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Abstract

Inflamed and infected tissue sites are characterised by oxygen and
nutrient deprivation. The cellular adaptations to insufficient
oxygenation, hypoxia, are mainly regulated by a family of
transcription factors known as hypoxia-inducible factors (HIFs).
The protein members of the HIF signalling pathway are critical
regulators of both the innate and adaptive immune responses, and
there is an increasing body of evidence to suggest that the elicited
changes occur through cellular metabolic reprogramming. Here,
we review the literature on innate immunometabolism to
date and discuss the role of hypoxia in innate cell metabolic
reprogramming, and how this determines immune responses.
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Introduction

A key feature of immune cells is their ability to infiltrate and

function in hypoxic tissues, enabling appropriate responses to

damage and infection. Hypoxia primes innate cells for the

inflammatory response and prolongs survival in numerous types

of innate immune cells including neutrophils, monocytes and

eosinophils [1–4]. HIF-mediated innate immune responses are

discussed in detail in a review by Harris et al [5]. Both hypoxia

and the activation of innate cells by inflammatory stimuli result

in the induction of the master regulator of oxygen homeostasis,

hypoxia-inducible factor-1 (HIF-1) [6]. HIF-1 induction mediates a

response through the regulation of expression of hundreds of

downstream genes involved in diverse biological pathways, rang-

ing from erythropoiesis to metabolism [7–9]. In mammals, HIF-1

exists as a heterodimeric complex composed of two subunits,

HIF-1a (oxygen-sensitive) and HIF-1b (constitutive) [10,11].

Hypoxia-inducible factor activity is regulated by a family of

oxygen sensing proteins known as prolyl hydroxylase domain

enzymes (PHD1-3) and asparaginyl hydroxylase enzyme factor

inhibiting HIF (FIH) [11–14]. Prolyl hydroxylase domain enzymes

post-translationally modify the HIF-1a subunit through hydroxyla-

tion of two conserved proline residues, in an oxygen-dependent

manner. Hydroxylation destabilises HIF-1a by mediating binding

to von Hippel Lindau (VHL) protein E3 ligase complex followed

by ubiquitination and proteasomal degradation [15,16]. In order

to function, in addition to oxygen, PHD and FIH proteins also

require Fe2+, ascorbic acid and the tricarboxylic acid (TCA) cycle

intermediary a-ketoglutarate [17]. Furthermore, these proteins

have been shown to be inhibited by the accumulation of down-

stream TCA intermediaries succinate and fumarate in studies

using cancer cells and in vitro studies where cells were exposed

to high concentrations of TCA cycle intermediates [18,19]. These

findings highlighted a direct link between metabolite availability

and the regulation of HIF-1 activity. To date, there are a limited

number of studies investigating metabolic regulation via TCA

cycle metabolites under physiological oxygen conditions in

myeloid cells in vivo. In hematopoietic stem cells, fumarate break-

down has been identified as a critical regulatory mechanism for

stem cell maintenance and hematopoietic differentiation in normal

hematopoiesis and leukaemia propagation [20]. A second study

by Tyrakis et al [21] demonstrated the accumulation of the

metabolite 2-hydroxyglutarate in mouse CD8+ T cells in response

to T-cell receptor triggering and showed that it occurs through

a HIF-1a-dependent mechanism with subsequent epigenetic

changes. In in vitro assays utilising activated macrophages,

succinate accumulation has been shown to be important in the

regulation of downstream cellular responses [22]. It remains to be

seen whether other TCA cycle metabolites act as immunoregula-

tory molecules in neutrophils and macrophages in normal

physiology and during inflammatory hypoxia in the tissues.

In this review, we focus on the effects of hypoxia on neutrophil

and macrophage metabolic regulation. For a more general overview

of the HIF pathway relevance for metabolism in all immune cells,

see the review by Krzywinska and Stockmann [23].
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Regulation of metabolism by hypoxia

For adequate function, innate immune cells require readily avail-

able ATP, redox buffering capacity and biosynthetic precursors.

