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Background: Postoperative recurrence impedes the curability of early-stage

hepatocellular carcinoma (E-HCC). We aimed to establish a novel recurrence-

related pathological prognosticator with artificial intelligence, and investigate

the relationship between pathological features and the local immunological

microenvironment.

Methods: A total of 576 whole-slide images (WSIs) were collected from 547

patients with E-HCC in the Zhongshan cohort, which was randomly divided

into a training cohort and a validation cohort. The external validation cohort

comprised 147 Tumor Node Metastasis (TNM) stage I patients from The Cancer

Genome Atlas (TCGA) database. Six types of HCC tissues were identified by a

weakly supervised convolutional neural network. A recurrence-related

histological score (HS) was constructed and validated. The correlation

between immune microenvironment and HS was evaluated through

extensive immunohistochemical data.

Results: The overall classification accuracy of HCC tissues was 94.17%. The C-

indexes of HS in the training, validation and TCGA cohorts were 0.804, 0.739

and 0.708, respectively. Multivariate analysis showed that the HS (HR= 4.05,

95% CI: 3.40-4.84) was an independent predictor for recurrence-free survival.

Patients in HS high-risk group had elevated preoperative alpha-fetoprotein

levels, poorer tumor differentiation and a higher proportion of microvascular

invasion. The immunohistochemistry data linked the HS to local immune cell

infiltration. HSwas positively correlated with the expression level of peritumoral
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CD14+ cells (p= 0.013), and negatively with the intratumoral CD8+ cells

(p< 0.001).

Conclusions: The study established a novel histological score that predicted

short-term and long-term recurrence for E-HCCs using deep learning, which

could facilitate clinical decision making in recurrence prediction and

management.
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Introduction

Hepatocellular carcinoma (HCC) is the sixth most common

malignancy and the fourth leading cause of cancer related deaths

worldwide (1). Several treatments including surgery, locoregional

therapies, and immunotherapy have been adopted as standards of

care according to different tumor stages (2–4). Curative resection

offers a chance of improved survival for HCC patients, especially

those with early-stage tumors that are defined as Barcelona Clinic

Liver Cancer (BCLC) stages 0 and A (5). Although the 5-year

survival rate can reach 70% in early-stage HCC patients (6), half

of patients suffer recurrence after liver resection (7) due to the

lack of approved adjuvant therapies. Therefore, the precise

prediction of postoperative recurrence is urgently needed.

Common prognostic factors for predicting early-stage HCC

recurrence include pathological features, clinical biomarkers and

genetic signatures (8). Recently, Yuan et al. developed a CpG

methylation signature to elucidate the recurrence patterns in

early-stage HCC with concordance indexes (C-indexes) of

approximately 0.7 in three datasets (9). Compared to

traditional staging systems, radiomics models also showed

favorable efficacy in the recurrence prediction of HCC patients

within the Milan criteria (10). In terms of histological features,

specific structures such as microvascular invasion (MVI) and

tumor-infiltrating lymphocytes were associated with recurrence

risk (11, 12). However, due to the high heterogeneity in HCC,

valuable information based on whole-slide images (WSIs) has

not been thoroughly detected. Furthermore, the correlation

between pathological texture and recurrence remains unknown.

In the past decade, breakthroughs in artificial intelligence

(AI) have made remarkable progress in cancer research (13, 14).

With the increasingly high capacity of deep learning, a large

amount of work involved in the histopathological fields has been

carried out, including tumor diagnosis, subtyping, grading,

staging, and prognostic prediction (15–17), as well as the

identification of pathological features, biomarkers, and genetic

changes (18, 19). The advent of digital WSIs of tissue has not

only economized the great amount of time or manual labor
02
needed but also potentiated mining of subvisual morphometric

phenotypes and ultimately improved patient management or

therapeutic decision-making. Previous studies have originally

proposed survival indicators based on digital WSIs via deep

learning (20, 21). Nevertheless, the existing computational

methods can identify only basic HCC structures. Complex and

rich information contained in architectural features such as the

portal area and lymphocytes is still hampered to be expounded.

Herein, we explored more distinctive histological features to

further describe the recurrence patterns and clinicopathological

information of early-stage HCC.

The present study successfully developed a convolutional

neural network (CNN) based on six classes of HCC tissues

(namely, tumor region, normal liver tissue, portal area, fibrosis,

hemorrhage/necrotic area, and lymphocyte area) and

constructed a histological score (HS) via least absolute

shrinkage and selection operator (LASSO) Cox regression to

assess patients’ recurrence risk after hepatectomy. The novel

model was validated in the three independent cohorts. By

stratifying patients into different risk subgroups, their

prognosis could be precisely appraised and multiomics

characteristics were investigated.
Materials and methods

Patient cohort and study design

A total of 416 WSIs and 387 corresponding early-stage HCC

patients who underwent radical resection at Zhongshan Hospital

from January 2006 to December 2011 were retrospectively

enrolled as the first dataset (Figure 1). The inclusion criteria

were as follows: 1) pathologically proven HCC; 2) no

neoadjuvant antitumor therapy; 3) Child–Pugh class A or B

before surgery; and 4) BCLC stage 0-A. The exclusion criteria

were as follows: 1) presence of other pathological types, such as

intrahepatic cholangiocarcinoma (ICC) or combined

hepatocellular cholangiocarcinoma (CHC); 2) previous
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antitumor treatment; 3) missing clinical information; and 4)

death or disease recurrence within 1 month after resection. Data

on tumor stages were collected according to the BCLC staging

system (22) and China Liver Cancer (CNLC) (23)

staging guidelines.

Following the same inclusion and exclusion criteria, another

160 patients who underwent curative partial hepatectomy at

Zhongshan Hospital from October 2014 to December 2014 and

160 WSIs were enrolled as the second dataset. We combined the

two datasets and randomized cases into the training and

validation cohorts at a ratio of 7:3.

We enrolled 154 WSIs and 147 patients from The Cancer

Genome Atlas (TCGA) database as the external validation

cohort (https://portal.gdc.cancer.gov/). Due to the lack of

information on BCLC staging, all the enrolled cases had tumor

node metastasis (TNM) stage I disease, which fulfilled the

criterion of BCLC stage 0-A.

