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Abstract. It has been reported that intestinal epithelial barrier 
dysfunction serves an important role in the development of 
liver cirrhosis. However, at present there is no satisfactory 
treatment for intestinal mucosal lesions and ulcers associated 
with cirrhosis. The aim of the present study was to investigate 
the effect of Bletilla striata polysaccharide (BSP) on intes-
tinal epithelial barrier disruption in rats with thioacetamide 
(TAA)‑induced liver cirrhosis. Rats were randomly divided 
into 5 groups (n=10): BSP low dosage (15 mg/kg), BSP middle 
dosage (30 mg/kg), BSP high dosage (60 mg/kg), experiment 
and control groups. All groups except control group were admin-
istered with TAA (200 mg/kg/day) to induce liver cirrhosis. 
Following modeling, rats in the low, middle and high‑dose 
BSP groups received BSP. ELISA kits were used to measure 
the endotoxin, alanine transaminase (ALT) and aspartate 
transaminase (AST) levels in the portal vein, while interleukin 
(IL)‑6 and tumor necrosis factor (TNF)‑α expression in the ileal 
tissue was measured. Reverse transcription‑quantitative poly-
merase chain reaction (RT‑qPCR) and western blotting were 
used to detect the expression of zonula occludens (ZO)‑1 and 
occludin mRNA and protein, respectively. Intestinal epithelial 
tissue pathology was detected using hematoxylin‑eosin (HE) 
staining. Immunohistochemistry was performed to assess the 

expression of ZO‑1 and occludin in intestinal epithelial tissues. 
Following treatment with BSP, ALT, AST and endotoxin levels 
in the portal vein, as well as IL‑6 and TNF‑α expression in 
ileal tissues, were significantly decreased compared with 
model group (P<0.05 or 0.01). Furthermore, BSP treatment 
upregulated the expression of ZO‑1 and occludin mRNA and 
protein compared with the model group (P<0.05 or 0.01) and 
cytoplasmic staining for these proteins was increased. The 
degree of intestinal epithelial tissue pathological damage was 
significantly reduced in the BSP groups. In conclusion, BSP 
is able to reduce endotoxin levels, inhibit the inflammatory 
cytokines IL‑6 and TNF‑α and elevate expression of ZO‑1 and 
occludin at tight junctions. Together, these results suggest a 
novel protective agent for the restoration of intestinal epithelial 
barrier disruption.

Introduction

Cirrhosis is the end stage of chronic liver disease and a major 
risk factor of hepatocellular carcinoma (1). In recent years, it has 
been reported that intestinal barrier disruption and increased 
intestinal permeability may lead to bacterial translocation (BT) 
and absorption of endotoxemia, which increases susceptibility 
to infection (2). The intestinal barrier includes secreted mucus 
and the epithelial cell layer itself. Increased intestinal perme-
ability is the main cause of intestinal barrier dysfunction (3). 
Intestinal epithelial monolayer cells are the main barrier of the 
intestinal mucosa, which serves an important role in preventing 
the infiltration of a number of harmful substances, allergens, 
toxins and luminal microbial pathogens (4,5). The functional 
integrity of the epithelial barrier is maintained by intercel-
lular tight junctions (TJs), which include the transmembrane 
protein occludin, claudins and the cytoplasmic protein zonula 
occludens 1 (ZO‑1) (6). Intercellular TJ protein destruction is 
associated with a number of diseases, including cirrhosis (7). 
Therefore, restoring the integrity of the intestinal barrier is an 
important step in preventing intestinal endotoxemia.
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Lipopolysaccharide (LPS), also known as endotoxin, 
is the main component of the outer wall of Gram‑negative 
bacteria and is released from the bacterial cell wall via shed-
ding or bacterial lysis  (8,9). Endotoxin causes an increase 
in intestinal permeability by activating proinflammatory 
cytokines, including tumor necrosis factor‑α (TNF‑α), inter-
leukin‑6 (IL‑6) and nitric oxide, and injuring the intercellular 
TJ between epithelial cells (10,11). It has been reported that 
patients with cirrhosis develop intestinal endotoxemia with an 
incidence of 79‑92% (12), while other clinical and experimental 
studies suggest that liver cirrhosis is associated with endotox-
emia (13,14).

