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Background: A detailed means of prognostic stratification in patients with non-small cell
lung cancer (NSCLC) is urgently needed to support individualized treatment plans.
Recently, microRNAs (miRNAs) have been used as biomarkers due to their previously
reported prognostic roles in cancer. This study aimed to construct an immune-related
miRNA signature that effectively predicts NSCLC patient prognosis.

Methods: The miRNAs and mRNA expression and mutation data of NSCLC was
obtained from The Cancer Genome Atlas (TCGA). Immune-associated miRNAs were
identified using immune scores calculated by the ESTIMATE algorithm. LASSO-penalized
multivariate survival models were using for development of a tumor immune-related
miRNA signature (TIM-Sig), which was evaluated in several public cohorts from the Gene
Expression Omnibus (GEO) and the CellMiner database. The miRTarBase was used for
constructing the miRNA-target interactions.

Results: The TIM-Sig, including 10 immune-related miRNAs, was constructed and
successfully predicted overall survival (OS) in the validation cohorts. TIM-Sig score
negatively correlated with CD8+ T cell infiltration, IFN-g expression, CYT activity, and
tumor mutation burden. The correlation between TIM-Sig score and genomic mutation
and cancer chemotherapeutics was also evaluated. A miRNA-target network of 10
miRNAs in TIM-Sig was constructed. Further analysis revealed that these target genes
showed prognostic value in both lung squamous cell carcinoma and adenocarcinoma.

Conclusions: We concluded that the immune-related miRNAs demonstrated a potential
value in clinical prognosis.

Keywords: NSCLC, immune infiltration, miRNAs, prognosis, miRNA-target network
July 2021 | Volume 11 | Article 7058691

https://www.frontiersin.org/articles/10.3389/fonc.2021.705869/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.705869/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.705869/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.705869/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.705869/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:jinshoude@163.com
mailto:yuanligong1994@163.com
https://doi.org/10.3389/fonc.2021.705869
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.705869
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.705869&domain=pdf&date_stamp=2021-07-01


Zhang et al. Immune Infiltration-Based miRNAs in NSCLC
INTRODUCTION

The most malignant and most commonly encountered lung cancer
subtype is non-small cell lung cancer (NSCLC) (1). The NSCLC
subtype can further be classified as either lung adenocarcinoma
(LUAD) or lung squamous cell carcinoma (LUSC). Forty percent of
all lung cancers are of the LUAD subtype, with LUSC reported as
the second leading cause of lung malignancy-related death, resulting
in an average of 400,000 deaths worldwide annually (2). Although
several new treatment regimens including chemotherapeutic and
biological agents have been introduced, the effectiveness of these
protocols have been marred by the occurrence of drug resistance,
leading to inevitably poor outcomes for patients with advanced
NSCLC (3). Immune-directed therapy has, in recent years, shown
better efficacy and lower toxicity rates over regular chemotherapy in
NSCLC. Nevertheless, durable benefits from immunotherapy are
reported in only 25–30% of patients (4). Therefore, more effective
prognostic biomarkers for risk stratification in NSCLC are required.

MicroRNAs (miRNAs) represent long, non-coding RNAs of
approximately 22 nucleotides in length. These molecules are central
in posttranscriptional regulation (5). Both tumor initiation and
metastasis have been reported to depend heavily on miRNA
expression, with certain miRNAs shown to be associated with
poor outcomes in NSCLC (6). A myriad of immune-related
processes such as the development, activation, and effector
functions of various innate and adaptive immune cells have been
linked to miRNAs, which therefore appear to be directly responsible
in regulating the infiltration of immune cells into tumors (7, 8).
Growing evidence has depicted the key function of the tumor-
infiltrating immune cell (TIIC) in tumor progression and prognosis
(9, 10). Signatures associated with TIIC show promising predictive
values in prognosis and responses to immunotherapy in patients
with NSCLC (11, 12). Previous research showed that these
signatures may be obtained by exploring the expression of certain
miRNAs. In cervical cancer, miR-1468-5p was found to upregulate
lymphatic PD-L1 and augment lymphangiogenesis, both of which
result in dysregulated T cell immunity (13). Reduced miR-4772-3p
levels were inversely related to the concentration of Tregs in
malignant pleural effusion (MPE) (8). Furthermore, the miR141-
CXCL1-CXCR2 pathway was found to modulate Tregs migration
into MPE (7). Nevertheless, these studies were on single miRNAs
only. An integratedmodel comprising of a variety of biomarkers has
been shown to offer higher predictive capabilities in comparison to
models of single biomarkers (14). Construction of multiple
biomarker models using conventional Cox regression models has
been problematic and often suffers from high rates of model
overfitting especially in the context of a large number of
biomarkers. The least absolute shrinkage and selection operator
(LASSO)-penalized Cox model has been introduced to implement
variable selection and has been applied successfully for creating
Abbreviations: NSCLC, non-small cell lung cancer; miRNAs, microRNAs;
TCGA, The Cancer Genome Atlas; LASSO, least absolute shrinkage and
selection operator; TIM-Sig, tumor immune-related miRNA signature; GEO,
Gene Expression Omnibus; OS, overall survival; TMB, tumor mutation burden;
CYT, cytotoxic activity; TIS, T cell infiltration score; APM, antigen presentation
machinery; TILs, tumor-infiltrating lymphocytes; MHC, major histocompatibility
complex; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma.
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models of several biomarkers (15). This study uses the LASSO
technique to construct a multi-miRNA-based signature to provide
an immune infiltration score (TIM-Sig score) which is able to
stratify NSCLS patients according to their prognosis. We further
systematically correlated the TIM-Sig score with available genetic
and clinical features of NSCLC patients.
MATERIALS AND METHODS

