the channel, recorded as ½X0;X1;/;Xn� 1�,
each of which is Xi ˛RH3W3C0

, i˛ f0;1;/;n � 1g, C0 = C
n and each block is assigned a two-dimensional DCT component, then the output

of each block is shown in Equation 20.

Freqi = 2DDCTu;v�Xi
�
=

XH� 1

h = 0

XW � 1

w = 0

Xi
:;h;wB

u;v
h;w (Equation 20)

where ½u; v� represents the component subscript of the two-dimensional DCT. Different frequency components are used for each block. After

all, blocks are concat, the multispectral vector Freq˛RC will be obtained, and then this vector will be delivered to the fully connected layer

frequently used in channel attention for learning. Obtain the attentionmapbt i ˛RH3W3C of the final output and the specific operation is shown

in Equations 21 and 22:

Freq = concat
��
Freq0;Freq1;/;Freqn� 1

��
(Equation 21)
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ChannelAttention = Sigmoid
�
FC

�
Freq

��
(Equation 22)

Spatial Attention Block

Since low-level CNN features could be noisy, Compat Position Attention69 is used as a spatial filter to improve local details and suppress

irrelevant regions. It captures multiple aggregation centers with various contexts and enhances the relation-aware center-weighted sum

of each spatial pixel through a simple pooling operation. First, the given feature X˛RC3H3W (fi) is input to the multi-scale pooling layer,

and using a 131 convolutional layer, the pooling features with bin sizes of 131, 232, and 333 are generated. Then, each bin of the pooled

features is considered a cluster center, and the features are reshaped with a bin size of L3L to RC3L2 . Finally, the aggregation centers are

obtained by concatenating the bins of all pooled features, where M is the sum of the bin numbers of all pooled features.

Next, cluster centers are adaptively integrated into each pixel according to semantic relevance. We feed features X and F into 131 con-

volutional and fully connected layers, obtaining B˛RC3H3W and C˛RC3M, respectively. The spatial attentionmap S˛RN3M is created using

a softmax layer and matrix multiplication, N = H3W is the number of pixels. The cluster center F is then input to the fully connected layer to

obtain the feature D˛RC3M. The result is then reshaped to RH3W3C by performing a matrix multiplication between it and the transpose of S.

To obtain the final output attentionmapbf i ˛RH3W3C , wemultiply it by a scale parameter and execute an element-wise sumoperationwith the

feature X. Equations 23 and 24 illustrate the standard calculation procedure.

sji =
exp

�
Bj$Ci

�
PM
i = 1

exp
�
Bj$Ci

� (Equation 23)
SpatialAttentionj = a
XM
i = 1

�
sjiDi

�
+Xj (Equation 24)

where sji measures the relationship between the i-th center and the j-th pixel, and a is the scale parameter, starts with a value of 0, and grad-

ually learns to addmore weights. Introducing the learnable a allows the network to first rely on cues in the local neighborhood (because this is

easier) and then gradually learn to assign more weight to non-local evidence. The reason for this is that we want to learn simple tasks first and

then gradually increase the complexity of the tasks.

Cross domain enhancement block

The Cross-Domain Enhancement Block (CDEB) uses the Bilinear Hadamard product70 to model the cross-domain correlation between the

features of the two transform domains of the Transformer and the CNN encoder, and after passing through the convolutional layer, cross-

domain fusion features bb i ˛RH3W3C are obtained. It can enhance important information in both feature maps and suppress insignificant fea-

tures. By using CDEB, we extract mutually salient features in CNN and Transformer branches to further improve accuracy.

Feature Fusion Block

The feature fusion block (FFB) generates the final multi-domain fusion feature map mi ˛RH3W3C by using the residual and reshaping oper-

ations after deep-stitching the cross-domain fusion feature bb i with the channel attention feature mapbt i and the spatial attention feature mapbf i. The specific operation is shown in Equations 25 and 26:

mi
0 = concat

�bb i;bt i;bf i� (Equation 25)
mi = Conv
�
mi

0

�
+PDBR

�
mi

0

�
(Equation 26)

where PDBR is a block consisting of Depthwise convolution (DW-Conv) and Pointwise convolution (PW-Conv), batch normalization (BN), and

rectified linear unit (ReLU),58 used for fusing cascaded features while lowering the number of parameters. Specifically, in the Multi-domain