Under normoxic oxygen levels, most cells metabolise glucose into

pyruvate via glycolysis. Pyruvate then enters the mitochondria and

can be converted into acetyl-coenzyme A, which is further

oxidised in the TCA cycle. This process, known as aerobic respira-

tion, generates the reducing equivalents nicotinamide adenine

dinucleotide (NADH) and flavin adenine dinucleotide (FADH2),

which donate electrons to the electron transport chain and fuel

oxidative phosphorylation. Aerobic respiration generates high

levels of energy stores in the form of adenosine triphosphate

(ATP) molecules. It was initially thought that hypoxic cells relied

solely on anaerobic glycolysis, a phenomenon termed the “Pasteur

effect” [24]. This phenomenon was used to describe the elevated

conversion of glucose to lactate as a result of HIF-activated glycol-

ysis and was thought to be a result of a decline in aerobic respira-

tion, a passive process resulting from oxygen deprivation.

However, mounting evidence has revealed that hypoxia actively

regulates metabolic pathways, and in addition to upregulating

glycolytic flux, it also suppresses the TCA cycle and the mitochon-

drial respiratory chain [25]. A study by Kim et al [26] has demon-

strated that mitochondrial respiration in hypoxic cells causes

leakage of electrons in the transport chain leading to increased

reactive oxygen species (ROS) levels and cell damage. Pyruvate

dehydrogenase (PDH) inhibition through HIF-1-mediated pyruvate

dehydrogenase kinase 1 (PDK1) induction was shown to prevent

cell damage by attenuating mitochondrial respiration and shunting

metabolism to glycolysis. This subsequently results in the mainte-

nance of ATP levels and restored homeostasis.

The impact of hypoxia on immunometabolism

Innate immune cells eradicate pathogens and convey signals to the

adaptive immune system in turn regulating its response. Innate

cells may be resident cells or cells that migrate through a range of

oxygen tensions before reaching very hypoxic environments such

as inflamed or infected tissues. These cells therefore require

oxygen-independent mechanisms of energy generation. Hypoxia

results in the activation of numerous innate immune cells, and the

HIF pathway has been shown to play key roles in both effective

and pathological immunity [27]. Hypoxia-inducible factor activa-

tion can occur under normoxia, and this allows the initiation of an

inflammatory response before the tissue becomes hypoxic. Gram-

negative bacterial product lipopolysaccharide (LPS), ROS and

reduced cellular iron have all been shown to regulate HIF-1

expression under normoxic conditions through upregulation of

HIF-1a transcript expression, HIF-1a stabilisation or inhibition of

PHDs, respectively [28–30].

Neutrophils

Neutrophils constitute around 60% of the circulating leucocytes.

They are short-lived polymorphonuclear cells and the first to

migrate to injured or infected tissue sites where oxygen availability

is limited. Their role is to combat bacterial infections through

phagocytosis, respiratory burst activity, the release of granule

contents and extracellular traps. Hypoxia prolongs neutrophil

survival by inhibiting programmed cell death and is accompanied

by a time-dependent induction of key glycolytic enzymes glyceralde-

hyde 3-phosphate dehydrogenase (GAPDH) and triosephosphate

isomerase-1 [1]. Murine studies on HIF-1a knockouts have demon-

strated that the HIF-1a protein is essential for myeloid cell infiltra-

tion and activation. HIF-1a inactivation results in a reduced cellular

ATP pool, impairment of myeloid cell aggregation, motility, inva-

siveness and bacterial killing [31,32]. Although HIF-2a is also upreg-

ulated in neutrophils in response to hypoxia, it is thought to play a

key role in the resolution phase of inflammation and its effects on

metabolism are not understood [33].

Neutrophils contain very few mitochondria and as such are

thought to lack the capacity for mitochondrial respiration [34]. In

keeping with this, it has been shown that the inhibition of oxidative

phosphorylation has little effect on the oxygen consumption rate of

neutrophils [35]. Neutrophils rely heavily on glycolysis even in the

presence of oxygen [36,37]. In keeping with this, neutrophil activa-

tion results in increased glucose transport and intrinsic activation of

glucose transporter molecules [38].