Dataset Preprocessing
Transcriptional profiles and clinical information for lung cancer
were obtained from the Gene Expression Omnibus (GEO, http://
www.ncbi.nlm.nih.gov/geo) and The Cancer Genome Atlas
(TCGA, https://portal.gdc.cancer.gov). The miRNA expression
profiles were obtained from the UCSC Xena browser (GDC hub:
https:/gdc.xenahubs.net). A total of 1,884 miRNAs were obtained
for the following analysis. Five of the following NSCLC cohorts were
also processed by log2 transformation: the TCGA-LUAD/LUSC
cohort, GSE16025 cohort, GSE27435 cohort, GSE31210 cohort, and
GSE3141 cohort. A brief summary of the clinical and pathological
characteristics is shown in Table 1. We also downloaded somatic
mutation data from TCGA as calculated by the mutect2 workflow.

LASSO Mixture and Cox Regression
Models for Predicting Survival
Tumor purity and tumor immune scores were derived using the
ESTIMATE algorithm which is a novel algorithm by Yoshihara
et al. It is a method using gene expression profiles to evaluate the
fraction of stromal and immune cells in tumor samples. The
ESTIMATE algorithm generates three scores: stromal score,
immune score, and estimate score (16). The immune score was
used to selected immune-related miRNAs. The Spearman
correlation coefficient between differentially expressed miRNAs
(DEMs) and the immune score was calculated with significance
set at (|R| > 0.2, P < 0.01). A total of 35 miRNAs significantly
correlated with the immune score were identified and analyzed
in the LASSO regression model. The R package “glmnet” and
“survival” were used to carry out LASSO and Cox regression
analyses to assess the relationship between overall NSCLS patient
survival and DEG expression levels. We identified a tumor-
infiltrating immune-related miRNA signature score (TIM-Sig
score) with the following formula:

TIM − sig score =o
n

1
coefi � EXPI

in which n represents the total number of prognostic miRNAs or
genes, EXPI represents genei profile expression and coefi
represents an estimate of the genei regression coefficient as
identified using the multivariable Cox regression analysis
or LASSO.

Approximation of Tumor-Infiltrating
Immune Cells
The proportion of immune cell infiltration was estimated using
the “GSVA” R package and 27 human immune cell phenotypes
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(17–19). In addition, factors related to tumor immunogenicity
were also contrasted between high- and low-risk groups. These
factors are as follows: tumor mutation burden (TMB) (17), IFN-g
expression signature (20), chromosomal instability level (HRD)
(21), immune cytotoxic activity (CYT) (22–24), T cell infiltration
score (TIS) (20, 25), relative antigen presentation machinery
(APM) (19), and tumor-infiltrating lymphocytes (TILs) (26–29).
All these factors were selected based on the status of specific
biomarker genes, such as the presence of costimulatory factors or
major histocompatibility complex (MHC) molecules.