The follow-up was censored in December 2019. Recurrence

was the primary endpoint in the present study. HCC recurrence

was defined as the appearance of a newly detected HCC tumor
Frontiers in Oncology 03
confirmed on two radiologic images, with or without an

elevation in serum tumor markers. Time to recurrence (TTR)

was defined as the time between surgery and recurrence or

metastasis. Recurrence-free survival (RFS) and overall survival

(OS) were the secondary endpoints. RFS was defined as the time

from the date of hepatectomy to the date of recurrence,

metastasis, death, or the last follow-up. OS was defined as the

time between resection and death. The study obtained ethical

approval from the Institutional Review Board of Zhongshan

Hospital and complied with the standards of the Declaration of

Helsinki. Informed consent was received from each patient

before surgery.
Preparation of H&E staining
and immunohistochemistry for
immune markers

Hematoxylin and eosin (H&E) staining was performed on

paraffin-embedded tissues that were at 4 µm thickness. Tissue
B

A

FIGURE 1

Workflow and general methodology of the study. (A) The recurrence-related scores were first developed and internally validated in a series of
patients with BCLC stage 0-A treated by curative resection at Zhongshan Hospital. The scores were then externally validated by TNM-I stage
patients in the TCGA cohort. (B) We first developed the neural network using 116 whole-slide images (WSIs) as the category-based training data.
The network was then used to analyze the remaining WSIs and generate the classification maps. Pathological image features were extracted
from typical tiles. Next, we constructed two recurrence prediction scores via LASSO-Cox. CS was composed of clinical and histological
characteristics. HS was developed based on pure histological features. Finally, we analyzed the model discrimination ability, patient prognosis
and local immune cell infiltration. TCGA, The Cancer Genome Atlas; PR, precision-recall; CS, combined score; HS, histological score; TPR, true
positive rate; FPR, false positive rate.
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microarray (TMA) construction and immunohistochemistry for

28 immune markers were conducted as previously described (11,

24). Some of the previous data were used directly as a

complement to the results (11).
Image annotation and processing

We randomly selected 116 WSIs for annotation in the

Zhongshan cohort. Using ASAP 1.8, two pathologists

manually annotated and fully examined the slides in six

categories: tumor region, normal liver tissue, portal area,

fibrosis, hemorrhage/necrotic area, and lymphocyte area. The

annotated WSIs were divided into training, validation, and

testing datasets at a ratio of 8:1:1. The annotated tissue areas

were extracted based on the binary mask obtained by OTSU (25)

and then divided into small squares, 299 pixels×299 pixels in

size, called “tiles”. After image incision, data enhancement

methods were used to balance the number of tiles for the six

categories (details are provided in the Supplementary Methods).
Standardization of TCGA
diagnostic slides

Due to the disparity in the staining and scanning process

between the Zhongshan and TCGA cohorts, the trained neural

model could not be directly applied to the TCGA WSIs. We

modified the traditional Reinhard algorithm (26) to standardize

stainingin both the Zhongshan and TCGA cohorts.
Classification network

We mainly proposed training a classification network to

discriminate six types of HCC tissues. Inception V3 (27) was

used as the basic model. Classification maps were derived after

image recognition. Morphological processing was utilized to

optimize the original classification maps. We used the t-

distributed stochastic neighbor embedding (t-SNE) algorithm

to visualize the segmental results. The pathological signatures

were then extracted from the ten tiles with the highest prediction

probability for each type (details are provided in the

Supplementary Methods).
Establishment of the histological score
and combined score

LASSO Cox regression (9) was applied to obtain high-

dimensional prognostic features in histology. With recurrence

status and TTR as labels, a combined score (CS) was constructed

by integrally analyzing the histological signatures and clinical
Frontiers in Oncology 04
markers. The clinical markers included sex, age, serum levels of

alpha-fetoprotein (AFP) and alanine transaminase (ALT), and

morphological information such as tumor number and size. In

the same way, we constructed a histological score (HS) through

pure histological features (details are provided in the online

Supplementary Materials). The optimal cutoff value for survival

time was obtained through the “survminer” package. The

patients were then divided into high-risk and low-risk

subgroups for further survival comparisons.
Correlation between HS and
immune infiltration

To evaluate the correlation between the HS and immune

infiltration conditions, we applied hierarchical clustering

analysis for specific immune markers in the TMA. In the

TCGA datasets, the CIBERSORT algorithm (28) was used to

explore the quantity of tumor-infiltrating immune cells based on

the transcriptome signature.
Statistical analysis

Continuous variables are expressed as the median (IQR) and

were compared with using Mann–Whitney U test. Categorical

variables are expressed as numbers and percentages, and were

compared with the c2 test or Fisher’s exact test. Kaplan–Meier

curves with the log-rank test were used to compare survival. The

LASSO Cox method was used to select independent factors

associated with recurrence. Hazard ratios (HRs) and 95%

confidence intervals (CIs) were also estimated by means of

univariable and multivariable Cox analyses. A two-tailed p

value> 0.05 was considered statistically significant. Model

discrimination was assessed by the overall C-index, receiver

operating characteristic (ROC) curve and net reclassification

improvement (NRI) (29). Statistical analysis was performed

using R-software 3.6.3 (R Foundation, Vienna, Austria) and

SPSS ® 22.0 (IBM, Armonk, New York, USA).
Results

Patient demographics and
clinical information

Supplementary Table S1 describes the demographic, clinical,

and tumor characteristics of patients in the training and

validation cohorts. The median ages in the training and

validation cohorts were 53 years and 55 years, respectively.

Most patients in both cohorts were male. More than 80% of

patients were infected with hepatitis B virus (HBV) and

diagnosed with liver cirrhosis. Over half of the patients
frontiersin.org
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presented with elevated serum AFP levels in both cohorts (55.6%

and 59.8%). Microvascular invasion was detected in 23.2% and

26.8% of patients in the training and validation cohorts,

respectively. A majority of patients had a single lesion and

were diagnosed as CNLC stage Ia. More patients were

diagnosed with BCLC stage A than stage 0 in both cohorts.

No significant differences were observed for the demographic

information between the two cohorts.

After a median follow-up of 54.2 months (range, 3.0 to 64.6)

for the Zhongshan population, 44.4% of patients (243/547)

suffered tumor recurrence and 25.8% (141/547) died. The 1-,

3-, and 5-year recurrence rates were 17.1%, 33.1%, and 48.1%,

respectively, and the 1-, 3-, and 5-year RFS rates were 82.2%,

66.4%, and 51.5%, respectively.

In terms of the TCGA cohort, the median follow-up time

was 27.0 months (range, 1.1 to 115.9). A total of 38.8% of

patients (57/147) suffered tumor recurrence and 21.1% (31/147)

died. The 1-, 3-, and 5-year recurrence rates were 19.2%, 45.4%,

and 62.0%, respectively, and the 1-, 3-, and 5-year RFS rates were

76.7%, 49.5%, and 34.5%, respectively.
Visualization of category-based
HCC tissue

We first built the category-based model by training a

classification network according to HCC tissue. The

distribution of HCC tissues in a slide is displayed in Figure 2A.