Bletilla striata is a traditional medicine that has been widely 
used to treat ulcers, bleeding, burns, bruises and many other 
diseases for >1,000 years (15,16). B. striata polysaccharide 
(BSP) is extracted from B. striata and consists of α‑mannose, 
β‑mannose and β‑glucose (17). BSP has a number of biological 
functions, including anti‑inflammatory (18), anti‑tumor (19), 
anti‑fibrosis (20) and antibacterial (21) properties, as well as 
inducing endothelial cell proliferation and vascular endothe-
lial growth‑factor expression (16). However, to the best of our 
knowledge, no previous studies have investigated the protective 
role of BSP in epithelial barrier disruption.

The aim of the present study was to investigate whether 
BSP is able to restore the integrity and function of the intestinal 
epithelial barrier via inhibiting the expression of inflammatory 
cytokines and improving TJs in the small intestine of rats with 
thioacetamide (TAA)‑induced liver cirrhosis.

Materials and methods

Chemicals and reagents. BSP (≥95% titration) was purchased 
from Dalian MeiLun Biotechnology Co., Ltd. (Dalian, 
China). TAA was purchased from Sigma‑Aldrich (Merck 
KGaA, Darmstadt, Germany) and dissolved in physiological 
saline (0.9% NaCl) to give a 4% solution for animal experi-
ments. Rabbit anti‑rat zonula occludens (ZO)‑1 and occludin 
were obtained from ProteinTech Group, Inc. (Chicago, IL, 
USA). ELISA kits for serum alanine aminotransferase (ALT; 
cat.  no.  C009‑2) and aspartate aminotransferase (AST; 
cat. no. C0010‑2) were purchased from Nanjing Jiancheng 
Bioengineering Institute (Nanjing, China). ELISA kits for IL‑6 
(cat. no. E‑EL‑R0015), TNF‑α (cat. no. E‑EL‑R0019) and endo-
toxin (cat. no. E‑EL‑R0589) were purchased from Elabscience 
Biotechnology (Wuhan, China). GAPDH and horseradish 
peroxidase (HRP)‑labeled secondary antibodies were acquired 
from Wuhan Boster Biotechnology Co., Ltd. (Wuhan, China). 
RNAiso Plus, PrimeScript™ RT reagent and SYBR Premix Ex 
Taq kits were purchased from Takara Bio, Inc. (Otsu, Japan).

Animals and experimental protocols. A total of 50 healthy male 
Sprague‑Dawley rats (age, 6 weeks; weight, 180‑220 g) were 
purchased from Hubei Provincial Center for Disease Control 
and Prevention (Wuhan, China). All animals were housed at 
22‑25˚C, relative humidity of 50±10% with a 12 h light/dark 
cycle and free access to water and food. All animal experiment 
protocols used in the present study followed internationally 
accepted principles and were approved by The Institutional 
Animal Care and Use Committee of Tongji Medical College, 
Huazhong University of Science and Technology (Wuhan, 

China). Rats were randomly divided into 5 groups (n=10) as 
follows: 15 mg/kg BSP, 30 mg/kg BSP, 60 mg/kg BSP, experi-
ment and control groups. Rats in the BSP and experimental 
groups were administered intraperitoneally (IP) with TAA 
(200 mg/kg, dissolved in 0.9% w/v saline solution to give 4% 
solution) twice per week for 14 weeks to induce liver cirrhosis. 
The control group received IP injections of the same volume of 
saline (0.9% w/v). At 12 weeks, 3 rats from the experimental 
and control groups were selected at random and anesthetized 
by IP. Injection with 10% chloral hydrate (300 mg/kg). The 
abdominal cavity was opened with scissors. Livers were 
harvested and examined using hematoxylin and eosin (HE) 
staining to confirm the development of liver cirrhosis. Rats 
in the experimental group were administered with saline at 
1 ml/100 g once daily by gavage for 2 weeks while rats in the 
BSP groups were administered with BSP at 15, 30 or 60 mg/kg 
for 2 weeks at concentrations of 1.5, 3 or 6 mg/ml at 1 ml/100 g 
once daily by gavage. TAA administration was continued until 
the end of the 14‑week experimental period. At 14 weeks, 
the remaining rats were injected IP with 10% chloral hydrate 
(300 mg/kg) and dissected. Blood samples were collected from 
portal veins and intestinal tissues were harvested for further 
analysis.

