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Within the methodologically diverse interdisciplinary research on the minimal self, we identify 
two movements with seemingly disparate research agendas – cognitive science and 
cognitive (developmental) robotics. Cognitive science, on the one hand, devises rather 
abstract models which can predict and explain human experimental data related to the 
minimal self. Incorporating the established models of cognitive science and ideas from 
artificial intelligence, cognitive robotics, on the other hand, aims to build embodied learning 
machines capable of developing a self “from scratch” similar to human infants. The 
epistemic promise of the latter approach is that, at some point, robotic models can serve 
as a testbed for directly investigating the mechanisms that lead to the emergence of the 
minimal self. While both approaches can be productive for creating causal mechanistic 
models of the minimal self, we  argue that building a minimal self is different from 
understanding the human minimal self. Thus, one should be cautious when drawing 
conclusions about the human minimal self based on robotic model implementations and 
vice versa. We further point out that incorporating constraints arising from different levels 
of analysis will be crucial for creating models that can predict, generate, and causally 
explain behavior in the real world.

Keywords: minimal self, mechanistic models, cognitive robotics, sense of agency, sense of ownership

INTRODUCTION

The minimal self describes the immediate, pre-reflective experience of selfhood derived from 
sensory information (Gallagher, 2000; Blanke and Metzinger, 2009). Conceptually, it has been 
subdivided into the sense of agency (SoA, “I produced an outcome with my voluntary action.”) 
and the sense of ownership (SoO, “This body part/mental state belongs to me”. Haggard, 2017; 
Braun et  al., 2018). In the wake of experimental paradigms that added implicit measures to 
the verbally reported experience of SoA (Haggard et  al., 2002) and SoO (Botvinick and Cohen, 
1998), both concepts have received considerable attention in the behavioral, cognitive, and 
neurosciences (David et al., 2008; Blanke et al., 2015; Haggard, 2017; Noel et al., 2018). Currently, 
the field offers a wealth of empirical findings on the antecedents of and relationships among 
the implicit and explicit behavioral measures of minimal selfhood as well as related neurophysiological 
measures (see Blanke et  al., 2015; Braun et  al., 2018; Noel et  al., 2018 for reviews).

These advances in the human domain have been paralleled by a growing interest in the 
different aspects of the minimal self among roboticists and AI researchers who reason that 
equipping machines with a self-representation similar to humans will ultimately increase their 
performance and robustness in real-world settings (e.g., Hoffmann et al., 2010; Legaspi et al., 2019; 
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Hafner et  al., 2020). Collaborative efforts of robotics and 
psychology have been spearheaded by cognitive robotics and 
further advanced by developmental robotics, which strives for 
the implementation of a quasi-human developmental scheme 
for robots (Asada et  al., 2009). More specifically, an agentive 
model embodied by a robot undergoing a developmental phase 
like human infants could enable direct investigations into the 
mechanisms that lead to the emergence of a minimal self 
(Hafner et  al., 2020) and thus could be  used to test different 
theories regarding the minimal self.

Current theoretical accounts on the minimal self may be broadly 
categorized into (a) informal models, including box-and-arrow 
models and verbal formulations of laws and constraints for the 
emergence of SoO and SoA (e.g., Synofzik et  al., 2008; Tsakiris, 
2010; Blanke et al., 2015; Haggard, 2017), (b) Bayesian accounts, 
according to which the perception of SoO and SoA is governed 
by statistically optimal information integration, as a main function 
of the brain is to optimally estimate the state of the world (e.g., 
Samad et al., 2015; Legaspi and Toyoizumi, 2019), and (c) accounts 
based on the free energy principle (FEP), which also lends itself 
to the interpretation of the self as the result of a continuous 
process of optimizing one’s world model (e.g., Limanowski and 
Blankenburg, 2013; Apps and Tsakiris, 2014; Seth and Friston, 2016).