Corresponding histological images of the six categories before

and after staining standardization are shown in Supplementary

Figures S1A, B. Representative examples of the raw outputs of the

classification network and their postprocessing results by

morphology are revealed in Figure 2B, with different colors

representing distinct tissue components. A visualization of a

typical classification map in the TCGA cohort is shown in

Supplementary Figure S1C.

After comprehensive training, we used the testing dataset to

verify the performance of the computation network, which

revealed an overall accuracy of 94.17%. Specifically, the

accuracy values for normal liver tissue and tumor regions,

shown in the confusion matrix (Figure 2C), were 0.984 and

0.950, respectively. A precision-recall (PR) curve rather than an

ROC curve was applied to evaluate the model to minimize the

imbalance. The area under the curve (AUC) values of each tissue

type, except for the portal area, in our classification model

exceeded 0.920 with the highest in tumor region classification

(AUC= 0.997) (Figure 2D). Figure 2E shows the t-SNE

visualization of the classification results. One thousand tiles

were randomly selected for each tissue category.

We then used class activation mapping (CAM) (30) of the

last convolution layer to visualize the outputs of each tissue

category, where redder and bluer heatmaps indicated regions

with higher or lower interest, respectively (Figure 2F).
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Signature extraction and construction of
prognostic scores

Next, we analyzed all 416 WSIs in the training cohort using

the classification network and extracted pathological signatures

from tiles of each type of HCC tissue. A total of 133 signatures

and their coefficients were derived from LASSO Cox analysis

(Supplementary Figure S2). Univariable Cox analysis of

signatures that had a significant impact on RFS is shown in

Supplementary Table S2.

HS and CS were then obtained by the sum of products by

indexes and coefficients (details are provided in the

Supplementary Methods). A calibration curve was constructed

to evaluate the prediction accuracy. HS showed great concordance

between the predicted and observed recurrence probabilities in the

training, validation and TCGA cohorts (Figures 3A–C). Similarly,

CS performed well in the training and validation cohorts

(Supplementary Figure S3). To further compare the prediction

reliability between the new scores and traditional biomarkers and

stages, we carried out ROC curve analysis based on the cases in the

training and validation cohorts. In terms of 1-year RFS, the AUC

values of HS and CS were 0.837 and 0.857, respectively, much

higher than those of clinical indicators such as AFP or liver

cirrhosis, and the CNLC or BCLC staging systems (Figure 3D).

The AUC values of HS and CS reached 0.857 and 0.852 for 3-year

RFS prediction and 0.826 and 0.845 for 5-year RFS prediction,

respectively (Figures 3E, F).
Comparison of HS and CS in
predictive accuracy

The C-indexes of HS, CS and clinical signatures were calculated

to estimate the possibility of using histological textures as a

substitute for clinical indicators. Compared to the clinical

signatures, HS and CS presented higher C-indexes in the

Zhongshan datasets (Table 1). Specifically, the C-indexes of HS

were 0.804, 0.739 and 0.708 in the training, validation and TCGA

cohorts, respectively. BothHS and CS performed better than clinical

signatures in RFS prediction (Supplementary Figure S4). Ultimately,

ROC curves in the two Zhongshan datasets showed no significant

differences between HS and CS for 1-year, 3-year, or 5-year RFS

prediction (Supplementary Figure S5, Supplementary Table S3).

The NRI elucidated the quantitative difference between HS and CS

in TTR prediction (Supplementary Figure S6). Subsequently, the CS

model was superior to HS in all three periods with a subtle

advantage, but statistical significance was not reached (p> 0.1).
Survival prediction of novel
pathological predictors

Optimal cutoff values for HS and CS were determined using the

“survminer” package (31). All the patients were then divided into a
frontiersin.org

https://doi.org/10.3389/fonc.2022.968202
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Qu et al. 10.3389/fonc.2022.968202
high-risk group (HS> -0.1605954, CS> 3.417892) and a low-risk

group (HS≤ -0.1605954, CS≤ 3.417892). Figure 4 and

Supplementary Figure S7 depict the survival curves of HS and

CS, respectively. Generally, patients in the high-risk group from the

three cohorts faced notable susceptibility to postoperative

recurrence and poorer survival.
Prognostic predictors of RFS in early-
stage HCC

We performed Cox proportional hazards regression analysis

to explore the independent predictors for RFS in the training and

validation cohorts (Table 2). Eleven candidates were proven to

be significant in the univariable analysis and were then evaluated
Frontiers in Oncology 06
with multivariable Cox regression. The multivariable analysis

revealed that MVI (HR= 1.459, 95% CI: 1.094-1.948) and HS

(HR= 4.054, 95% CI: 3.397-4.838) were significant indicators.
The correlation between HS and
clinicopathological characteristics

As shown in Figure 5, the clinical characteristics and prognostic

value of HS were compared in the different risk subgroups, namely,

the low-risk group (n= 332) and the high-risk group (n= 215).

Compared to patients in the low-risk group, more patients in the

high-risk group had elevated AFP levels (65.6% vs 51.2%).

Moreover, HCCs in the high-risk group were characterized by

poorer tumor differentiation, and a higher proportion of MVI.
B

C D E

F

A

FIGURE 2

Visualization of WSI classification for HCC tissue in the Zhongshan cohort. (A) Six classic categories of HCC tissue, including normal liver tissue
(NLT), portal area (PA), fibrosis (FI), lymphocyte area (LA), tumor region (TR) and hemorrhage/necrotic area (H/NA). (B) Two representative
outputs of the classification network. Red represents TR, green represents NLT, light blue represents FI, dark blue represents PA, purple
represents LCA, and yellow represents H/NA. (C) Precision-recall curve of category-based sampling. (D) Normalized confusion matrix for the
classification network. (E) t-SNE analysis for visualization of six tissue categories. (F) CAM results for visualization of HCC tissues. HCC,
hepatocellular carcinoma; CAM, class activation mapping; t-SNE, t-distributed stochastic neighbor embedding.
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Seventy-eight (23.5%) patients in the low-risk group experienced

recurrence. Conversely, 76.7% of patients in the high-risk group

suffered recurrence during the follow-up. In particular, HS was

proven to be a prognostic factor in all the subgroups in terms of

patients’ clinicopathological characteristics.

The histological markers including proliferation indexes,

therapeutic targets, and specific diagnostic markers have been

reported to be an efficient indicator for HCC diagnosis and

prognosis after resection (32–34). The immunohistochemistry

(IHC) and quantitative analysis for six markers was performed in

160 patients (from October 2014 to December 2014). Compared to

HS low-risk group, patients in the high-risk group had a higher

expression of heat shock protein 70 (HSP70, p= 0.01). A slightly

higher proportion of Ki-67+ cells was observed in the high-risk group

although significance was not reached (Supplementary Figure S8).