Assessment of the Clinical Significance
of the miRNA Signature
To determine the value of the constructed model in the clinical
management of patients with lung cancer, miRNA profiles and drug
sensitivity IC50 values of the NCI-60 panel of human cancer cell
lines were extracted from the CellMiner database (https://discover.
nci.nih.gov/cellminer/) (30). The therapeutic effects of 161 Food and
Drug Administration (FDA)-approved drugs in NSCLC patients
were determined. The Wilcoxon test was used to analyze the
significance between differences in the IC50 Z-score between the
high- and low-risk cohorts. Results are depicted in terms of box
drawings plotted using the ggplot2 function of R.

MiRNA-Target Interactions
ThemiRTarBase (http://mirtarbase.cuhk.edu.cn/php/index.php) is
a database containing over 430,000 miRNA-target interactions
(MTIs) (31). All documented MTIs have been verified using next-
generation sequencing,microarray,western blot, and reporter assay
experiments. We obtained the target information of 10 miRNA in
TIM-Sig to construct the miRNA-target network.

Functional Analysis
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis was performed using the Database for Annotation,
Frontiers in Oncology | www.frontiersin.org 3
Visualization, and Integrated Discovery (DAVID) tool. We
obtained pathway function annotations of 1,862 target genes.
The statistical threshold was set as: P < 0.05.

Statistical Analysis
The R software (version 3.6.1, http://www.R-project.org) was used to
derive all statistical analyses. Differentially expressed miRNAs or
genes were calculated using R packages “DESeq2.” Spearman
correlation between signatures were calculated by the corr. test ()
function in the R program.Overall survival (OS)was predicted using
Kaplan-Meier survival plots. The R package “survival” function was
used toassess fordifferencesbetween theOSofhigh- and low-groups,
with a p-value of less than 0.05 taken to indicate statistical
significance. The Wilcoxon test allowed for inter-group
comparisons. Euclidean distances and Ward’s linkage methods
were used to carry out hierarchical cluster analyses. Protein-protein
interaction (PPI) networks were visualized on STRING tools.

MiRNA-Targets Network
The construction of miRNA-target networks and parameter settings
were completed using Cytoscape tools (version 3.6.0). A summary
and oncoplot of mutation data were calculated using R package
“maftools.” All statistical tests with a p-value of less than 0.05 were
identified as having achieved statistical significance (*p-value < 0.05;
**p-value < 0.005; ***p-value < 0.0005; ****p-value < 0.00005).

RESULTS

Screening of Candidate
Immune-Related miRNAs
Figure S1 demonstrates the workflow of this study. In order to
screen potential tumor immune-related miRNA biomarkers in
NSCLC, a total of 1,884 miRNAs were obtained from the TCGA
LUAD/LUSC cohort. Next, we filtered the miRNAs according to
the following selection criteria: (1) positive expression in more
TABLE 1 | Clinicopathological characteristics of NSCLC patients in this study.

Characteristics
Platform

Training series Testing series GSE31210
HG-U133_Plus_2

GSE3141
HG-U133_Plus_2

TCGA
IlluminaHiSeq

GSE16025
GPL5106

GSE27435
GPL8469

Patients 1014 71 42 246 111
>60 721 51 21 124 NA
≤60 265 20 21 117 NA
NA 28 0 0 5 NA
Gender
Female 406 49 12 130 NA
Male 608 22 30 116 NA
Stage
I 518 42 NA 168 NA
II 283 16 NA 58 NA
III 168 13 NA 0 NA
IV 33 0 NA 0 NA
NA 12 0 NA 20 NA
Survival
Dead 284 35 18 35 54
Alive 730 26 24 191 57
NA 0 0 0 20 0
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than 50% of samples; (2) are differentially expressed, with a
statistical threshold of |log2FC| > 1 and p-value <0.05, including
263 DEMs (153 downregulated and 110 unregulated). Seventy-
eight overlapping miRNAs were selected as candidates for
subsequent analysis (Figures 1A, B and Figure S2A). The
ESTIMATE algorithm was used to determine tumor purity and
tumor immune scores. Spearman correlation analysis was then
applied to assess the relationship between the 78 miRNAs and
immune score, resulting in a total of 35 miRNAs which were
significantly associated with the immune scores (|Spearman
correlation| > 0.2 and P < 0.01) (Figure 1C and Table S1).
Interestingly, we found that 15 miRNAs were significantly
positively correlated to the stromal score also correlated
positively to the immune scores. All of these miRNAs were
negatively associated with tumor purity (Figure 1C and Figures
S2B, C).