Glycolysis provides a very rapid supply of energy and is well

suited to the function of recruited innate immune cells. As early as in

the 1950s, Borregaard and Herlin demonstrated that glycolysis is

used to fuel neutrophil phagocytosis in both the presence and

absence of glucose [39]. The ATP required for the phagocytosis of

zymosan particles was almost exclusively generated through either

glucose uptake or glycogenolysis in a glucose-deplete setting. This
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finding was further supported by a study investigating the inhibition

of glycolysis by 2-deoxyglucose (2-DG) on guinea pig neutrophils,

where treatment of cells with the inhibitor led to an impairment of

the phagocytosis of C3- and IgG-bound particles [40]. The effects of

the metabolic substrates fatty acids and glutamine have been studied

to a lesser extent, but both have also been shown to play roles in

neutrophil development and homeostasis. While autophagy-derived

free fatty acids and their oxidation are required for appropriate

neutrophil differentiation, the role of glutamine is critical in regulat-

ing inflammatory processes through delaying spontaneous apoptosis

[41,42].

A shunt into the pentose phosphate pathway (PPP), a side path-

way of glycolysis, ensures that the neutrophil has a supply of nicoti-

namide adenine dinucleotide phosphate (NADPH) cofactor for

respiratory burst via NADPH oxidase 2 (NOX2) activity [43]. The

importance of the pentose phosphate pathway in neutrophil reactive

oxygen species production has been established in studies on

patients with glucose-6-phosphate dehydrogenase deficiency, who

have abnormal neutrophil function and increased susceptibility to

infections [44]. These patients have neutrophils with very low levels

of NADPH, unable to produce normal quantities of superoxide

species. In vitro, inhibition of the pentose phosphate pathway using

the 6-phosphogluconate-dehydrogenase inhibitor 6-aminonicotina-

mide abrogated bacterial peptide fMLF and phorbol myristate

acetate induced NADPH production and superoxide production

[45].

Neutrophil activation results in the production of extracellular

traps or fibres consisting of granule proteins and chromatin [46].

Neutrophil extracellular traps (NETs) degrade virulence factors and

kill bacteria. It has been reported that NETosis, the form of cell

death characterised by the release of NETs, is dependent on NADPH

oxidase, as patients with chronic granulomatous disease who carry

mutations in NADPH oxidase are unable to produce NETs [47].

Conversely, NETs have also been implicated in the pathogenesis of

autoimmune and inflammatory disorders [48]. The formation of

neutrophil extracellular traps is heavily dependent on glucose

substrate and to a lesser extent on glutamine [49]. Moreover, a

study by Azevedo et al [50] observed that a shift to the pentose

phosphate pathway and not mitochondrial ROS is necessary for the

generation of NETs. Although mitochondrial ROS are not effective

in producing NETs, a very recent study claims that the mitochon-

drial inner membrane protein optic atrophy 1 (OPA1) is important

for the anti-microbial defence of neutrophils in an in vivo model of

P. aeruginosa lung infection [51]. OPA1 was shown to function

through the control of the mitochondrial electron transport complex

I and in turn regulate NAD+ availability. NAD+ is required for the

enzymatic activity of the glycolytic protein glyceraldehyde-3-phos-

phate dehydrogenase. Opa1-deficient neutrophils had lower NAD+

levels resulting in a reduced glycolytic rate and a decline in ATP

production.

In addition to increased uptake and affinity for glucose during

neutrophil activation, neutrophils also contain and upregulate

glucose stores in the form of the macromolecule glycogen [38,52–

54]. Hypoxia is known to promote glycogen accumulation through

HIF-1-mediated induction of glycogen synthase 1 [55]. We have

recently demonstrated the consequences of HIF-1a stabilisation for

neutrophilic inflammation. Our work has shown that PHD2-deficient

neutrophils have enhanced survival, chemotaxis and functional

reserve capacity resulting in an exaggerated inflammatory response

that is detrimental to the host [56]. This disordered neutrophilic

response is driven by increases in both glycolytic flux and glycogen

storage. Importantly, non-PHD-isoform-selective inhibition using

Molidustat also replicated the Phd-2-deficient phenotype augment-

ing neutrophilic inflammation via increased extracellular acidifi-

cation rate (an indirect measure of glycolysis) and ATP levels [56].