Much of this theorizing regarding the minimal self is 
non-mechanistic in the sense that it either focuses on the 
computational level of cognition (Marr, 1982), which is about 
describing goals rather than the underlying mechanisms, or 
does not specify how relevant brain functions are carried out 
by specific parts of the brain. In more statistical terms, this 
could be expressed as defining the objective function that needs 
to be  optimized by an agent without specifying the algorithms 
the agent employs to do the optimization. However, if one is 
interested in building mechanistic models – ones that can causally 
explain psychological phenomena – it is crucial to account for 
the algorithmic/representational and implementational levels 
(Marr, 1982), which describe how and by which parts the goals 
specified on the computational level are achieved (Piccinini and 
Craver, 2011; Love, 2015; Kriegeskorte and Douglas, 2018).1

The problem of neglecting mechanistic details becomes acute 
when the use of robotic platforms necessitates model 
implementation. If a model is underconstrained on the 
representational and implementational level, researchers will 
be forced to choose between many algorithms which can achieve 
the specified computational goal(s; cf. Anderson, 1978). In turn, 
this is likely to produce a significant deviation of the model 
from human behavior as not all algorithms for achieving a 
given computational goal perform equally under non-optimal 
conditions (e.g., time pressure, insufficient memory capacity, and 
internal noise) which are characteristic for the real-world settings 
humans operate in Wang (2019). Moreover, without specifying 
further constraints, human information integration appears to 

1 When talking about the implementational level, we  do not exclusively refer 
to singular neurons or synapses. Groups of neurons or brain areas may also 
be  related to a function. To be  verifiable mechanistic parts, the states of such 
a physical system still need to be  measurable and clearly attributable to the 
implementation of a concrete algorithm.

be  non-optimal for many tasks (Rahnev and Denison, 2018; 
Lieder and Griffiths, 2020). The question of how to reconcile 
these idiosyncrasies with theories of optimal information 
integration has sparked an ongoing debate (also see Bowers and 
Davis, 2012; Griffiths et  al., 2012; Love, 2015). In a similar vein, 
one should consider the context and complexity of the behavior 
to be modeled (Craver, 2006; Krakauer et al., 2017) – superficial 
phenomenal descriptions will likely lead to over-simplistic models.

In sum, whatever aspects of the minimal self (or any target 
system), a model can represent should depend on three factors: 
(a) the model’s objective function or goal (e.g., optimal prediction 
of the environment and solving a set of tasks), (b) the algorithmic 
implementation it employs for achieving its goals, and (c) the 
conditions under which it operates or inputs it receives. 
We  assume that only if all three factors align, the model can 
serve as a mechanistic explanation. Conversely, if mechanistic 
details are not specified and phenomenal similarities between 
humans and robots are superficial, drawing conclusions from 
model implementations to humans (and vice versa) would 
be  ill-advised.

Thus, the present contribution aims at highlighting the need 
for deeper integration of insights from the behavioral, cognitive, 
and neurosciences if one’s goal is a better understanding of 
the human minimal self. Of course, the interactive approach 
of robotics and ideas from artificial intelligence benefit cognitive 
neuroscience (Marblestone et  al., 2016; Hoffmann and Pfeifer, 
2018). We  contend, however, that only models of the human 
minimal self which are phenomenologically rich and specify 
mechanistic details can be meaningfully tested through robotic 
model implementations. In the remainder, we  will go into 
more detail regarding (a) the role of causal mechanistic models 
in cognitive neuroscience, (b) the mechanistic depth of different 
models of aspects of the minimal self, and (c) the current 
state of cognitive and developmental robotics implementations 
of such models.

CAUSAL MECHANISTIC MODELS IN 
COGNITIVE NEUROSCIENCE

Understanding a phenomenon requires being able to explain 
how said phenomenon comes about (or fails to do so) under 
certain circumstances. Such causal explanations need to specify 
the mechanism producing said phenomenon (Craver, 2006). 
A mechanism is defined as being composed of parts whose 
organized activity produces a phenomenon from certain starting 
conditions (Machamer et  al., 2000; Craver, 2006). Crucially, 
there needs to be  a clear relation between parts and processes 
(Hommel, 2020) and the assumed parts of the mechanism 
need to be  measurable and open to intervention to make the 
causal model testable (Craver, 2006).