A LASSO proportional hazards regression analysis was then
performed to determine the relationship between patient OS and
the expressions of the identified 35 miRNAs in the training data set
(Figures 1D, E). We found a significant correlation with the OS of
NSCLCpatients with the following 10miRNAs (hsa-miR-146b, hsa-
miR-27b, hsa-miR-34c, hsa-miR-4420, hsa-miR-4539, hsa-miR-
4635, hsa-miR-6075, hsa-miR-6740, hsa-miR-6797, and hsa-miR-
7848) (Table S2). These markers were considered to function as
prognostically significant immune-related miRNAs. We then
implemented these 10 miRNAs in the development of a miRNA-
based prognostic score that determined the degree of immune tumor
infiltration (TIM-Sig score). These 10 miRNAs were weighted based
on the LASSO regression coefficient as follows: TIM-Sig score =
(0.2899*expression value of hsa-miR-146b) + (0.2789*expression
Frontiers in Oncology | www.frontiersin.org 4
value of hsa-miR-27b) + (0.4310*expression value of hsa-miR-34c) +
(0.7648*expression value of hsa-miR-4420) + (−0.3621*expression
value of hsa-miR-7848) + (−0.3577*expression value of hsa-miR-
4635) + (0.0819*expression value of hsa-miR-6075) + (0.3234*
expression value of hsa-miR-6740) + (−0.0322*expression value of
hsa-miR-6797) + (0.5820*expression value of hsa-miR-4539). The
distribution of TIM-Sig score and expression pattern ofmiRNAs are
revealed in Figure 1F.

Prognostic Value of TIM-Sig
The GSE27435 and GSE16025 cohorts were used to verify our
constructed TIM-Sig. The TIM-Sig score was determined for all
subjects in the cohort, with the median values used to stratify
patients as being either high- or low-risk. Patients with higher
risk scores were noted to have poorer OS in contrast to those
with lower risk scores (GSE16025: P = 0.0033; GSE27435:
P = 0.035), as depicted in Figures 2A, B. The clinical value of
the constructed 10-miRNA signature in prognosticating patients
with lung cancer was verified.

Potential of the TIM-Sig as an Indicator
of Immune and Clinical Factors
We next investigated whether the TIM-Sig score was associated
with tumor TNM classification or patient gender. We found a
significant difference of TIM-Sig score with tumor size, distant
metastasis as well as stage (Wilcoxon test, p-value <0.05;
Figure 2C and Figure S3). The difference of some immune
factors such as the CYT activity, APM score, TILs score, TIS
score, chromosomal instability level, tumor mutation burden,
IFN-g expression signature, and T cell infiltration score (TIS)
A B

D E

F

C

FIGURE 1 | The tumor-infiltrating immune-related miRNA signature (TIM-Sig). (A) miRNAs expressed in more than 50% of the tumor samples and are differentially
expressed. (B) Volcano plot of 263 identified differential expression miRNAs. The cutoffs were set as a log2(fold-change) > 1.0 or < –1.0 and p-value < 0.05.
(C) miRNAs expression associated with immune score, as shown by Spearman correlation analysis. (D, E) The LASSO regression method was carried out to identify
the 10 critical miRNAs associated with tumor immune infiltration. (F) The log-rank test and univariate Cox analysis were used to process data. Patterns of miRNAs
expression and proportion of high-and low-risk patients in the verification dataset.
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between TIM-Sig high- and low-risk groups were also assessed. A
higher immune score (Wilcoxon test, p-value = 3.9e-06; Figure 2D),
CD8T cell score (Wilcoxon test, p-value = 8.5e-06;Figure 2F), HRD
(Wilcoxon test, p-value = 6.02e-06; Figure 2G), IFN-g expression
signature (Wilcoxon test, p-value = 0.00098; Figure 2H), CYT
activity (Wilcoxon test, p-value = 0.0035; Figure 2I), TILs score
(Wilcoxon test, p-value = 2.7e-07; Figure 2K), TIS score (Wilcoxon
test, p-value = 0.00049; Figure 2L) and TMB (Wilcoxon test,
p-value = 0.00016; Figure 2M) were observed in the low-risk group
ofNSCLCpatients.On the contrary, the higher value of tumor purity
(Wilcoxon test, p-value = 6.6e-05; Figure 2E) and APM (Wilcoxon
test, p-value = 5.4e-07; Figure 2J) were found in high risk group.
Generally, these immune factors varied significantly between high-
and low-risk groups. Furthermore, we also investigated the
Frontiers in Oncology | www.frontiersin.org 5
correlation between the TIM-Sig score and above immune-related
factors. We found that the majority of these immune factors were
negatively correlated with the TIM-Sig score (Figure S4). Based on
these results, we conclude that there exists a close relationship
between TIM-Sig and immune infiltration as well as the immune
escape mechanism.