With numerous PHD protein inhibitors being used for the pharma-

cological treatment of anaemia associated with chronic disease and

in late phase clinical trials [57], understanding the consequences of

pan hydroxylase inhibition for immunometabolism and therefore

innate cellular responses will be crucial for determining when and

how these inhibitors are administered to limit adverse effects.

More broadly, the importance of glucose homeostasis for neutro-

phil function is supported by study of patients with glycogen stor-

age disease type Ib (GSD-Ib). In this setting, defective glucose-6-

phosphate (G6P) transporter (G6PT) activity is associated with

impaired neutrophil respiratory burst, chemotaxis and calcium

mobilisation, resulting in an increased susceptibility to infection

[58–60]. Furthermore, mice lacking glucose-6-phosphatase-b

(G6Pase-b) also demonstrate an increased susceptibility to bacterial

infection with elevated neutrophil apoptosis responses as a conse-

quence of dysregulated activation of the HIF-1a/PPAR-c pathway

[59,60]. Together therefore, these data highlight the importance of

the tight regulation of intracellular glucose shunting for effective

neutrophil responses.

Besides the intracellular metabolic regulation, neutrophils have

also been reported to release metabolites to the external environ-

ment. It has long been known that neutrophils release both AMP

and ATP at inflammatory sites [61,62]. Adenosine triphosphate is

released both through connexin 43 (Cx43) hemichannels and

through vesicular nucleotide transporters [62,63]. ATP secretion

results in autocrine stimulation of these cells through purinergic

receptors. Additionally, it directs the cell orientation and is rapidly

hydrolysed [64]. There is some evidence from in vitro models of

endothelial barrier function and neutrophil-endothelial adhesion to

indicate that neutrophils secrete ATP in response to hypoxia and

inflammation [65]. In this setting, it was demonstrated that neutro-

phil-derived ATP signals through endothelial adenosine receptors to

promote endothelial barrier function and attenuates PMN-endothe-

lial adhesion [65]. In a second study by Eltzschig et al [66], endoge-

nous neutrophil adenosine produced during hypoxia was shown to

reduce neutrophil accumulation implicating this pathway as a mech-

anism for attenuating excessive neutrophil inflammation. More

recently, there is novel evidence for activated neutrophils acting as

a source of diadenosine triphosphate (Ap3A) and ensuring an addi-

tional supply of adenosine during mucosal inflammation resolution

[67]. These studies highlight the metabolic crosstalk between

neutrophils and other tissues and provide support for the role of

neutrophils in regulating barrier formation and wound healing

responses. A summary diagram of the metabolic changes occurring

during exposure to hypoxia and activation of neutrophils is shown

in Fig 1.

Macrophages

Monocytes are short-lived mononuclear phagocytes circulating in

the bloodstream. They contribute to and replenish tissue-resident

phagocytes by giving rise to monocyte-derived macrophages and
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dendritic cells (DCs). Macrophages play a central role in the innate

immune response and are characterised by considerable functional

diversity and plasticity [68]. These cells are recruited to sites of

injury or infection to either promote or reduce inflammation

through the phagocytosis of bacteria and efferocytosis [69]. In addi-

tion, they help to repair the tissue damage caused by the innate

immune response. Macrophage accumulation occurs in numerous

hypoxic tissues such as arthritic joints, atherosclerotic plaques and

malignant tissues, implicating these cells in these diseases. Both

human monocytes and macrophages markedly upregulate HIF-1a
levels during in vitro exposure to hypoxic environments as well as

to LPS exposure [70,71]. Furthermore, human macrophages have

also been shown to upregulate their HIF-2a levels under hypoxia

[71]. HIF-1a deficiency in macrophages displays defects in key cellu-

lar functions including motility, aggregation and invasion [31]. By

contrast, HIF-2a-deficient macrophages lose 50% of their migratory

and invasive capacity [72].

