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A B S T R A C T

Proteins have highly conserved domains that determine their functionality. Out of the thousands of domains
discovered so far across all living forms, some of the predominant clinically-relevant domains include IENR1,
HNHc, HELICc, Pro-kuma_activ, Tryp_SPc, Lactamase_B, PbH1, ChtBD3, CBM49, acidPPc, G3P_acyltransf,
RPOL8c, KbaA, HAMP, HisKA, Hr1, Dak2, APC2, Citrate_ly_lig, DALR, VKc, YARHG, WR1, PWI, ZnF_BED,
TUDOR, MHC_II_beta, Integrin_B_tail, Excalibur, DISIN, Cadherin, ACTIN, PROF, Robl_LC7, MIT, Kelch, GAS2,
B41, Cyclin_C, Connexin_CCC, OmpH, Bac_rhodopsin, AAA, Knot1, NH, Galanin, IB, Elicitin, ACTH, Cache_2,
CHASE, AgrB, PRP, IGR, and Antimicrobial21. These domains are distributed in nucleases/helicases, proteases,
esterases, lipases, glycosylase, GTPases, phosphatases, methyltransferases, acyltransferase, acetyltransferase,
polymerase, kinase, ligase, synthetase, oxidoreductase, protease inhibitors, nucleic acid binding proteins,
adhesion and immunity-related proteins, cytoskeletal component-manipulating proteins, lipid biosynthesis and
metabolism proteins, membrane-associated proteins, hormone-like and signaling proteins, etc. These domains
are ubiquitous stretches or folds of the proteins in pathogens and allergens. Pathogenesis alleviation efforts can
benefit enormously if the characteristics of these domains are known. Hence, this review catalogs and discusses
the role of such pivotal domains, suggesting hypotheses for better understanding of pathogenesis at molecular
level.

1. Introduction

Proteins are prone to stress-driven modifications in their primary
sequences (Marchler-Bauer et al., 2014). Due to the accumulated
heterogeneity, homology analysis tools like Basic Local Alignment
Search Tool (BLAST) assign low identity scores to even closely-related
proteins (Pearson, 2013). Also, the in vitro conditions prevent elabora-
tion of some pathogenically-critical proteins, which misguide inter-
pretations. Such experimentally-absent proteins are termed as ‘hypothe-
tical proteins’ and dismissed as unimportant from potential drug target
candidate list. To overcome these lacunae, an innovative way of
analysis is of paramount importance. Proteins have motifs which are
strictly conserved, which can reveal their phylogenetic links, diversifi-
cation paths and functions (Marchler-Bauer et al., 2014). These
conserved sites or folds are domains (Marchler-Bauer et al., 2014).
Protein databases vary in the number and notations of the domains.
SMART (Simple Modular Architecture Research Tool) database catalogs
more than a thousand protein domains (Ponting et al., 1999). These

domains belong to different categories of protein. In silico analysis of
several viral, bacterial and allergen (from animal and plant origin)
proteins have identified frequently-occurring domains. A majority of
these pathogenesis-mediating domains are shared between the patho-
gens as well as allergens. It is important to understand these crucial
domains that facilitate the establishment of pathogenesis, as they are
potential druggable targets. This review discusses some of such protein
domains that manipulate human components and lead to morbidity and
lethality.

2. Domains and their functions

The frequently-appearing domains can be clustered into different
categories for ease of understanding, though the boundaries are not
crisp and often overlapping. Many proteins are known to be modular
which contain domains belonging to more than one category of the six
possible enzyme classes such as hydrolases, transferases, lyases, oxidor-
eductases, isomerases and ligases (Cai and Chou, 2005). Also, the
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critical domain-harboring proteins and peptides are protease inhibitors,
nucleic acid binding proteins, adhesion and immunity-related proteins,
cytoskeletal protein manipulating proteins, lipid biosynthesis and
metabolism proteins, membrane-associated proteins, hormone-like
and signaling proteins, etc. Relevance of the oft-appearing domains
has been discussed below.

2.1. Hydrolase

2.1.1. Nuclease/helicase
HNHc (histidine (His) – asparagine (Asn) – histidine (His)) is a

domain in homing endonucleases (the DNA and RNA-targeting en-
zymes), inteins and introns. Homing nucleases are vital for recombina-
tion, genome rearrangement, and virulence (Mehta et al., 2004). This
domain of roughly 50 aa has conserved Asn and His residues
(Veluchamy et al., 2009). IENR1 (intron-encoded endonuclease repeat)
domain in C terminal of HNH family nucleases is made of HTH (helix-
turn-helix) sub-domain and globular ββααβ fold (as in type II KH
domains), that binds to DNA (Landthaler and Shub, 2003; Oddone
et al., 2007). YaeQ domain is a variation of the PD-(D/E)XK motifs in
nucleases (and phosphodiesterases), occurring generally in hypothetical
proteins (Guzzo et al., 2007). This domain shows homology to
transcription elongation protein RfaH and exhibits compensatory
activity (Wong et al., 1998). YqgFc is a ribonuclease domain, present
in ribosomal and RNA-associated proteins (Jin and Pawson, 2012).
YqgF proteins are substitutes of RuvC, the nuclease, resolving Holliday
junctions during recombination (Bennett et al., 1993). Spt6p (a critical
chromatin control gene of Saccharomyces cerevisiae) has a domain
homologous to YqgF (Ponting, 2002). HELICc (helicase domain near
the C terminus) is part of RNA helicases (such as RIG-I (retinoic acid-
inducible gene I), MDA5 (melanoma differentiation-associated gene 5),
and LGP2 (laboratory of genetics and physiology 2)) (Zou et al., 2009).
This domain is involved in viral PAMPs (pathogen associated molecular
patterns) recognition (Bhat et al., 2015). This domain co-occurs with
other critical domains like DExD/H (proteins instrumental in fidelity
control of splicing process) and CARDs (caspase activation and recruit-
ment domains) (Liu and Cheng, 2015; Zou et al., 2009).