Serum alanine aminotransferase (ALT) and aspartate amino‑
transferase (AST) analysis. Blood samples were obtained and 
centrifuged at 1,760 x g for 15 min at 4˚C to collect the serum. 
Serum ALT and AST levels were determined using assay kits 
according to the manufacturer's protocols.

Measurement of serum endotoxin levels. Endotoxin levels were 
measured in all groups using specific ELISA kit according the 
manufacturer's instructions. Briefly, portal vein blood samples 
were collected and centrifuged at 1,760 x g for 15 min at 4˚C 
to collect plasma, which was subsequently diluted with endo-
toxin‑free water and incubated at 70˚C for 10 min. Samples 
were then incubated in ice‑cold water for 3 min, following 
which limulus reagents and 200 µl processed mixing solution 
were added and 100 µl of mixture was transferred to a 96‑well 
microplate for analysis. The concentration of endotoxin was 
calculated using a standard curve and the absorbance of each 
well was measured at 450 nm using a microplate reader to 
calculate the concentration of endotoxin (EU/ml).

ELISA measurement of IL‑6 and TNF‑α in ileal tissues. 
Harvested ileal tissues were cut into small pieces and homog-
enized in pre‑cooled PBS containing proteinase inhibitors 
(BioSharp, Hefei, China). The supernatant of the homogenate 
was collected and ELISA was performed to measure the 
concentrations of IL‑6 and TNF‑α according to the manufac-
turer's protocol. All samples were tested in duplicate.

Reverse transcription‑quantitative polymerase chain reaction 
(RT‑qPCR). Total RNA was extracted from rat ileal tissues 
using RNAiso Plus according to the manufacturer's protocol 
and stored at ‑80˚C prior to use. cDNA was produced using a 
PrimeScript™ RT reagent kit with the following temperature 
protocol: 37˚C for 15 min and 85˚C for 5 sec. qPCR reac-
tions were performed using a StepOne Plus device (Applied 
Biosystems; Thermo Fisher Scientific, Inc., Waltham, MA, 
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USA) at 95˚C for 10 sec, followed by 40 cycles of 95˚C for 
5 sec and 60˚C for 20 sec according to the instructions of 
the SYBR Premix Ex Taq kit. Data were quantified using the 
2‑∆∆Cq method (22). Primers were synthesized by GenScript 
(Piscataway, NJ, USA) and sequences were as follows: ZO‑1, 
forward 5'‑GCT​CAC​CAG​GGT​CAA​AAT​GT‑3' and reverse 
5'‑GGC​TTA​AAG​CTG​GCA​GTG​TC‑3'; occludin, forward 
5'‑TTA​CGG​CTA​TGG​AGG​GTA​CAC‑3' and reverse 5'‑GAC​
GCT​GGT​AAC​AAA​GAT​CAC‑3'; and GAPDH, forward 
5'‑GGA​AAG​CTG​TGG​CGT​GAT‑3' and reverse 5'‑AAG​GTG​
GAA​GAA​TGG​GAG​TT‑3'.

Western blotting. Western blotting was performed as previ-
ously described  (23). Briefly, total proteins were extracted 
from the ileum tissue using radioimmunoprecipitation assay 
buffer (Beyotime Institute of Biotechnology, Wuhan, China). 
A bicinchoninic protein assay kit was used to measure protein 
concentrations. A total of 20 µg proteins in each sample were 
separated on 10% SDS‑PAGE gels and transferred to poly-
vinylidene fluoride membranes. Membranes were blocked 
with PBS containing 5% nonfat milk powder for 1 h at room 
temperature and incubated overnight at 4˚C with antibodies 
against ZO‑1 (1:1,000; cat. no. 21773‑1‑AP), occludin (1:1,000; 
cat. no. 13409‑1‑AP) and GAPDH (1:5,000; cat. no. BM1985). 
Membranes were washed three times with TBST and incu-
bated at 4˚C with HRP‑labeled secondary antibody (1:2,000; 
cat. no. BA1058) for 1 h. Membranes were washed with TBST 
three times and enhanced chemiluminescence (Millipore; 
Merck KGaA, Darmstadt, Germany) was used to identify 
immunoreactive bands and followed the manufacturer's 
protocol. Bands underwent densitometric analysis using the Fuji 
ultrasonic‑Doppler velocity profile (UVP) system and Image J 
software (v.1.50; National Institutes of Health, Bethesda, MD, 
USA).