Feature Fusion Module, we obtained the fusion feature representation of CNN and Transformer through the following operation process

(Equation 27, 28, 29, and 30).

bt i = ChannelAttention
�
ti
�

(Equation 27)
bf i = SpatialAttention
�
fi
�

(Equation 28)
bb i = Conv
�
tiWi

1 1 fiWi
2

�
(Equation 29)
mi = FeatureFusion
�bb i ;bt i;bf i� (Equation 30)
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where Wi
1 ˛RDi3Li , Wi

2 ˛RCi3Li , i = 0, 1, 2, 1 are Hadamard products, and Conv is the 333 convolutional layer.
Sandglass Block

By using the bottleneck layer, one may not only decrease the number of parameters and hence the quantity of calculation but also complete

data training and feature extraction following dimensionality reduction more quickly and intuitively. By adopting two design principles, the

inverted residualmodule58modifies the conventional residual bottleneck: learning to invert the residual and using a linear bottleneck, making

it a commonly used bottleneck layer in the design of existing network architectures. Information loss and gradient ambiguity could yet result.

So, we use the Sandglass Block,71 a bottleneck design that conducts identity mapping and spatial transformation in higher dimensions, suc-

cessfully minimizing information loss and gradient confusion. The Sandglass Block constructs shortcut connections between linear high-

dimensional representations as opposed to the inverted residual block, which creates shortcuts between linear bottlenecks, and its structure

protects more data transferred between blocks. Additionally, more gradients are propagated backward to better optimize network training

as a result of high-dimensional residuals.72 Additionally, Sandglass Block employs them in the extended high-dimensional feature space

rather than placing the spatial convolution into the compression channel’s bottleneck, which is a successful method to enhance the model’s

performance. To save on computing costs, pointwise convolution maintains the channel reduction and expansion process. Given an input of

F˛RDf3Df3M, the output vector of the bottleneck block is G˛RDf3Df3M, and the specific operation process is shown in Equations 31 and 32:

bG = 41;p41;dðFÞ (Equation 31)
G = 42;d42;pðbGÞ+ F (Equation 32)

where 4i;p and 4i;d are the i-th pointwise convolution and depthwise convolution, respectively. In comparison to inverting the residual block,

richer feature representations can be retrieved because both depthwise convolutions are carried out in a high-dimensional space.
Boundary Refinement Module

Skin lesions usually have fuzzy lesion boundaries, and the localization results generated by conventional decoder step-by-step upsampling

are far from meeting its accuracy requirements.27

According to studies, local context information at lesion boundaries has the greatest potential for boundary delineation, whereas bound-

ary information has the potential to guide the work of feature extraction in segmentation by giving fine-grained boundary restrictions.73

Therefore, we designed a Boundary Refinement Module (BRM), which accurately guides and depicts the fuzzy outline of the lesion boundary

by using the fine-grained neighborhood context information and boundary information of the dual encoder fusion feature. The particular

structure is displayed in Figure S4.

First, the i ði = 1; 2Þ th-level fusion featuremi ˛RH3W3C from theMulti-domain Feature FusionModule uses a series of convolutional layers

andmultiplication operations to generate the corresponding neighborhood predictionmapmi
C ˛RH3W3C . It is depth concatenated with the

boundary mask mi
B ˛RH3W3C generated by the upsampled result ui ˛RH3W3C of the i � 1 ði = 1; 2Þ th-stage decoder. Convolutional layers

are then employed to refine the boundary and correct prior predictions, driven by the contextual information, to produce the final output oi ˛
RH3W3C . The overall process is shown in Equations 33 and 34.

mi
C = Conv

�
mi

�
5mi (Equation 33)
oi = Conv
�
concat

�
mi

C;m
i
B

� �
(Equation 34)

The upsampling result ui generates a binary segmentation map si through the process of Equations 35 and 36:

siðjÞ =

	
1; if s

�
uiðjÞ�>0:5

0; otherwise
(Equation 35)
sðxiÞ =
exp xmP
n
exp xn

(Equation 36)

where j is the index of the pixel position and s is the softmax activation function.