Over 40 years ago, Hard made the observation that activated

macrophages were more glycolytic and had a decreased oxygen

consumption rate [73]. Twenty years later, in a study by Newsholme

et al [74] it was shown that most of the glucose in activated macro-

phages is utilised for conversion into lactic acid and a very low level

was being used for oxidative phosphorylation. These findings

were paralleled by increases in the expression of glycolytic enzyme

hexokinase and the PPP enzyme glucose-6-phosphate dehydrogenase

[75].

Activated macrophages are commonly divided into two polarised

states or phenotypes, the classically activated M1 and the alterna-

tively activated M2 [76,77]. M1-polarised macrophages are reported

to have induced HIF-1a expression, whereas M2 macrophages

demonstrate upregulated HIF-2a levels [78]. In keeping with this

finding, myeloid-specific overexpression of HIF-1a in mice resulted

in a hyper-inflammatory state characterised by the upregulation of

M1 markers and was associated with increased glycolytic activity

[70]. As with neutrophils, the PHD2 isoform is the main regulator of

the glycolytic reprogramming of macrophages demonstrated by gene

knockout studies in mice [79]. A role for PHDs in macrophage func-

tion was demonstrated in a hind-limb ischaemia study, where PHD2
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Figure 1. Neutrophil metabolic changes during exposure to hypoxia and activation.
Under normoxic conditions (left), neutrophils express high levels of PHD2 which result in the targeting of HIF-1a for proteasomal degradation. In this setting, neutrophil
homeostasis relies on the glycolytic pathway. Neutrophils further increase both their glycolytic and pentose phosphate pathway flux in response to hypoxic culture and
stimulation (right). In addition, they also upregulate the influx of extracellular glucose and glycogen storage. The neutrophil TCA cycle is a dysfunctional cycle with only partial
activity.
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haplodeficiency in mice was sufficient to skew macrophages to an

M2 phenotype without affecting HIF-1a levels leading to a pro-arter-

iogenic phenotype in turn preventing hind-limb ischaemia in a

murine model [80,81].

Over the last few years, it has become increasingly apparent that

the two divergent macrophage phenotypes are associated with dif-

fering metabolic states. M1 polarisation results from activation of

interferon-c or toll-like receptor activation by LPS. In this setting,

both macrophages and dendritic cells increase the expression of the

nitric oxide synthase generating large amounts of nitric oxide, which

inhibits mitochondrial respiration and is utilised for bacterial killing

[81,82]. In contrast, M2 polarisation is a consequence of exposure

to IL-4 or IL-13 [68]. The M2 phenotype is characterised by fatty

acid oxidation and mitochondrial biogenesis via STAT6 and PGC-1b
and reduced nitric oxide levels [83,84]. Inhibition of the mitochon-

drial respiratory chain in M2 macrophages not only blocks the M2

phenotype but also drives the cells to an M1 phenotype [83]. In

addition, M2 macrophages have upregulated levels of arginase 1

driven by HIF-2a [78,85]. Arginase 1 is an enzyme, which competes

with inducible nitric oxide for the common substrate L-arginine.