The notion of causal mechanistic models does not imply 
reductionism (Nicholson, 2012), that is, that human behavior 
can be explained satisfactorily in the language of neuroscience, 
molecular biology, or particle physics alone. Rather, it is open 
to multilevel explanations (Kaplan and Craver, 2011). Crucially, 
this also requires a thorough description of the phenomenon 
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to be  explained and a distinction between standard and 
non-standard (e.g., lab) conditions (Craver, 2006). If the 
conditions under which a phenomenon is observed and described 
are non-representative of the real world, a model trying to 
explain it will likely not generalize well to real-world scenarios. 
Models in (computational) neuroscience have been criticized 
for being too reductionist, focusing on biological mechanisms 
that cannot be  related to meaningful behavior (Krakauer 
et  al., 2017).

Descriptive models, on the other hand, act as a compact 
summary of a phenomenon (Kaplan and Craver, 2011). They 
enable predictions about the phenomenon, without specifying 
the underlying mechanism. This type of model is widespread 
in psychology and cognitive neuroscience (Kaplan and Craver, 
2011; Hommel, 2020; Litwin and Miłkowski, 2020) and can 
be derived from general assumptions about brain function (e.g., 
“the brain optimizes an internal world model”) or empirical 
observations (e.g., the rubber hand illusion, brain imaging 
data). A descriptive model can still serve as a starting point 
for building a causal model if it is possible to relate parts of 
the model to parts of a causal mechanism (Kaplan and Craver, 
2011; Piccinini and Craver, 2011). Moreover, in the face of 
physiological and behavioral complexity, the notion of a truly 
mechanistic model appears somewhat idealized and may be only 
approached gradually, making descriptive models a reasonable 
starting point.

MECHANISTIC DEPTH OF MODELS OF 
THE MINIMAL SELF

Starting with informal descriptive models of the minimal self, 
we  will consider the work by Tsakiris (2010) (see also Wegner 
and Wheatley, 1999; Frith et  al., 2000; Synofzik et  al., 2008; 
Chambon et  al., 2014; Blanke et  al., 2015). This model is 
concerned with explaining the SoO over body parts or objects. 
It proposes a tiered comparison between the features of candidate 
objects for experiencing ownership and the current state of 
an internal body model (i.e., comparison of visual appearance, 
posture, and sensory stimulation – in this order). Tsakiris 
(2010) also points toward evidence of certain brain areas being 
responsible for this comparison. While the model provides an 
algorithm in the sense that it specifies the order in which 
certain information is compared, it includes no constraints on 
the algorithms for making the comparisons or how they could 
be  implemented by the brain. It also does not specify how 
the internal model of the body is represented.

Although the model makes testable predictions, it is clearly 
not mechanistic to the degree that it would permit a 
straightforward robotic implementation without additional 
assumptions. The same holds for other informal models which 
specify what kind of information is processed, but which do 
not provide the actual metric used for making comparisons 
or the processes underlying the formation of representations. 
Figure  1 tries to make a graphical comparison between the 
human self-representation and models of the human self. 
Informal models typically account for relatively broad phenomena 

like the SoO. Thus, they cover a large part of the human 
“self-space” (observable self-related behaviors and self-related 
information relevant for constructing the internal self-
representation). However, as they are only loosely constrained 
by theoretical assumptions and do not make quantifiable 
predictions, these models would likely conform with behavior 
that is outside the human repertoire.

Bayesian models (e.g., Samad et  al., 2015; Legaspi and 
Toyoizumi, 2019) frame the perception of SoA and SoO as 
the posterior probability for perceiving objects or actions as 
belonging to or being caused by oneself given sensory input 
and prior beliefs. These models can be very useful for untangling 
what information is relevant for a certain task or percept (e.g., 
Legaspi and Toyoizumi, 2019) but usually make no commitments 
to the algorithms employed by the brain (Griffiths et  al., 2012; 
Love, 2015). Neurocomputational models for approximating 
Bayesian inference (e.g., Pouget et  al., 2000) try to build a 
bridge between computational goals and concrete 
implementations (cf. Love, 2015) and have been shown to fit 
the response characteristics of biological neurons (Avillac 
et  al., 2005).