Relationship Between Mutation
and TIM-Sig
Figure 3A depicts identified somatic mutations in LUAD and
LUSC patients. TP53 mutations were found in 58% of samples
based on TCGA data, which depict the top 20 most frequently
encountered gene mutations in lung cancer (Figure 3B). In
addition, we compared the TIM-Sig score between the mutant
A B

D E F G

I

H

J K L M

C

FIGURE 2 | Predictive value of the 10-miRNA signature in NSCLC patients and heterogeneous immune infiltration in high- and low-risk groups. (A, B) Kaplan–Meier
predictions of patient overall survival in those of low- or high-risk as stratified using the TIM-Sig (GSE16025 and GSE27435). The log-rank test was used to carry out
statistical analysis. (C) The difference of TIM-Sig score in clinical classification (include stage and TNM classification). (D) Relative immune scores between low- and
high-risk cohorts. (E) Comparison of relative tumor purity between low- and high-risk cohorts. (F) Comparison of relative CD8 T cell score based on ssGSEA
between low- and high-risk cohorts. (G) Comparison of relative chromosomal instability level between low- and high-risk cohorts. (H) Comparison of relative IFN-g
expression signature between low- and high-risk cohorts. (I) Comparison of relative cytotoxic activity scores between low- and high-risk cohorts. (J) Comparison of
relative antigen presentation machinery between low- and high-risk cohorts. (K) Comparison of relative tumor-infiltrating lymphocytes between low- and high-risk
cohorts. (L) Comparison of relative T cell infiltration score between low- and high-risk cohorts. (M) Comparison of relative tumor mutation burden between low- and
high-risk cohorts. The p-values were calculated using the Wilcoxon test.
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and wild samples. Both groups appeared to differ significantly in
terms of frequency of TP53 and CSMD3 mutations (Wilcoxon
test, p-value = 0.0056 and 0.019 for TP53 and CSMD3 groups,
respectively; Figure 3C). The frequency that each mutation was
encountered also varied between high- and low-risk groups
(Figure S5).

TIM-Sig Could Predict
Chemotherapeutics Response
We then investigated whether the TIM-Sig could predict
chemosensitivity. To do this, we calculated the TIM-Sig score
of NCI60 cell lines using the expression data available in a
cellminer database (60 cell lines). The association between the
TIM-Sig score and the inhibitory centration (IC50) value of 161
FDA-approved drugs across 60 cell lines were calculated. The
result showed that Eribulin mesylate, Olaparib, Brigatinib,
Bleomycin, Fulvestrant, Gemcitabine, Dromostanolone
Propionate, Imiquimod, and Digoxin appeared to correlate
significantly with the risk model (|Spearman correlation| > 0.2
and p < 0.01, Figure 4A). A high immune score was linked to a
lower half inhibitory centration (IC50) of medications including
Irinotecan (Wilcoxon test, p = 0.039, Figure 4B), Methotrexate
(Wilcoxon test, p < 0.047, Figure 4C), Oxaliplatin (Wilcoxon
test, p < 0.0034, Figure 4D), and Pemetrexed (Wilcoxon test,
p < 0.008, Figure 4E). These findings suggest that the model was
able to function as a chemosensitivity predictor.
Frontiers in Oncology | www.frontiersin.org 6
Identification of TIM-Sig
Regulated Targets
To further investigate the function of the 10 miRNA components
in the TIM-Sig, a total of 1,862 experimentally validated targets
of the 10-miRNAs signature were extracted from the
miRTarBase database (Figure 5A). KEGG pathway analysis
revealed that the miRNAs were enriched in cancer,
transcriptional dysregulation in cancer, the Hippo signaling
pathway, cell cycle, the MAPK signaling pathway as well as
other cancer signaling pathways (Top-20 results, Figure 5B).
Moreover, we performed KEGG pathway analysis for the targets
of each miRNA and revealed that 8 out of 10 were enriched in
cancer and immune-related signaling pathways (Figure 5C),
suggesting that 10 miRNAs were associated with immune
function and metastasis in cancer. Next, to further explore the
relationship between NSCLC patient survival and miRNA
targets, differentially expressed genes (DEGs) between normal
and tumor samples derived from the TCGA dataset were
identified. We obtained a total of 6,914 DEGs, of which there
were 403 overlaps with 1,862 targets (Figures 6A, B). We found
that the TCGA cohort could be grouped into two clusters (C1
and C2) by hierarchical clustering using the 403 overlapped
genes (Figure 6C). Survival analysis showed that LUAD-C2 had
a good prognosis (log-rank p = 0.0014; Figure 6D). There was
marked variability in survival rates in the two groups in
the TCGA-LUAD cohort, although none was discovered in
A