Histopathology. Terminal ileal samples were collected, fixed 
in 4% paraformaldehyde solution at room temperature for 24 h, 
embedded in paraffin and cut into 4‑5 µm sections. Sections 
were deparaffinized using dimethyl benzene, dehydrated using 
alcohol for 2‑5 min at room temperature, washed with distilled 
water and stained with hematoxylin at room temperature 
for 10‑30 min. Excess stain was removed and sections were 

incubated with 1% acid alcohol for 30 sec at room temperature 
and dehydrated using gradient alcohol (70, 85, 95 and 100%; 
2‑3 min, respectively) at room temperature. Sections were 
stained with 0.5% eosin at room temperature for 2‑5 min, 
incubated with 95% alcohol at room temperature for 2 min and 
with xylene at room temperature for 10 min and finally sealed 
with a neutral balsam. Sections were mounted and histological 
changes were observed using light microscopy (magnification, 
x200).

Immunohistochemistry (IHC) of ileal proteins. The ileal tissue 
specimens were cut into 10 µm sections following dewaxing 
and hydrating. Sections were treated with 3% H2O2‑methanol 
to block endogenous peroxidase activity, following which they 
were incubated with 5% normal goat serum (Wuhan Boster 
Biological Technology, Ltd.) at room temperature for 10 min and 
incubated with ZO‑1 and occludin antibodies (dilution 1:200) 
overnight at 4˚C. Slides were subsequently washed with PBS 
and incubated with a biotinylated secondary antibody (1:500; 
cat. no. SA00004‑2; Wuhan Boster Biological Technology, 
Ltd.) for 1 h at room temperature. Slides were washed with PBS 
again and incubated with HRP‑labeled streptavidin (1:200; 
ab214880; Abcam) at 37˚C for 1 h. Samples were developed 
using diaminobenzene (DAB) at room temperature for 30 sec 
and counterstained with hematoxylin at room temperature for 
5 min. Slides were rinsed in distilled water and dehydrated, 
following which they were observed under a light microscope 
(magnification, x100).

Statistical analysis. Data are presented as the mean ± standard 
error of the mean. Data were compared between groups using 
one‑way analysis of variance with the Student‑Newman‑Keuls 
post‑hoc test. All statistical analyses were performed with SPSS 
software version 12.0 (SPSS, Inc., Chicago, IL, USA). P<0.05 
was considered statistically significant difference. Graphs were 
created using GraphPad Prism software (version 6; GraphPad 
Software, Inc., La Jolla, CA, USA).

Results

Liver histological changes in rats following treatment with 
thioacetamide for 12 weeks. As shown in Fig. 1A, the liver of 

Figure 1. Hematoxylin and eosin stained liver tissues from the (A) experiment and (B) control groups following thioacetamide administration for 12 weeks. 
Magnification, x100.
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the experiment group exhibited a lobular structure destruc-
tion, inflammatory cell infiltration and the loss of structural 
integrity. The liver of the control group (Fig. 1B) revealed 
structural liver integrity without inflammatory cell infiltra-
tion.

Activity of transaminases. The expression of serum AST and 
ALT was assessed using ELISA kits and was demonstrated to 
be significantly increased in the experiment group compared 
with the control (Fig. 2A and B). However, treatment with BSP 
at all concentrations resulted in a significant reduction in serum 

ALT and AST expression compared with the experiment group 
(Fig. 2A and B). 

BSP reduces TAA‑induced plasma endotoxin level. As shown 
in Fig. 2C, plasma endotoxin levels were significantly increased 
in the experiment group compared with the control group. 
Treatment with BSP at all dosages obviously decreased endo-
toxin levels compared with the experiment group. 