The correlation between pathological subtype and histologic

features was also assessed. The results revealed that more

patients (12%) in the HS high-risk subgroup were diagnosed
Frontiers in Oncology 07
with macrotrabecular-massive HCC (MTM-HCC) compared to

5% in the low-risk subgroup (Supplementary Figure S9).
The correlation between HS and the
immune microenvironment

Using TMA data, we examined the expression patterns

and distributions of 14 immune markers in 175 HCC patients

with early-stage HCC (35). To investigate the relationship

between HS and local immune status, we carried out

clustering and correlation analysis (Figure 6A). We found

that HS was positively correlated with the expression of

peritumoral CD14 (p= 0.013, R= 0.187), but negatively

correlated with the infiltration of intratumoral CD8 (p<

0.001, R= 0.275). Typical immunohistochemical images of

the two markers are shown in Figure 6B. To investigate the

interrelation between immune markers, we performed
TABLE 1 C-indexes of the novel scores.

Cohort HS CS Clinical signatures

Training 0.804 (0.771-0.837) 0.809 (0.777-0.840) 0.653 (0.611-0.695)

Validation 0.739 (0.686-0.792) 0.754 (0.705-0.802) 0.686 (0.630-0.742)

TCGA 0.708 (0.635-0.780)
∗ Values are presented as C-index (95% confidential interval). HS, histological score; CS, combined score; TCGA, The Cancer Genome Atlas.
B C

D E F

A

FIGURE 3

Comparison of predictive performance between two novel models. Upper: The calibration curves for TTR of HS in the training (A), validation (B),
and TCGA cohort (C). Down: The ROC curves for 1-year (D), 3-year (E) and 5-year (F) RFS based on different clinicopathological features and
stages. TCGA, The Cancer Genome Atlas; RFS, recurrence-free survival; HS, histological score; CS, combined score; AFP, alpha-fetoprotein;
MVI, microvascular invasion; BCLC, Barcelona Clinic Liver Cancer; CNLC, China Liver Cancer; AUC, area under the curve.
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correlation analysis in different risk subgroups of HS

(Figures 6C, D). Compared to the low-risk group, the

predominant immune cells in the high-risk group were

characterized by CD66-, CD68-, CD103- and CXCR5-

positive cells infiltrating both tumoral and peritumoral

tissues, which implied that macrophages or neutrophils

may play a potential role in the progression of recurrence.
Frontiers in Oncology 08
The immune microenvironment of cases in the TCGA

datasets was investigated by CIBERSORT algorithm (28). The

boxplot revealed significantly higher expression of monocytes

and lower expression of M2 macrophages in the HS low-risk

subgroup (Figure 6E). HS was positively correlated with the

infiltration of M2 macrophages (p= 0.011, R=0.275, Figure 6F).

Similar findings suggested an increased interaction among
TABLE 2 Cox proportional hazards regression model showing the association of variables with RFS.

Variables Univariate analysis Multivariate analysis

HR 95%CI p value HR 95%CI p value

HBsAg (yes/no) 1.487 (1.030-2.146) 0.034 1.066 (0.728-1.560) 0.743

Albumin, g/L 0.945 (0.938-0.993) 0.013 0.978 (0.948-1.009) 0.159

AFP (>20/≤20, ng/mL) 1.459 (1.125-1.890) 0.004 1.095 (0.835-1.435) 0.512

GGT, U/L 1.001 (1.000-1.003) 0.045 1.000 (0.999-1.002) 0.516

PT, s 1.131 (1.008-1.269) 0.037 1.047 (0.935-1.174) 0.425

Liver cirrhosis (yes/no) 1.666 (1.136-2.442) 0.008 1.389 (0.922-2.092) 0.116

Tumor number (multiple/single) 1.430 (1.009-2.027) 0.045 1.361 (0.870-2.129) 0.177

Tumor diameter, cm 1.108 (1.059-1.159) <0.001 1.029 (0.981-1.079) 0.245

MVI (yes/no) 1.931 (1.475-2.527) <0.001 1.459 (1.094-1.948) 0.010

Tumor differentiation (Edmondson-Steiner grade III-IV/I-II) 1.341 (1.018-1.765) 0.037 1.039 (0.782-1.380) 0.794

Histological score 4.263 (3.616-5.025) <0.001 4.054 (3.397-4.838) <0.001
fronti
∗Values are presented as HR and 95%CI. HR, hazard ratio; CI, confidence interval; HBsAg, Hepatitis B virus surface antigen; AFP, a-fetoprotein; GGT, g-glutamyl transpeptidase; PT,
prothrombin time; MVI, micro vascular invasion.
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FIGURE 4

Kaplan-Meier curves for recurrence rate, OS, and RFS in the training (A–C), validation (D–F) and TCGA cohorts (G–I) based on HS. HS,
histological score; OS, overall survival; RFS, recurrence free survival.
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macrophages, dendritic cells and other immune cells based on

the corrplots in the TCGA database (Supplementary Figure S10).

Discussion

The emergence of AI has reformed multiple aspects of

cancer management. The combination of deep learning and
Frontiers in Oncology 09
digital WSIs has alleviated the labor in detection and revealed the

decent accuracy and efficacy for prognostic models in different

solid tumors. The recurrence of early-stage HCC after resection

remains a major obstacle in curative treatment. Although

multiomics analysis highlighted potential recurrence-related

determinants and therapeutic targets (8), its high cost and

complexity have hindered its prevalent utilization. Herein, we
FIGURE 5

Forest plot of recurrence-free survival based on HS in the Zhongshan cohort. HS, histological score; HR, hazard ratio. ; CI, confidence interval;
AFP, a-fetoprotein; ALT, alanine aminotransferase; ALB, albumin; GGT, g-glutamyl transpeptidase; MVI, micro vascular invasion; CNLC, China
Liver Cancer Staging; BCLC, Barcelona Clinic Liver Cancer.
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integrated a neural network with the massive WSIs of HCC

patients in BCLC stage 0-A and successfully developed an

efficient recurrence prediction index that was prognostic of

OS, TTR, and RFS. The novel index was validated in three

independent cohorts, demonstrating the generalizability of our

approach. By analyzing substantial TMA data, we found that

immune infiltration status could potentially provide

prognostically valuable information on histological texture.
Frontiers in Oncology 10
Recent studies on AI reported novel prognostic models for

HCC patients based on pathological images. Saillard et al.

established two independent scores using an unsupervised

neural network algorithm and attention mechanism according

to tumoral or nontumoral annotated tiles (20). Both models

showed high accuracy in survival prediction and strong

correlations between clinical characteristics. Gao et al.

innovatively divided HCC slides into four categories,tumor
B

C D

E F

A

FIGURE 6

The relationship between HS and immune infiltration condition. (A) Heatmap and cluster analysis of the Zhongshan TMA. (B) Typical
immunohistochemical pictures of CD8T AND CD14P. (C) The corrplots of immune markers in the HS low-risk group. (D) The interaction analysis
of immune markers in the HS high-risk group. (E) Boxplot of immune cells in the TCGA cohort. Data are compared using Wilcoxon test. *p <
0.05;. (F) Correlation analysis between HS and M2macrophages in the TCGA cohort. HS, histological score; TCGA, The Cancer Genome Atlas.
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tissue, normal liver tissue, stroma, and necrosis, and then

discriminated the features with high AUC values (21). The

study developed and validated an efficient survival prediction

model based on a large number of WSIs.