Macrophage activation via LPS exposure induces dramatic meta-

bolic reprogramming. As mentioned earlier, M1 macrophages

undergo a switch from generating ATP by oxidative phosphorylation

to glycolysis. The dramatic changes in the metabolic activity of M1

macrophages are also regulated by the attenuation of pyruvate

kinase M2 (PKM2) levels. Activated PKM2 can bind to HIF-1a and

prevent it from inducing the IL-1b promoter activity [22]. The meta-

bolic shift in M1 macrophages resembles the Warburg effect first

reported in tumour cells and is associated with increased levels of

the TCA cycle intermediary succinate due to high glutaminolysis

activity [86,87]. The TCA cycle in these cells is broken at two

points: after citrate and after succinate [88]. The effects of succinate

are exerted in three ways, firstly by inhibiting PHD proteins and

thus leading to the stabilisation of HIF-1a [89]. Secondly, the

elevated levels of succinate result in increased protein succinylation

states, glycolytic targets of which include glyceraldehyde 3-phos-

phate dehydrogenase (GAPDH) and malate dehydrogenase [87]. It is

not known whether this affects the enzymatic activity of these

proteins. Thirdly, the oxidation of succinate in M1 via succinate

dehydrogenase macrophages generates mitochondrial ROS and it
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Figure 2. Macrophage metabolic profiles of M1- and M2-polarised cells.
M1 activated macrophages are reported to have elevated HIF-1a expression associated with an increase in the utilisation of the glycolytic and pentose phosphate pathway
(left). Conversely, these cells demonstrate a reduced activity of mitochondrial respiration with the TCA cycle being broken at two points: after citrate and after succinate.
Alternatively, activated M2macrophages (right) show upregulated HIF-2a expression and are characterised by increased fatty acid oxidation and mitochondrial respiratory
chain activity.
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has been reported that this is crucial for determining the inflamma-

tory phenotype [90].

There is evidence to suggest that macrophage polarisation can be

influenced by changes in glucose metabolism and PPP activity

[91,92]. The carbohydrate kinase-like protein (CARKL) was identi-

fied as a non-protein kinase that is rapidly downregulated upon LPS

stimulation in mice and humans and directs carbon reshuffling

between glycolysis and the PPP. It was shown to play an important

role in sensitising macrophages to an M2 polarisation by shifting

glucose utilisation from the PPP to glycolysis. In the M1 macro-

phages on the other hand, elevated PPP activity generates NADPH

important both for ROS and for NO synthesis [93]. Another M1-

regulated metabolic switch occurs through increased expression of

PFKFB3, an isoform of 6-phosphofructo-2-kinase/fructose-2,6-

bisphosphatase (PFK-2), which increases the levels of the metabolite

fructose-2,6-bisphosphate [94,95]. This metabolite acts by activating

the glycolytic enzyme 6-phosphofructo-1-kinase. In addition, the

attenuated levels of fatty acid oxidation and mitochondrial respira-

tory chain activity in both dendritic cells and M1 macrophages are

achieved through the inhibition of AMPK [96,97]. A summary

diagram showing the regulation of different metabolic pathways in

M1 and M2 macrophages is shown in Fig 2.

Substrate availability can also regulate macrophage polarisation.

Mechanistic target of rapamycin (mTOR) signalling has been linked to

macrophage polarisation and is likely to play a role in regulating

responses to substrate availability [98]. For example, both mTORC1

and Lamtor1, a lysosomal adaptor protein which forms an amino acid

sensing complex with lysosomal vacuolar-type H+-ATPase and is the

scaffold for amino acid-activated mTORC1, were shown to be required

for M2 polarisation [99]. Jha et al [88] also demonstrated that gluta-

mine deprivation can negatively affect M2-polarised macrophages but

not M1. This was linked to the glutamine deprivation changes exerted

on the TCA cycle. Moreover, the UDP-GlcNac biosynthesis pathway

was also highlighted as being important for M2 activation and was

proposed by the authors to function by facilitating protein folding

[88].

Several studies have reported the influence of hypoxia and HIF

expression on macrophage responses. For example, hypoxia has

been shown to improve the control Leishmania amazonensis infec-

tion [100]. Both HIF-1a and HIF-2a were shown to be upregulated
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Figure 3. A table summarising the metabolic phenotypes and physiological outcomes documented to date linking hypoxia to myeloid cell metabolism.
The metabolic changes associated with elevated Hif-1a and Hif-2a expression are shown for neutrophils (left, orange) and macrophages/DCs (right, purple). The inactivation
of both PHD2 and HIF-1a protein is reported to result in dysregulated neutrophil and macrophage function in murine models.
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in the macrophages in this model, and ROS was proposed as the

mechanism of the parasite killing. In another study investigating the

effect of macrophages on peripheral nervous system (PNS) regener-

ation, macrophages were shown to respond to hypoxia by migrating

to the wound and inducing angiogenesis at the severed region

[101]. In tumour models, macrophages can constitute up to 50% of

the tumour mass [102]. They accumulate in poorly vascularised and

hypoxic environments and are usually associated with a poor prog-

nosis. Tumour-associated macrophages (TAMs) are thought to func-

tion by promoting tumour cell proliferation and angiogenesis [103].