Effects of BSP on inflammatory cytokines expression in ileal 
tissue. Levels of the inflammatory cytokines IL‑6 and TNF‑α 

Figure 3. Effects of BSP on expression of (A) IL‑6 and (B) TNF‑α in rat ileal tissues. *P<0.05 and **P<0.01 vs. experiment group; #P<0.01 vs. control group. 
Data are presented as the mean ± standard error of the mean (n=3). BSP, Bletilla striata polysaccharide; IL, interleukin; TNF, tumor necrosis factor.

Figure 2. ELISA was used to assess the effect of BSP on serum (A) ALT, (B) AST and (C) endotoxin levels. *P<0.05 and **P<0.01 vs. experiment group; #P<0.01 
vs. control group. BSP, Bletilla striata polysaccharide; ALT, alanine transaminase; AST, aspartate transaminase.

Figure 4. Effects of BSP on the expression of (A) ZO‑1 and (B) occludin mRNA in rat ileal tissues. *P<0.05 and **P<0.01 vs. experiment group; #P<0.01 vs. 
control group. Data are presented as the mean ± standard error of the mean. BSP, Bletilla striata polysaccharide; ZO, Zonula occludens.
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were measured in the ileal tissues. Compared with the control 
group, the expression of IL‑6 and TNF‑α was significantly 
increased in the experiment group (Fig. 3). However, following 
treatment with BSP at all concentrations, IL‑6 and TNF‑α 
expression was significantly decreased compared with the 
experiment group (Fig. 3).

Effects of BSP on the expression of ZO‑1 and occludin mRNA 
in ileal tissues. RT‑qPCR was used to assess the effect of BSP 
on ZO‑1 and occludin mRNA expression. It was demonstrated 
that ZO‑1 and occludin mRNA was downregulated in the 
experiment group compared with the control group (Fig. 4), 
while treatment with BSP significantly upregulated ZO‑1 
and occludin mRNA compared with the experiment group 
(Fig. 4).

Effects of BSP on the expression of ZO‑1 and occludin protein 
in ileal tissues. Compared with the control group, the expres-
sion of ZO‑1 and occludin proteins in the experiment group was 
significantly decreased (Fig. 5). However, following treatment 
with BSP at different concentrations, the expression of ZO‑1 

and occludin proteins was significantly increased compared 
with the experiment group (Fig. 5).

Histological changes in ileal tissues. Intestinal mucosal damage 
was ameliorated in the BSP treatment groups, with less intestinal 
wall structure destruction and more villi observed (Fig. 6A‑C). 
These effects were most notable in the 60 mg/kg BSP group 
(Fig. 6C). In the experiment group (Fig. 6D), the structure of 
the intestinal wall was damaged and the intestinal villus was 
fractured, shortened and atrophic. Histopathology of the intes-
tinal mucosa in the control group revealed that the intestinal 
layer had a clear structure with intact surface epithelium and 
neatly arranged intestinal villus (Fig. 6E).

Effect of BSP on ZO‑1 and occludin protein expression 
in intestinal tissues. IHC was performed and the results 
demonstrated that the control group was positively stained for 
ZO‑1 and occludin, with dark brown coloration (Fig. 7A). In 
the experiment group, however, positive ZO‑1 and occludin 
staining was significantly decreased (Fig. 7A and B). The degree 
of positive staining observed in the BSP treatment groups was 

Figure 6. Pathological changes in ileal tissues following treatment with BSP were assessed using hematoxylin and eosin staining (magnification, x200). 
Representative images of (A) 15, (B) 30 and (C) 60 mg/kg BSP groups, (D) experiment group and (E) control group. BSP, Bletilla striata polysaccharide.

Figure 5. ZO‑1 and occludin expression in rat ileal tissues were (A) measured using western blotting and (B) quantified using GAPDH as a reference following 
BSP treatment. *P<0.05 and **P<0.01 vs. experiment group; #P<0.01 vs. control group. Data are presented as the mean ± standard error of the mean. ZO, Zonula 
occludens; BSP, Bletilla striata polysaccharide.
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significantly increased in compared with the experiment group 
(Fig. 7A and B). 