In these two previous studies, pathological signatures were

directly generated and extracted by traditional CNNs. CNNs are

usually regarded as a “black box”, in which the data are

processed through complex computing layers; thus, it is

difficult to concretize and interpret the relevant features of

samples. In the present research, we manually input abundant

signatures of the most relevant tiles, automatically screened the

signatures with the recurrence time as the labels via LASSO Cox

regression, and visually presented the weight of each signature.

This procedure bypassed the need for the manual recognition of

numerous postprocess tiles. In addition, the image signatures

that came from empirical utilization ensured the feasibility

(36, 37).

Compared to reported studies, our study has advantages in

terms of multicategory training, heatmap visualization, a more

accurate prediction of recurrence and multifaceted analysis. HCC

is highly heterogeneous with regard to not only genetics or

epigenetics but also histology. Despite the classic histological

categories mentioned above, the portal area and lymphocyte area

are also important structures. Recently, tertiary lymphoid structures

were proven to be a favorable factor for prognosis and recurrence

status (38), and immune infiltration conditions are becoming more

determinant in precision therapy (39). The portal area is a

connective tissue among hepatic lobules consisting of branches of

the hepatic artery, portal vein and hepatic ducts, in which lymphatic

vessels and nerve fibers exist. It was reported that the number of

portal areas and inflammation or iron deposition around the portal

area were associated with the pathogenesis of HCC (40, 41). Herein,

these two structures were originally annotated and trained in the

study. The AUC value for the portal area was 0.757, lower than that

of the other five tissues, which could be caused by poor structural

purity and inadequate amounts. Technically, modified image

standardization balanced the color differences among tiles, which

raised the overall recognition accuracy for HCC structures up to

94.17%. We also applied the CAM method to visualize the

importance of the local structure. As shown in Figure 2, cells

attracted more attention for recurrence than cell-free areas such as

fibrosis and necrosis areas, which made it easier for us to intuitively

understand the microscopic information.

Subsequently, we established two recurrence prediction

scores via LASSO Cox analysis and derived each score through

the overall WSIs to maximally preserve the pathological

signatures of all sections. Both scores showed great congruence

with the recurrence probability and survival. No significant

difference was found between HS and CS under NRI analysis,

which consequently suggested the feasibility of the potential

replacement of important clinical characteristics with pure

histological features. In Gao et al’s research, the newly

constructed score aimed at OS and its median C-indexes
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reached 0.731 and 0.713 in two cohorts. Therefore, we

specifically targeted recurrence conditions after resection and

complemented the recurrence-related information in the TCGA

database, which was not included in Gao’s study. In our study,

the C-indexes of HS for TTR prediction reached 0.804, 0.739 and

0.708 in the training, validation and TCGA cohorts, respectively.

We compared clinicopathological characteristics between

the two risk subgroups. Notably, a larger proportion of MTM-

HCC was found in the HS high-risk group, indicating that

invisible information processed by deep learning could be

explained by the specific texture of tumor cells. In contrast to

Saillard et al’s dissected tiles of MTM structures, we analyzed the

pathological subtype by a whole slide, which was closer to the

definition of MTM-HCC (42). As a rare and highly malignant

tumor subtype of HCC, MTM-HCC was proven to be correlated

with an increased recurrence risk and poor survival (42, 43). Our

study supported this finding. Staining markers for pathological

evaluation have gained increasing attention in postoperative

management. HSP70 is identified as an upregulated marker in

HCC components and performs its role at several points of

apoptotic signaling (33). A significant difference was observed in

the expression of HSP70 between two risk subgroups, which was

consistent with the previous study (44).

The immune microenvironment plays a crucial role in

tumor progression and recurrence. Using TMA data, we fully

explored the relationship between HS and immune infiltration.

CD14-P and CD8-T were shown to be of significance. Our

results were supported by a previous study showing that high

densities of both CD3(+) and CD8(+) T cells in both the interior

and margin were significantly associated with a low rate of

recurrence (p= 0.007) and prolonged RFS (p= 0.002) (45). A

recent study reported that a high density of marginal CCR1+

CD14+ monocytes positively correlated with CCL15 expression

and was an independent index for dismal survival (46).

Moreover, peritumoral monocytes were found to promote

HCC progression by inducing cancer cell autophagy (47),

which probably led to the dense expression of CD14-P in

patients with high recurrence risk.

From TCGA immune data, we observed that more M2

macrophages were aggregated in the tumor tissues of patients

with high HS. This finding was consistent with the prognostic

va lue and tumor biochemica l modula t ion of M2

macrophages (48).

The correlation analysis in both the Zhongshan and TCGA

cohorts implied different interaction patterns of immune

markers. The stronger interactive effect of macrophages and

dendritic cells in the HS high-risk subgroup highlighted the

important status of antigen presentation during tumor

progression. The result may offer new prospects for further

fundamental research.

There are several limitations in our study. First, our training

data came from a single institution. There may be image

inconsistency in model validation; thus, standardization is an
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essential step for processing. Second, the patients in both cohorts

were predominantly infected with HBV, which reduced the

representativity of an extensive HCC population. A more

rigorous external validation dataset needs to be validated

before routine clinical use. Third, our research carried out

deep learning at the histologic level of WSIs. Further study

could focus on single-cell discrimination, such as lymphocytes

and cancer-associated fibroblasts. Fourth, AI-based study of

multiomics sequencing information, more staining markers or

images of multicomplex immunofluorescence could be further

combined into the prediction model.