B

C

FIGURE 3 | Mutations in NSCLC samples. (A) We utilized the maftools package to visualize the mutational features in NSCLC. In summary, we classified these
mutation data into different categories, where missense mutation occupied the most part, single nucleotide polymorphism (SNP) mutated the most frequently, and
C>A was the top type of single nucleotide variants (SNV) in NSCLC. (B) We exhibited the top 20 mutated genes, including well-known TP53 and MUC16. (C) The
difference of TIM-Sig score in mutation and wild groups of TP53 and CSMD3. The p-values were calculated using the Wilcoxon test.
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the TCGA-LUSC cohort (TCGA-LUAD: log-rank p = 0.00027,
TCGA-LUSC: log-rank p = 0.13; Figures 6E, F).

Construction of the TIM-Sig Targets-
Based Prognostic Signature
A univariate Cox regression analysis was used to determine the
relationship between the 403 overlapped target genes and overall
NSCLC patient survival. A total of 49 genes were found to be related
to OS in NSCLC patients (Table S3). The expression of 49 genes
between the C1 and C2 group is shown in Figure 7A. Figure 7C
demonstrates the interaction of miRNAs and the 49 targets.
Multivariate Cox regression analysis was then carried out to
determine the relationship between genes with OS. Of these,
six genes demonstrated significant ability to prognosticate NSCLC
(HR > 1, P < 0.05; Figure 7B and Table S4). The protein-protein
interaction (PPI) network also demonstrated close interactions
between VEGFC, ALDOA, and PDGFB (Figure 7H). The risk
scores used for predicting prognostic values were derived as follows:
RS (patient) = (0.1190*expression value of VEGFC) +
(0.0339*expression value of BEST3) + (0.0351*expression value of
A1CF) + (0.2608*expression value of ALDOA) + (0.0960*
expression value of HOXC4) + (0.1713*expression value of
PDGFB). All subjects were separated into low- or high-risk
groups. Kaplan-Meier analysis identified a poorer OS in those of
Frontiers in Oncology | www.frontiersin.org 7
high-risk compared to those of low-risk groups (log-rank p <
0.0001; Figure 7D). Prognosis was good in those of LUAD-low-
risk and LUSC-low-risk groups (log-rank p = 0.00021; Figure 7E).
In addition, application of these formulas in our verification cohorts
also found that patients with low-risk were more likely to have
better OS (GSE31210: log-rank p < 0.0001, GSE3141: log-rank p =
0.0023; Figures 7F, G). GO and KEGG pathway analysis revealed
that these genes were enriched in cancer and immune-related
functions, such as cell motility and Glycolysis/Gluconeogenesis
(Figure 7I). Finally, we compared the frequency of mutations in
the six genes between the two groups (Figures 7J–L). The most
commonly encountered mutation was the VEGFC mutation (23%,
Figure 7K). Additionally, we compared the differences of mutation
among RS genes in low- and high-risk groups. An obvious
difference of mutation location of 6 risk genes between high and
low groups were observed. (Wilcoxon test, p < 0.05; Figure 7L).
Taken as a whole, these findings highlight the significant value of a
six-gene signature in prognosticating patients.
DISCUSSION

A plethora of studies have characterized the immune
microenvironment in NSCLC. Li et al. developed a robust,
A