Discussion

Cirrhosis is a common chronic progressive liver disease, which 
is caused by one or more long‑term or repeated effects, including 
chronic viral infection (hepatitis B and C), immunologic attack 
and parasitic diseases (24). The significance of intestinal epithe-
lial barrier dysfunction as a critical cofactor in liver cirrhosis has 
been reported over the past decades (25,26). Intestinal epithelial 
cells prevent the invasion of unwelcome microorganisms, while 
LPS‑induced intestinal barrier dysfunction leads to an increase 
in intestinal mucosal permeability, which accelerates the release 
of inflammatory factors (27) and intestinal cytokines, resulting 
in expedited intestinal damage and inflammation (28). IL‑6 and 
TNF‑α are the critical cytokines associated with inflammation 
and are common treatment targets for inflammatory diseases, 
including liver cirrhosis (29,30). TNF‑α serves an important 
role in the progression of intestinal epithelial barrier injury (31) 
and is able to initiate the production of cytokines, including 
IL‑6, which further exacerbates intestinal epithelial barrier 
damage (32). A clinical study reported that TNF‑α and IL‑6 
were significantly upregulated in patients with cirrhosis (33). 
Taken together, these results suggest that inhibiting the expres-
sion of inflammatory factors may be an effective method for 
protecting against intestinal endotoxemia. 

In the present study, intestinal IL‑6 and TNF‑α were upreg-
ulated in a TAA‑induced cirrhosis rat model and this effect 
was inhibited by BSP treatment. These results suggest that 
cirrhosis is associated with the overexpression of inflammatory 
cytokines and that BSP is able to effectively ameliorate this.

TJs are localized at the apical end of lateral membranes 
and are some of the most important structures responsible for 
preventing toxic substances from the intestine penetrating the 

surrounding tissue through the epithelial cell layer (34,35). 
TJ proteins are located between epithelial cells and comprise 
a variety of transmembrane and membrane‑associated 
proteins  (36), including ZO‑1 and occludin. The primary 
function of these molecules is to act as a selective intercel-
lular barrier to regulate the diffusion of macromolecules (37). 
Occludin is a four‑transmembrane protein, comprising four 
putative membrane‑spanning segments (38), which is exclu-
sively localized at TJs in epithelial and endothelial cells (39). 
It has been reported that high occludin expression is corre-
lated with low endothelium permeability (40). Another study 
demonstrated that downregulating the expression of occludin 
results in increased intestinal permeability, allowing bacteria, 
endotoxins and other macromolecules to enter the body (41). 
As such, measuring occludin levels may reflect the integrity 
of the intestinal barrier (42‑44). ZO‑1 was the first TJ protein 
to be discovered (45) and is directly associated with occludin, 
serving an important role in regulating TJ barrier function (46). 
It has been reported that LPS is able to decrease the expression 
of ZO‑1 and occludin (47), which is consistent with the results 
of the present study.

In the present study, it was demonstrated that BSP is 
able to upregulate the expression of ZO‑1 and occludin in a 
TAA‑induced cirrhosis rat model. BSP is also able to reduce 
endotoxin levels and decrease the degree of intestinal mucosa 
damage. Taken together, these results suggest that BSP is able 
to preserve the barrier function of the epithelium by keeping 
TJs intact.

In summary, the results of the present study indicate that 
BSP is able to protect against intestinal epithelial barrier disrup-
tion in a TAA‑induced liver cirrhosis rat model via reducing 
endotoxin levels, inhibiting inflammatory cytokine expression 
and improving TJs, suggesting that BSP may have potential as 
a treatment for intestinal endotoxemia. However, it is important 
to elucidate the underlying mechanism of BSP in intestinal 

Figure 7. Immunohistochemistry was used to assess the effects of BSP on ZO‑1 and occludin expression (magnification, x100). (A) Representative images of 
tissues from each group and (B) quantified results. **P<0.01 vs. experiment group; #P<0.01 vs. control group. Data are presented as the mean ± standard error 
of the mean. BSP, Bletilla striata polysaccharide; ZO, Zonula occludens.
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endotoxemia. Future studies on the intestinal endotoxemia 
mechanisms of BSP may give a more complete understanding 
and further the development of novel methods to prevent and 
treat intestinal endotoxemia.
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