While neurocomputational models for multisensory 
integration – which is thought to be  central for the SoO – are 
abundant (see Ursino et  al., 2014; Blanke et  al., 2015 for 
reviews), there are still explanatory gaps: (a) many of these 
models feature no learning mechanism (e.g., Deneve et  al., 
2001) or use learning techniques that cannot be  brought into 
correspondence with parts and processes of the brain (i.e., the 
use of machine learning techniques, Makin et  al., 2013), (b) 
many models are based on physiological data from midbrain 
structures (e.g., Cuppini et  al., 2012; Oess et  al., 2020), where 
the empirical link between these structures and the perception 
of SoO is not clear, and (c) the neurophysiological constraints 
incorporated into these models so far have not been demonstrated 
to give rise to more specific predictions on the behavioral level.

The latter point is important because traditional Bayesian 
models and thus their neurocomputational counterparts often 
only apply to human behavior in idealized situations (Love, 
2015; Rahnev and Denison, 2018). Research from other domains, 
however, has shown that taking additional constraints on the 
representational level (e.g., efficient coding; Wei and Stocker, 
2015) or implementational level (e.g., internal noise; Tsetsos 
et  al., 2016) into account can greatly benefit modeling 
“non-optimal” human behavior in real-world settings (also see 
Lieder and Griffiths, 2020 for a review). These examples show 
that by refining computational models with more low-level 
constraints instead of simply translating them into a 
neurocomputational framework, it is possible to move closer 
to the human style of information processing – also an exciting 
opportunity for research on the self.

The FEP builds on the notion that human brains, like all 
living systems, can be  thought of as “trying” to minimize their 
surprisal through representing an optimal world model and 
acting on it (Friston, 2010). At its core, the FEP is closely 
related to Bayesianism (Aitchison and Lengyel, 2017) but 
incorporates a (variable) host of additional assumptions (Gershman, 
2019; Bruineberg et  al., 2020), the most important arguably 
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being the explicit representation of prediction errors at all stages 
of perception and action, termed predictive coding (PC, Rao 
and Ballard, 1999; see Aitchison and Lengyel, 2017 for PC 
schemes in other contexts). According to PC, predictions descend 
the cortical hierarchy where they suppress incoming bottom-up 
signals leading to the representation of prediction errors. These 
prediction errors, in turn, are propagated up the hierarchy to 
inform the update of higher-level representations. Ultimately, 
this leads to a dynamic equilibrium where prediction errors are 
minimized (Friston, 2010).

The FEP and PC have been rapidly adopted in the domains 
of interoception and the (minimal) self (e.g., Limanowski and 
Blankenburg, 2013; Apps and Tsakiris, 2014; Barrett and Simmons, 
2015; Seth and Friston, 2016). Building on PC, Apps and Tsakiris 
(2014), for instance, explain illusions of ownership over 
extracorporeal objects like the rubber hand illusion as a process 
where prediction errors caused by incongruent sensory information 
are “explained away” by updating one’s high-level representations 
in such a way that best predicts said sensory information. 
However, the authors do not specify how the prediction errors 
are computed or how they are transformed into beliefs.

This gap may be  closed by neurocomputational models of 
PC (Bastos et al., 2012). However, as neurophysiological evidence 
for PC is inconclusive (Seth and Friston, 2016; Aitchison and 
Lengyel, 2017), this vein of research requires further investigation 
(Keller and Mrsic-Flogel, 2018). Additionally, the same reservation 
as for Bayesian models applies – in our view, showing that 
an optimization scheme can be  implemented through neural 
computation, while being necessary for a possible mechanistic 
explanation, is not sufficient as long as the more specific model 

does not capture relevant deviations from behavior predicted 
by computational constraints alone.