B DC E

FIGURE 4 | The TIM-Sig model as a potential predictor for chemosensitivity. (A) The respective IC50 value of chosen compounds in relation to the TIM-Sig score,
as shown by Spearman correlation analysis. (B–E) Those with high risk-scores were found to possess lower IC50 scores for FDA-approved chemotherapeutics such
as Irinotecan, Methotrexate, Oxaliplatin, and Pemetrexed. The p-values were calculated using the Wilcoxon test.
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individualized immune signature that can estimate prognosis in
patients with early-stage non-squamous NSCLC (32). Hawazin
et al. characterized the molecular subtypes of NSCLC, which
demonstrated important differences in immune host response (33).
Also, our previous study identified different molecular subtypes of
NSCLC according to the immune landscape and constructed a
prognostic model (18). However, the role of non-coding RNA,
especially miRNAs in the NSCLC immune microenvironment have
not been well elucidated. Some immune-related miRNAs were found
to be fundamental in the regulation of innate and immune responses
to tumor cells. But these studies were only focused on individual
immune-related miRNAs in limited samples. In this study, we
identified potential tumor immune-related miRNA biomarkers
from miRNA-seq profiling data in TCGA. The constructed
immune-related miRNA signature was tested and found to be able
to function as ameans stratify the risk of NSCLC patients. Of these 10
miRNAs included in the signature, a number have previously been
explored in cancer research. One example is the central role of miR-
146a in the melanoma immune microenvironment (34). Combined
inhibition of PD-1 and miR-146a may be able to elicit an anti-tumor
immune response (34). Furthermore, miR-27b has been
characterized as a biomarker for recurrent ovarian cancer (35). Our
novel miRNA profile also includes yet to be reported miRNAs which
may hold significant prognostic values in NSCLC. The immune-
associated functions of these miRNAs were confirmed by stratifying
the subjects into low- and high-risk cohorts. We found that the low-
Frontiers in Oncology | www.frontiersin.org 8
risk group had a markedly higher immune score and lower tumor
purity. These observations were confirmed by the higher tumor cell
aggregation in the low-risk group which was represented by TILs and
TIS. This is consistent with previous reports that a high degree of
immune cell infiltration was responsible for a significantly favorable
prognosis inNSCLC (18). Our results also demonstrated that the low-
risk group possessed raised CYT and TMB expressions, with higher
degrees of CD8+ T cell infiltration. Similar findings of better
outcomes in those with higher CYT levels have also been reported
in cancer patients (18, 36). In patients with resected NSCLC, higher
TMB scores were indicative of amore favorable prognosis (37). CD8+
T cell infiltration appeared to function as a superior predictive
biomarker in response to anti-PD-1 immunotherapy (38).

Our data indicated that the TIM-Sig score was significantly
higher in TP53 and CSMD3 mutation samples. Other studies
have reported a higher proportion of activated immune cell
infiltration in patients with TP53 mutations, resulting in a
significantly prolonged progression-free survival in the LUAD
cohort (39). CSMD3 mutations have been characterized as
tumors with high concentrations of T cells in patients with
high-grade serous ovarian carcinoma (40). In addition, the
CSMD3 mutation was related to improved response to anti-
PD1/PD-L1 and higher survival rates solid tumors (41, 42).

Previous studies have shown that immunogenomic-derived
immune scores were indicative of chemotherapeutic benefits
(43). We subsequently investigated whether the TIM-Sig could
A B

C

FIGURE 5 | miRNAs-targets network and KEGG enrichment analysis. (A) miRNAs-targets network. Circular node denotes miRNAs, square node denotes targets.
(B, C) Results for KEGG enrichment analysis.
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predict chemosensitivity in NSCLC. Our results suggested that
the IC50 values were significantly higher in the low-risk group
for some anti-cancer agents. Among these agents, irinotecan
represents a widely used chemotherapeutic medication in
treating solid tumors and its sensitivity has been reported to
correlate with CD8+ T cell fraction in pancreatic cancer (44).
CD8 effector cells have previously been reported to enhance the
anti-tumor response of methotrexate, another anti-cancer agent,
in breast cancer (45). However, we are unable to investigate
Frontiers in Oncology | www.frontiersin.org 9
TIM-Sig prognostic significance in regard to response to
immunotherapy due to the lack of subjects who received
treatment involving immune checkpoint inhibitors. This is one
limitation in our study.

Functional analysis of these 10 miRNAs in TIM-Sig may
further our understanding of their individual roles in NSCLC. To
this end, we obtained the validated targets of these miRNAs.
KEGG pathway analysis uncovered that the target genes were
most enriched in cancer-related pathways. Additionally, the
A