Conclusion

In conclusion, the study proposed an efficient recurrence

prediction score for patients with early-stage HCC based on

deep learning. The prognostic pathological features identified in

digital WSIs composed a computable index to discriminate

patients in terms of their relapse risk. The new model derived

by weakly supervised training facilitated the classification

process of typical HCC tissues, depicted the immune

infiltration condition in intratumoral and peritumoral

structures, and highlighted the clinical characteristics that were

significant to prognosis. Further AI research may pay attention

to interpretation at the cellular level and the integration of

therapeutic decisions or multiomics sequencing.

Data availability statement

The raw data supporting the conclusions of this article will

be made available by the authors, without undue reservation.

Ethics statement

The study obtained ethical approval from the Institutional

Review Board of Zhongshan Hospital (B2021-611) and complied

with the standards of the Declaration of Helsinki. Informed

consent was received from each patient before the research.

Author contributions

(I) Conception and design: W-FQ, M-XT, Y-HS; (II)

Administrative support: Y-HS, Y-YH, HZ; (III) Provision of

study materials or patients: Y-HS, Y-YH, HZ, JZ, JF; (IV)
Frontiers in Oncology 12
Collection and assembly of data: W-FQ, M-XT, J-TQ, Y-CG,

W-RL, ZT, C-YT, W-AH, X-YL, Z-XW, KQ; (V) Data analysis

and interpretation: W-FQ, M-XT, J-TQ; (VI) Manuscript

writing: W-FQ, M-XT, J-TQ; (VII) Final approval of

manuscript: All authors.
Funding

This work was supported by grants from the National

Natural Science Foundation of China (No.81773067,

81902963, 882073217, 82073218, and 82003084), Shanghai

Sailing Program (19YF1407800), Intelligent Chronic Disease

Management System Based on Edge and Cloud Computing

Cooperation (2020-002), Shanghai Municipal Science and

Technology Major Project (Grant No. 2018SHZDZX05).

Shanghai Municipal Key Clinical Specialty. CAMS Innovation

Fund for Medical Sciences (CIFMS) (2019-I2M-5-058). National

Key R&D Prog r am o f Ch ina (2020YFE0202200 ,

2018YFF0301102 and 2018YFF0301105).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/

fonc.2022.968202/full#supplementary-material
References
1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global
cancer statistics 2018: GLOBOCAN estimates of incidence and mortality
worldwide for 36 cancers in 185 countries. CA Cancer J Clin (2018) 68(6):394–
424. doi: 10.3322/caac.21492
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2022.968202/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2022.968202/full#supplementary-material
https://doi.org/10.3322/caac.21492
https://doi.org/10.3389/fonc.2022.968202
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Qu et al. 10.3389/fonc.2022.968202
2. Llovet JM, De Baere T, Kulik L, Haber PK, Greten TF, Meyer T, et al.
Locoregional therapies in the era of molecular and immune treatments for
hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol (2021) 18(5):293–313.
doi: 10.1038/s41575-020-00395-0

3. Rizzo A, Ricci AD, Gadaleta-Caldarola G, Brandi G. First-line immune
checkpoint inhibitor-based combinations in unresectable hepatocellular
carcinoma: current management and future challenges. Expert Rev Gastroenterol
Hepatol (2021) 15(11):1245–51. doi: 10.1080/17474124.2021.1973431

4. De Lorenzo S, Tovoli F, Barbera MA, Garuti F, Palloni A, Frega G, et al.
Metronomic capecitabine vs. best supportive care in child-pugh b hepatocellular
carcinoma: a proof of concept. Sci Rep (2018) 8(1):9997. doi: 10.1038/s41598-018-
28337-6

5. Marrero JA, Kulik LM, Sirlin CB, Zhu AX, Finn RS, Abecassis MM, et al.
Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice
guidance by the american association for the study of liver diseases. Hepatology
(2018) 68(2):723–50. doi: 10.1002/hep.29913

6. Tsilimigras DI, Bagante F, Sahara K, Moris D, Hyer JM,Wu L, et al. Prognosis
after resection of barcelona clinic liver cancer (BCLC) stage 0, a, and b
hepatocellular carcinoma: A comprehensive assessment of the current BCLC
classification. Ann Surg Oncol (2019) 26(11):3693–700. doi: 10.1245/s10434-019-
07580-9

7. Tabrizian P, Jibara G, Shrager B, Schwartz M, Roayaie S. Recurrence of
hepatocellular cancer after resection: patterns, treatments, and prognosis. Ann Surg
(2015) 261(5):947–55. doi: 10.1097/SLA.0000000000000710

8. Jiang Y, Sun A, Zhao Y, Ying W, Sun H, Yang X, et al. Proteomics identifies
new therapeutic targets of early-stage hepatocellular carcinoma. Nature (2019) 567
(7747):257–61. doi: 10.1038/s41586-019-0987-8

9. Qiu J, Peng B, Tang Y, Qian Y, Guo P, Li M, et al. CpG methylation signature
predicts recurrence in early-stage hepatocellular carcinoma: Results from a
multicenter study. J Clin Oncol (2017) 35(7):734–42. doi: 10.1200/
JCO.2016.68.2153

10. Ji GW, Zhu FP, Xu Q, Wang K, WuMY, TangWW, et al. Radiomic features
at contrast-enhanced CT predict recurrence in early stage hepatocellular
carcinoma: A multi-institutional study. Radiology (2020) 294(3):568–79.
doi: 10.1148/radiol.2020191470

11. Liu WR, Tian MX, Tang Z, Fang Y, Zhou YF, Song SS, et al. Nine-factor-
based immunohistochemistry classifier predicts recurrence for early-stage
hepatocellular carcinoma after curative resection. Br J Cancer (2020) 123(1):92–
100. doi: 10.1038/s41416-020-0864-0

12. Lim KC, Chow PK, Allen JC, Chia GS, Lim M, Cheow PC, et al.
Microvascular invasion is a better predictor of tumor recurrence and overall
survival following surgical resection for hepatocellular carcinoma compared to
the milan criteria. Ann Surg (2011) 254(1):108–13. doi: 10.1097/
SLA.0b013e31821ad884

13. Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts H. Artificial
intelligence in radiology. Nat Rev Cancer (2018) 18(8):500–10. doi: 10.1038/
s41568-018-0016-5

14. Bhinder B, Gilvary C, Madhukar NS, Elemento O. Artificial intelligence in
cancer research and precision medicine. Cancer Discov (2021) 11(4):900–15.
doi: 10.1158/2159-8290.CD-21-0090

15. Bera K, Schalper KA, Rimm DL, Velcheti V, Madabhushi A. Artificial
intelligence in digital pathology - new tools for diagnosis and precision oncology.
Nat Rev Clin Oncol (2019) 16(11):703–15. doi: 10.1038/s41571-019-0252-y