One such deviation yet unexplained by computational models 
may be the apparent dissociation of explicit and implicit measures 
of SoO in the rubber hand illusion under certain conditions 
(Holle et  al., 2011; Rohde et  al., 2011; Gallagher et  al., 2021), 
which has been explained under the same framework of 
information integration (Apps and Tsakiris, 2014). Another 
example is the effect of action selection fluency on SoA (Chambon 
et  al., 2014) which shows that the SoA can be  diminished 
solely by hindering fluent action selection. This effect is 
independent of the predictability of the action outcome – the 
core tenet of comparator models of SoA (Frith et  al., 2000) 
which strongly align with PC (cf. Aitchison and Lengyel, 2017). 
Coming back to Figure  1, we  would then argue that, albeit 
being very broad in scope, computational models of the minimal 
self are only a first approximation of the information processing 
underlying the minimal self. Refining these models with new 
constraints will necessitate synergistic modeling and empirical 
work – behavioral scientists will have to further explore the 
limits of the malleability of the human minimal self and the 
relative importance of different kinds of information used for 
constructing it, thereby informing theorists who, in turn, should 
create models that make new, empirically testable predictions, 
thus entering an experiment-model development-prediction cycle 
of research. One concrete future direction might be considering 
multiple computational constraints which could even play 
different roles during development (cf. Marblestone et al., 2016). 
Besides prediction error reduction this could be, for instance, 
novelty, reward maximization, or computational efficiency.

FIGURE 1 | Schematic of the representational power of models for the human minimal self. The human minimal self representation (dark grey, left) is based on a 
relevant subset of all self-related information (blue) while also underlying a subset of all possible self-related behaviors (purple, e.g., experiencing a piece of furniture 
as belonging to oneself). Currently, models of the self (right) are too narrow in the sense that they consider only a subset of potential inputs and in practice can 
generate only a small subset of human behaviors and/or too general in the sense that they make too unspecific predictions regarding self-related phenomena, 
violating the bounds of the human self (dotted line). Note, that the relative number of constraints underlying each self-representation is reflected by the number of 
sides of the respective shapes.
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MINIMAL SELF-MODELS IN COGNITIVE 
AND DEVELOPMENTAL ROBOTICS

Applying a theory or model in a complex environment either 
through simulation or the use of physical robots may speed 
up research efforts significantly by reducing the need for time-
consuming human experiments and increasing the control and 
transparency of the subject. Unfortunately, reviewing robotic 
models related to the minimal self would be  beyond the scope 
of this contribution (see Nguyen et  al., 2021 for an excellent 
review). Instead, we  want to point out two tendencies that 
may impair the epistemic power of robotic model implementations.

Compared to traditional cognitive and neuroscience models, 
robotic implementations have the advantage of receiving rather 
realistic input as robots can directly interact with the real 
world and register the consequences of their actions (Hoffmann 
and Pfeifer, 2018). Moreover, the use of embodied agents 
allows testing the impact of physiological features (i.e., body 
morphology) on learned representations. This increased fidelity 
of model inputs, however, makes implementations much more 
demanding. Thus, it is not surprising that robotic model 
implementations often rely on more scalable machine learning 
techniques instead of neurocomputational models (cf. Nguyen 
et  al., 2021). This has the benefit of introducing powerful 
ideas like curiosity-driven learning (Oudeyer et  al., 2007), 
but also contains the risk of deviating on the algorithmic 
level by choosing an algorithm that elegantly solves a given 
task while neglecting biological constraints. We  assume this 
concern will bear greater importance when task complexity 
increases and experimental settings move closer toward the 
real world.

Second, as Krichmar (2012) noted, cognitive robotics models, 
in general, tend to be  built to perform very specific tasks. This 
diminishes the ecological benefit of real-world inputs because 
it greatly reduces the possible robot-world interactions. Moreover, 
the use of narrow tasks holds the risk of over-engineering the 
model to the task (as, e.g., Hoffmann et  al. (2021) note for 
robotic models of minimal self-awareness). Such specialist models 
will hardly generalize in novel situations. Covering the whole 
self-space (Figure  1) would then require a multitude of such 
models that need to be  integrated somehow, which would be  a 
daunting task (Clune, 2020). Moreover, testing a robotic 
implementation under quasi-lab conditions only for the behaviors 
which have been used to build and train the underlying model 
cannot be  regarded as a critical test of a theory.