B

D

E

F

C

FIGURE 6 | Hierarchical clustering determined distinct sub-clusters linked to variable prognosis based on miRNA targets. (A) Volcano plot of 403 identified
differential expression miRNAs. Cutoffs were set as log2(fold-change) > 1.0 or < –1.0 and p-value < 0.05. (B) Venn diagram shows that the 403 genes are targets
and differentially expressed. (C) Hierarchical clustering of 1,014 patients from the TCGA cohort using 10 miRNAs and 403 gene expressions. (D) Kaplan–Meier
curves for cancer-specific survival according to cluster sub-classes. (E) Kaplan-Meier analysis of overall survival based on TCGA-LUAD. (F) Kaplan-Meier analysis of
overall survival according to TCGA-LUSC. The log-rank test was used to perform statistical analysis.
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FIGURE 7 | Prognostic potential of a six-gene model. (A) Hierarchical clustering of 1,014 patients from the TCGA cohort using 49 gene expressions. (B) Multivariate
Cox regression analysis was used to determine the prognostic values of DEGs. (C) The miRNAs-targets sub-network, includes 49 genes and 10 miRNAs. Circular
node denotes miRNAs, square node denotes targets. (D, E) Kaplan–Meier predictions of overall survival in patients of high- or low-risk groups as predicted by the
RS module in the validation datasets (TCGA and TCGA LUAD/LUSC). (F, G) Kaplan–Meier approximation of overall survival in patients of high- or low-risk cohorts as
predicted by the RS module in the validation dataset (GSE31210 and GSE3141). The log-rank test was used to perform statistical analysis. (H) PPI network.
(I) Functional enrichment analysis of GO and KEGG for 49 genes. (J) Mutation features of 6 risk genes and distribution among high- and low-risk groups.
(K) The mutation rate of 6 risk genes. (L) The difference of mutation location of 6 risk genes between high and low risk groups.
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targets of individual miRNAs were also enriched in cancer and
immune-related pathways comprising of pathways in cancer,
adherens junction, the chemokine signaling pathway, and the
HIF-1 signaling pathway. Dysregulation of adherens junction
function is critical in modulating efficient collective invasion and
migration of carcinoma cells (46). The adherens junction was
also an activated pathway in breast cancer cases with low
immunity (29). The classification based on HTF 1 signaling
pathway profile was able to determine subgroups of prostate
cancer patients who were maximally responsive to chemo- and
immunotherapy (47). The components of our constructed 10-
miRNA signature were strongly involved in immune function
and cancer metastasis.

Next, we identified 403 differentially expressed target genes
between normal lung and NSCLC samples. The expression profile
of these genes revealed two distinct sample clusters with different
outcomes. The two patient clusters in the TCGA-LUAD cohort
had significantly different survival outcomes. However, no
significant difference was observed in the TCGA-LUSC cohort.
Although LUAD and LUSC are the most frequently encountered
NSCLC subtypes, they vary from each other considerably (48, 49).
LUSC has been found to grow at a faster rate in contrast to LUAD.
LUSC was also found to possess suppressed expressions of
molecules involved in the activation of the immune response,
such as chemokines and MHC molecules (50). These findings
might explain the different results of survival analysis between
LUAD and LUSC. In efforts to improve the prognostic
performance of the target genes, we identified six differentially
expressed target genes which were correlated with survival:
VEGFC, ALDOA, BEST3, A1CF, HOXC4, and PDGFB. Subjects
in the TCGA cohort were stratified into high- or low-risk groups
using the gene-based RS. Low-risk groups of both LUAD and
LUSC had significantly better survival than those in the high-risk
groups. Among these six genes, VEGFC, ALDOA, and PDGFB
closely interacted with each other in the PPI network. It has been
reported that VEGFC knockdown results in reduced PDGFB
levels in melanoma cell lines. Moreover, both of them were
regulated by E2F1 in angiogenesis (51). Lung cancer metastasis
and metabolic reprogramming appears to be strongly dependent
on ALDOA (52). Samples of lung cancer have been noted to
possess an overexpression of ALDOA, which enhances epithelial-
mesenchymal transition (53). Our data suggested that immune-
related miRNAs regulated immune cell infiltration in NSCLC both
through themselves and their target genes. In summary, our study
on the identification of tumor immune-associated miRNAs
provides valuable functional insights and potential clinical
guidance for personalized therapy for NSCLC patients.
CONCLUSIONS

In brief, this study aimed to construct an immune-related
miRNA signature that effectively predicts NSCLC patient
prognosis. An immune-related miRNA signature (TIM-Sig)
was constructed using LASSO-penalized multivariate survival
Frontiers in Oncology | www.frontiersin.org 11
models and was evaluated in several public cohorts from the
Gene Expression Omnibus (GEO) and the CellMiner database.
Further analysis on the miRNA-target network of TIM-Sig
revealed that these target genes had prognostic value in both
lung squamous cell carcinoma and adenocarcinoma. Our study
provides valuable functional insights and potential clinical
guidance for personalized therapy for NSCLC patients.
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