16. Ahn JC, Connell A, Simonetto DA, Hughes C, Shah VH. Application of
artificial intelligence for the diagnosis and treatment of liver diseases. Hepatology
(2021) 73(6):2546–63. doi: 10.1002/hep.31603

17. Campanella G, Hanna MG, Geneslaw L, Miraflor A, Werneck Krauss Silva
V, Busam KJ, et al. Clinical-grade computational pathology using weakly
supervised deep learning on whole slide images. Nat Med (2019) 25(8):1301–9.
doi: 10.1038/s41591-019-0508-1

18. Coudray N, Ocampo PS, Sakellaropoulos T, Narula N, Snuderl M, Fenyo D,
et al. Classification and mutation prediction from non-small cell lung cancer
histopathology images using deep learning. Nat Med (2018) 24(10):1559–67.
doi: 10.1038/s41591-018-0177-5

19. Liao H, Long Y, Han R, Wang W, Xu L, Liao M, et al. Deep learning-based
classification and mutation prediction from histopathological images of
hepatocellular carcinoma. Clin Transl Med (2020) 10(2):e102. doi: 10.1002/
ctm2.102

20. Saillard C, Schmauch B, Laifa O, Moarii M, Toldo S, Zaslavskiy M, et al.
Predicting survival after hepatocellular carcinoma resection using deep learning on
histological slides. Hepatology (2020) 72(6):2000–13. doi: 10.1002/hep.31207

21. Shi JY, Wang X, Ding GY, Dong Z, Han J, Guan Z, et al. Exploring
prognostic indicators in the pathological images of hepatocellular carcinoma based
on deep learning. Gut (2021) 70(5):951–61. doi: 10.1136/gutjnl-2020-320930
Frontiers in Oncology 13
22. Llovet JM, Bru C, Bruix J. Prognosis of hepatocellular carcinoma: the BCLC
staging classification. Semin Liver Dis (1999) 19(3):329–38. doi: 10.1055/s-2007-
1007122

23. Xie DY, Ren ZG, Zhou J, Fan J, Gao Q. 2019 Chinese clinical guidelines for
the management of hepatocellular carcinoma: Updates and insights. Hepatobiliary
Surg Nutr (2020) 9(4):452–63. doi: 10.21037/hbsn-20-480

24. Gao Q, Qiu SJ, Fan J, Zhou J, Wang XY, Xiao YS, et al. Intratumoral balance
of regulatory and cytotoxic t cells is associated with prognosis of hepatocellular
carcinoma after resection. J Clin Oncol (2007) 25(18):2586–93. doi: 10.1200/
JCO.2006.09.4565

25. Otsu N. A threshold selection method from gray-level histograms. IEEE
Trans syst. man cybern. (1979) 9(1):62–6. doi: 10.1109/TSMC.1979.4310076

26. Reinhard E, Adhikhmin M, Gooch B, Shirley P. Color transfer between
images. IEEE Comput Graphics Appl (2001) 21(5):34–41. doi: 10.1109/38.946629

27. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z eds. Rethinking the
inception architecture for computer vision. In: 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2016; Las Vegas, NV, USA: IEEE

28. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust
enumeration of cell subsets from tissue expression profiles. Nat Methods (2015) 12
(5):453–7. doi: 10.1038/nmeth.3337

29. Leening MJ, Vedder MM, Witteman JC, Pencina MJ, Steyerberg EW. Net
reclassification improvement: computation, interpretation, and controversies: a
literature review and clinician's guide. Ann Intern Med (2014) 160(2):122–31.
doi: 10.7326/M13-1522

30. Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A editors. Learning Deep
Features for Discriminative Localization. 016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). CVPR (2016) Las Vegas, NV, USA: IEEE.

31. Xi J, Yin J, Liang J, Zhan C, Jiang W, Lin Z, et al. Prognostic impact of
radiological consolidation tumor ratio in clinical stage IA pulmonary ground glass
opacities. Front Oncol (2021) 11:616149. doi: 10.3389/fonc.2021.616149

32. Cao Y, Ke R, Wang S, Zhu X, Chen J, Huang C, et al. DNA topoisomerase
IIalpha and Ki67 are prognostic factors in patients with hepatocellular carcinoma.
Oncol Lett (2017) 13(6):4109–16. doi: 10.3892/ol.2017.5999

33. Wang C, Zhang Y, Guo K, Wang N, Jin H, Liu Y, et al. Heat shock proteins
in hepatocellular carcinoma: Molecular mechanism and therapeutic potential. Int J
Cancer (2016) 138(8):1824–34. doi: 10.1002/ijc.29723

34. Zhou F, Shang W, Yu X, Tian J. Glypican-3: A promising biomarker for
hepatocellular carcinoma diagnosis and treatment. Med Res Rev (2018) 38(2):741–
67. doi: 10.1002/med.21455

35. Tian MX, Liu WR, Wang H, Zhou YF, Jin L, Jiang XF, et al. Tissue-
infiltrating lymphocytes signature predicts survival in patients with early/
intermediate stage hepatocellular carcinoma. BMC Med (2019) 17(1):106.
doi: 10.1186/s12916-019-1341-6

36. Klimov S, Miligy IM, Gertych A, Jiang Y, Toss MS, Rida P, et al. A whole slide
image-based machine learning approach to predict ductal carcinoma in situ (DCIS)
recurrence risk. Breast Cancer Res (2019) 21(1):83. doi: 10.1186/s13058-019-1165-5

37. Yu KH, Zhang C, Berry GJ, Altman RB, Re C, Rubin DL, et al. Predicting
non-small cell lung cancer prognosis by fully automated microscopic pathology
image features. Nat Commun (2016) 7:12474. doi: 10.1038/ncomms12474

38. Calderaro J, Petitprez F, Becht E, Laurent A, Hirsch TZ, Rousseau B, et al.
Intra-tumoral tertiary lymphoid structures are associated with a low risk of early
recurrence of hepatocellular carcinoma. J Hepatol (2019) 70(1):58–65. doi: 10.1016/
j.jhep.2018.09.003

39. Sia D, Jiao Y, Martinez-Quetglas I, Kuchuk O, Villacorta-Martin C, Castro
de Moura M, et al. Identification of an immune-specific class of hepatocellular
carcinoma, based on molecular features. Gastroenterology (2017) 153(3):812–26.
doi: 10.1053/j.gastro.2017.06.007

40. Lukacs-Kornek V. The role of lymphatic endothelial cells in liver injury and
tumor development. Front Immunol (2016) 7:548. doi: 10.3389/fimmu.2016.00548

41. Chung JW, Shin E, Kim H, Han HS, Cho JY, Choi YR, et al. Hepatic iron
overload in the portal tract predicts poor survival in hepatocellular carcinoma after
curative resection. Liver Int (2018) 38(5):903–14. doi: 10.1111/liv.13619