One promising approach, therefore, appears to be  letting 
robots solve general tasks that necessitate real-world interactions 
without explicitly engineering the model to perform a specific 
behavior, like say, attenuating self-caused sensory input – which 
has been related to SoA (Schillaci et  al., 2016; but see Kaiser 
and Schütz-Bosbach, 2018). In such a scenario, the robot should 
show some behavior because it is (a) possible and (b) beneficial 
for task success. One could then proceed by probing the 
conditions under which this behavior develops or is enacted. 
By comparing the model to human behavior under diverse 
conditions, one could simultaneously test the assumed mechanism 
and deepen the phenomenological description of the human 

repertoire. This method could even be generalized to the point 
where the agent is not designed by the researcher but by an 
(evolutionary) algorithm guided by task success and prior 
constraints (cf. Albantakis et  al., 2014). However, such an 
approach might require going to the edge of what is currently 
computationally possible (cf. Clune, 2020).

DISCUSSION: WHY MECHANISTIC 
MODELS?

So far, we have established that there is no complete mechanistic 
explanation of the minimal self yet – but why should mechanistic 
models be  beneficial for further research on the minimal self? 
We  see several benefits in striving for integrating evidence 
from different levels of description and thereby creating more 
mechanistic models of the minimal self: (a) It safeguards against 
overfitting to specific pieces of evidence, assumptions, or tasks, 
(b) it increases model comparability and the probability of 
model generalization, and (c) especially in clinical contexts, a 
causal understanding may help to find effective interventions 
for (self-)disorders and interfaces with other theories (e.g., 
Schroll and Hamker, 2016; Neumann et  al., 2018). For brevity, 
we  will only touch upon the first two points.

Anchoring a model in a narrow set of observations, 
assumptions, or tasks bears the risk of selectively including 
evidence that fits the model and tailoring the model to these 
data points (cf. Love, 2015). Because mechanistic models 
demand a multilevel view on a phenomenon, their 
implementation should counteract this risk. They should also 
increase model comparability as there can be  no meaningful 
comparison of two models that make predictions for distinct 
variables or solve different tasks (Love, 2021). As the minimal 
self and its subcomponents are relevant in many contexts, 
their corresponding mechanistic models should also not 
be  bound to a narrow task.

Furthermore, explicitly distinguishing between mechanistic 
and non-mechanistic models also helps when thinking about 
robots as models for the human minimal self. If we understand 
the self as a representation of contextually and ethologically 
relevant features of one’s physical body and intentional actions 
which is learned and continuously updated by the nervous 
system, we  may ascribe a minimal (pre-reflective) self to 
very primitive creatures like ants. Ants have been shown to 
perform approximately optimal cue integration of vision and 
proprioception (Wystrach et al., 2015),2 act intentionally (Hunt 
et  al., 2016), and learn (Dupuy et  al., 2006). Admittedly 
being an exaggeration, this example should make clear that 
if we exclude higher-order cognition (as it is not pre-reflective), 
ignore individual representational capacities, behavioral 
complexity, and other conditions constraining sensory content, 

2 The study of Wystrach et al. (2015) also provides an example of the importance 
of implementation constraints affecting behavior. Ants show “suboptimal” cue 
integration under some circumstances which could be  explained by a memory 
restriction in their information processing.
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we run the risk of ascribing some phenomenology to systems 
vastly different from us.

Certainly, there is much potential in using embodied machines 
to advance investigations into the human minimal self. However, 
we would caution against thinking of both as being representative 
for one another as long as there is no agreement between all 
levels of description relevant for cognition and behavior. This 
should not imply that robot “brains” or other models need 
to be  neuromorphic, but as the human brain is a product of 
the chaotic process of evolution, and given that there is no 
unique implementation of purely computational theories due 
to the complexity and dynamics of real-world settings (Whiteley 
and Sahani, 2012; Gershman, 2019), it appears unlikely that 
an algorithm that is only constrained by a single computational 
goal could fully capture human behavior and experience (cf. 
Marblestone et al., 2016; Kriegeskorte and Douglas, 2018; Lieder 
and Griffiths, 2020). In conclusion, incorporating constraints 
arising from different levels of analysis will be  crucial for 
creating models able to predict, generate, and mechanistically 
explain behavior related to the minimal self in the real world.
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