The distance to the lesion boundary is then filled in at each pixel position of the lesion region using a distance transform applied to si.74 By

simply transposing si and conducting distance transformation, on the other hand, it is possible to determine the pixel distances of non-lesion

regions. By normalizing and adding the two distance maps, the overall distance map is created, and then the border mask mi
B can be ac-

quired, as shown in Equation 37, 38, and 39:

si = 1 � si (Equation 37)
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di =
DTðsiÞ

maxjDT ½siðjÞ�+
DTðsiÞ

maxjDT ½siðjÞ�
(Equation 38)
mi
B = 1 � di (Equation 39)

where di is equal to 0 at the lesion boundary and 1 at the point furthest from the boundary, respectively, and si is the transpose of si.
Feature Adaptive Guided Module

Since we use a dual encoder based on CNN and Transformer, there is no need to use additional complex components to capture long-term

dependencies. We design a Feature Adaptive Guided Module (FAGM). FAGM can learn and improve mismatched lesion boundaries while

reducing the feature gap between the encoder and decoder.75 Two parallel convolution branchesmake up FAGM, one of which has k31 and

13k convolution with a kernel size of 3. The other branch contains a 131 convolution, and the outputs of the two branches are summed

element-wise to obtain the result. To better capture skin lesion boundaries, choose a convolutional layer with a kernel size of 3 to extract

fine and local information. The number of nonlinear layers is increased via convolutions utilizing 131 kernels followedby ReLU activation layers

without noticeably increasing the number of parameters or computation.We use a Feature AdaptiveGuidedModule in each skip connection.

Given a feature input of oi ˛RH3W3C , as the encoder level deepens, 2, 4, and 6 basic blocks are used in FAGM0, FAGM1, and FAGM2 to

match the feature distribution between the encoder and decoder, resulting in an output of boi. This is because the level of the extracted feature

map is also changing from low to high as the encoder level deepens. Comparedwith attention gates14 andmulti-scale skip connections,76 our

FAGM is a memory-efficient and lightweight module, and its parameters are much smaller than the above two methods.

Subsequently, in the decoder block of each layer, the adaptive encoder feature boi from FAGM and the upsampling feature ui from the

previous layer are deeply concatenated and then input into the convolutional layer and ReLU to obtain pi , and the segmentation result Si

consists of a segmentation head generation with sigmoid activation function and 1 3 1 convolutional layer.
QUANTIFICATION AND STATISTICAL ANALYSIS

Dermoscopic image segmentation of skin lesions can be thought of as a binary classification task at the pixel level: background or skin lesion.

Binary cross-entropy (BCE) loss and SoftDice loss are combined into a weighted total to train the complete network end-to-end. Following are

the definitions for BCE loss, SoftDice loss, and weighted total loss (Equations 40, 41, 42, 43, and 44):

LBCE = � 1

N

XN
i = 1

Gi $ logðPiÞ + ð1 � GiÞ$logð1 � PiÞ (Equation 40)
Dice =

2
PN
i = 1

Gi$Pi+e

PN
i = 1

Gi+
PN
i = 1

Pi+e

(Equation 41)
Diceb =

2
PN
i = 1

ð1 � GiÞ$ð1 � PiÞ+e
PN
i = 1

ð1 � GiÞ+
PN
i = 1

ð1 � PiÞ+e
(Equation 42)
LSoftDice = 1 � ðDice + DicebÞ =2 (Equation 43)
L = lLBCE + ð1 � lÞLSoftDice (Equation 44)

whereGi ˛ f0; 1g and Pi ˛ f0; 1g represent the ground truth of the i-th pixel and the probability of predicting that it belongs to the segmented

area,N = H3W is the number of pixels, and e˛R provides numerical stability to prevent the denominator frombeing 0. l is the relative impor-

tance weight, which is set to 0.8 according to the experimental results.

We perform additional deep supervision on the decoder features t2 at the third layer of the Transformer branch, the outputm0 of theMulti-

domain Feature Fusion Module at the first layer, and the segmentation results Siði = 0; 1; 2Þ at each layer of the decoder to improve the

gradient flow. As a result, Equation 45 illustrates an extension of the total loss function.

Lsum = L
�
G;head

�
t2
��

+ L
�
G; head

�
m0

��
+

X
i = 0;1;2

L
�
G; head

�
Si�� (Equation 45)

where G represents ground truth, and the head represents the segmentation head.
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