Although TAMs are M2-skewed, whether they have the same meta-

bolic phenotype of an M2 macrophage remains unknown. A

summary diagram of the metabolic changes during hypoxic expo-

sure and activation of immune cells and the inflammatory outcomes

is shown in Fig 3.

Immune memory and hypoxia

Recently, there have been numerous reports describing transcrip-

tional and epigenetic changes within immune cells and linking

these to the inflammatory response. The phenomenon termed

“innate immune memory” has been demonstrated in monocytes,

macrophages, natural killer cells and neutrophils [104]. In a study

by Netea et al, the metabolite mevalonate was shown to mediate

long-term reprogramming in monocytes in response to b-glucan
via the activation of IGF1 receptor and mTOR subsequently

resulting in histone modifications [105]. Multiple major metabolic

pathways including glucose metabolism, glutaminolysis and the

cholesterol synthesis pathway are upregulated in b-glucan-trained
macrophages [106,107]. HIF is central to b-glucan training, and

mice lacking myeloid-specific HIF-1a lack the ability to induce

trained immune responses to sepsis [106]. b-glucan is a compo-

nent of fungal cell walls and is associated with stable changes in

histone trimethylation at H3K4, which confer protection from

secondary lethal infection through priming of the production of

pro-inflammatory cytokines [108]. A second metabolite known to

act as an immunometabolite is 2-hydroxyglutarate. This metabo-

lite is known to accumulate in cancer cells with gain-of-function

mutations of the isocitrate dehydrogenase 1/2 genes [109]. In

vitro, 2-hydroxyglutarate levels increase in response to hypoxia

and T-cell receptor triggering through a hypoxia-inducible factor

1-alpha (HIF-1a)-dependent mechanism [21]. The authors of this

study proposed that 2-hydroxyglutarate functions by inhibiting 2-

oxoglutarate-dependent dioxygenases that demethylate histones or

oxidise 5-methylcytosine in DNA as 2-hydroxyglutarate treatment

resulted in higher methylation in CD8+ T cells. In a second

study, Burr et al [110] showed that 2-hydroxyglutarate inhibits

both HIFa prolyl hydroxylases (PHDs) and TET 2-oxoglutarate-

dependent dioxygenases. Conversely, hypoxic preconditioning has

also been shown to result in innate immune memory in a HIF-1a-
dependent manner. Exposure to prolonged hypoxia prior to

infection protects against the increase in morbidity and mortality

that is observed with acute hypoxia [111]. These changes are

mediated, in part, by neutrophils and associated with reduced

HIF-1 pathway and metabolic gene expression. It is not known

whether the neutrophil-driven memory effects are driven by

immunometabolites. Further work is required in order to

determine the role of immunometabolites in regulating innate

immune cell memory (see also Box 1).

Concluding remarks

Hypoxia is a prominent feature of inflammation associated with

numerous disease states. Immune cells at hypoxic sites are required

to maintain functional diversity and plasticity, as initially they have

to adopt a pro-inflammatory phenotype and then later switch to a

pro-resolution and repair phase. The regulation of immune metabo-

lism by the HIF/hydroxylase pathway provides one mechanism by

which innate immune cells can adapt to the hypoxic tissue environ-

ment. The immunological niche itself is likely to impact further on

these metabolic adaptations, with evidence that small metabolites

can in addition to their classical function act as signalling molecules

regulating multiple cellular functions. This implicates impaired

metabolism with impaired innate cell function. A better understand-

ing of the metabolic states and sensing at the different inflammatory

phases and the crosstalk with the HIF signalling pathway will be

key to developing future therapeutic drugs for the treatment of

diseases involving immune cells.
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