42. Ziol M, Pote N, Amaddeo G, Laurent A, Nault JC, Oberti F, et al.
Macrotrabecular-massive hepatocellular carcinoma: A distinctive histological
subtype with clinical relevance. Hepatology (2018) 68(1):103–12. doi: 10.1002/
hep.29762

43. Mule S, Galletto Pregliasco A, Tenenhaus A, Kharrat R, Amaddeo G,
Baranes L, et al. Multiphase liver MRI for identifying the macrotrabecular-
massive subtype of hepatocellular carcinoma. Radiology (2020) 295(3):562–71.
doi: 10.1148/radiol.2020192230

44. Bauer K, Nitsche U, Slotta-Huspenina J, Drecoll E, von Weyhern CH,
Rosenberg R, et al. High HSP27 and HSP70 expression levels are independent
adverse prognostic factors in primary resected colon cancer. Cell Oncol (Dordr)
(2012) 35(3):197–205. doi: 10.1007/s13402-012-0079-3
frontiersin.org

https://doi.org/10.1038/s41575-020-00395-0
https://doi.org/10.1080/17474124.2021.1973431
https://doi.org/10.1038/s41598-018-28337-6
https://doi.org/10.1038/s41598-018-28337-6
https://doi.org/10.1002/hep.29913
https://doi.org/10.1245/s10434-019-07580-9
https://doi.org/10.1245/s10434-019-07580-9
https://doi.org/10.1097/SLA.0000000000000710
https://doi.org/10.1038/s41586-019-0987-8
https://doi.org/10.1200/JCO.2016.68.2153
https://doi.org/10.1200/JCO.2016.68.2153
https://doi.org/10.1148/radiol.2020191470
https://doi.org/10.1038/s41416-020-0864-0
https://doi.org/10.1097/SLA.0b013e31821ad884
https://doi.org/10.1097/SLA.0b013e31821ad884
https://doi.org/10.1038/s41568-018-0016-5
https://doi.org/10.1038/s41568-018-0016-5
https://doi.org/10.1158/2159-8290.CD-21-0090
https://doi.org/10.1038/s41571-019-0252-y
https://doi.org/10.1002/hep.31603
https://doi.org/10.1038/s41591-019-0508-1
https://doi.org/10.1038/s41591-018-0177-5
https://doi.org/10.1002/ctm2.102
https://doi.org/10.1002/ctm2.102
https://doi.org/10.1002/hep.31207
https://doi.org/10.1136/gutjnl-2020-320930
https://doi.org/10.1055/s-2007-1007122
https://doi.org/10.1055/s-2007-1007122
https://doi.org/10.21037/hbsn-20-480
https://doi.org/10.1200/JCO.2006.09.4565
https://doi.org/10.1200/JCO.2006.09.4565
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.1109/38.946629
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.7326/M13-1522
https://doi.org/10.3389/fonc.2021.616149
https://doi.org/10.3892/ol.2017.5999
https://doi.org/10.1002/ijc.29723
https://doi.org/10.1002/med.21455
https://doi.org/10.1186/s12916-019-1341-6
https://doi.org/10.1186/s13058-019-1165-5
https://doi.org/10.1038/ncomms12474
https://doi.org/10.1016/j.jhep.2018.09.003
https://doi.org/10.1016/j.jhep.2018.09.003
https://doi.org/10.1053/j.gastro.2017.06.007
https://doi.org/10.3389/fimmu.2016.00548
https://doi.org/10.1111/liv.13619
https://doi.org/10.1002/hep.29762
https://doi.org/10.1002/hep.29762
https://doi.org/10.1148/radiol.2020192230
https://doi.org/10.1007/s13402-012-0079-3
https://doi.org/10.3389/fonc.2022.968202
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Qu et al. 10.3389/fonc.2022.968202
45. Gabrielson A, Wu Y, Wang H, Jiang J, Kallakury B, Gatalica Z, et al.
Intratumoral CD3 and CD8 t-cell densities associated with relapse-free survival in
HCC. Cancer Immunol Res (2016) 4(5):419–30. doi: 10.1158/2326-6066.CIR-15-
0110

46. Liu LZ, Zhang Z, Zheng BH, Shi Y, Duan M, Ma LJ, et al. CCL15 recruits
suppressive monocytes to facilitate immune escape and disease progression in
hepatocellular carcinoma.Hepatology (2019) 69(1):143–59. doi: 10.1002/hep.30134

47. Chen DP, Ning WR, Li XF, Wei Y, Lao XM, Wang JC, et al. Peritumoral
monocytes induce cancer cell autophagy to facilitate the progression of human
hepatocellular carcinoma. Autophagy (2018) 14(8):1335–46. doi: 10.1080/
15548627.2018.1474994

48. Yeung OW, Lo CM, Ling CC, Qi X, Geng W, Li CX, et al. Alternatively
activated (M2) macrophages promote tumour growth and invasiveness in
Frontiers in Oncology 14
hepatocellular carcinoma. J Hepatol (2015) 62(3):607–16. doi: 10.1016/
j.jhep.2014.10.029
COPYRIGHT

© 2022 Qu, Tian, Qiu, Guo, Tao, Liu, Tang, Qian, Wang, Li, Hu, Zhou, Fan,
Zou, Hou and Shi. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.
frontiersin.org

https://doi.org/10.1158/2326-6066.CIR-15-0110
https://doi.org/10.1158/2326-6066.CIR-15-0110
https://doi.org/10.1002/hep.30134
https://doi.org/10.1080/15548627.2018.1474994
https://doi.org/10.1080/15548627.2018.1474994
https://doi.org/10.1016/j.jhep.2014.10.029
https://doi.org/10.1016/j.jhep.2014.10.029
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fonc.2022.968202
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Exploring pathological signatures for predicting the recurrence of early-stage hepatocellular carcinoma based on deep&nbsp;learning
	Introduction
	Materials and methods
	Patient cohort and study design
	Preparation of H&amp;E staining and immunohistochemistry for immune markers
	Image annotation and processing
	Standardization of TCGA diagnostic slides
	Classification network
	Establishment of the histological score and combined score
	Correlation between HS and immune infiltration
	Statistical analysis

	Results
	Patient demographics and clinical information
	Visualization of category-based HCC tissue
	Signature extraction and construction of prognostic scores
	Comparison of HS and CS in predictive accuracy
	Survival prediction of novel pathological predictors
	Prognostic predictors of RFS in early-stage HCC
	The correlation between HS and clinicopathological characteristics
	The correlation between HS and the immune microenvironment

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