2.1.2. Protease
Pro-kuma_activ (named after pro-kumamolisin, an extracellular

proteinase) is a α and β sandwich folded propeptide present in
proteases (like trypsin, M28, pyrolisins), which when cleaved, the
enzyme becomes active (Comellas-Bigler et al., 2004; Muszewska et al.,
2011). Tryp_SPc (Trypsin-like serine protease) domains are present in
the serine protease zymogens, which undergo partial cleavage for
activation of the protease. Serine proteases are offense and defense
proteins of all living organisms -virus, bacteria, plants, invertebrates to
human, occurring as surface proteins, secreted molecules, plant latex,
digestive enzymes, venom in glands etc. (Gasteiger et al., 2003; Tripathi
and Sowdhamini, 2008). Encompassing trypsin, chymotrypsin, collage-
nase, elastase, thrombin, and subtilisin, among others, it performs a
plethora of functions like digestion, blood coagulation, immune regula-
tion, protein metabolism, and apoptosis (Di Cera, 2009; Gohara and Di
Cera, 2011). If sensitized and activated, this enzyme leads to inflam-
mation, neural diseases and cancers (Jirásková-Vaníčková et al., 2011;
Patel, 2017a, 2017b).

2.1.3. Esterase
Lactamase_B is a domain in metal-dependent hydrolases, which

include the proteins like β-lactamases, thiolesterases, glyoxalase II
family, glutathione hydrolase, and competence proteins etc.
(Bradford, 2001). Most of the Lactamase_B-containing proteins bind
two zinc ions as cofactor and resist β-lactam antibiotics (Kong et al.,
2010). A majority of this domain-containing proteins in bacteria are
hypothetical proteins (van Tonder et al., 2014). Lack of the right
conditions in vitro might be causal of the lack of experimental evidence

of Lactamase_B-containing proteins.

2.1.4. Lipase
DDHD (named after the four conserved residues) domain has

conserved Asp and His residues, modification of which leads to loss
of phospholipase and membrane trafficking activity (Inoue et al.,
2012). DDHD domain-containing phospholipase A1 family of proteins
are required for organelle biogenesis and brain functioning (Inoue
et al., 2012; Yamashita et al., 2010). Mutation in this motif has been
associated with hereditary spastic paraplegia, a neural disease of slowly
progressive weakness (Gonzalez et al., 2013). The acidPPc (acid
phosphatase) domain is present in phosphatidate phosphatase, a critical
enzyme that acts on phosphate monoesters, liberating diacylglycerol
and inorganic phosphate (Carman and Han, 2006). This domain has
been detected in HCV and virulent strains of dengue virus. Perturbation
of this enzyme in human has been associated with diseases like prostate
cancer and osteoporosis, among other pathologies (Araujo and Vihko,
2013).

2.1.5. Glycosylase
UDG (Uracil DNA glycosylase) domain occurs in proteins of uracil

DNA glycosylase superfamily. This enzyme removes any uracil (gener-
ated by deamination of cytosine) from DNA, averting mutations and
aberrations in information pathways (Lucas-Lledó et al., 2011). A study
on Vaccinia virus reveals that the uracil DNA glycosylase is crucial for
virus DNA replication (De Silva and Moss, 2003). Also, in silico analysis
discovered the UDG domain in hepatitis C virus (HCV). PbH1 (parallel
beta-helix repeats) are motifs present in many carbohydrate-lysing
enzymes such as pectate lyases, and rhamnogalacturonases (Heffron
et al., 1998). These domains are present in SHCBP1 (centralspindlin
complex, made of motor protein MKLP1 and GTPase-activating protein
MgcRacGAP), involved in cytokinesis initiation (Asano et al., 2014;
Pavicic-Kaltenbrunner et al., 2007). These domains are present in
polyductin proteins, defect in which causes autosomal recessive poly-
cystic kidney disease (PKD) (Onuchic et al., 2002). These repeats are
abundant in exopolygalacturonase allergens of Platanus acerifolia
(London planetree) and pectate lyase 1 of Juniperus ashei (Ashejuniper).
These leurice-rich repeats (LRR) are present in highly N-glycosylated
proteins and are involved in carbohydrate moiety recognition and/or
modification (Heffron et al., 1998). The pkhd1 (polycystic kidney and
hepatic disease 1) gene product polyductin, associated with kidney
disease (Igarashi, 2002; Menezes and Onuchic, 2006) and congenital
hepatic fibrosis (Gunay-Aygun et al., 2010) contains these repeats.
ChtBD3 (Chitin-binding domain type 3), a chitin-binding domain has
been associated with host pathogenesis (Tran et al., 2011). ChtBD3 is
present in some Ebola virus strains (such as some isolates of Mayinga-
76 outbreak and isolate A0A0F7IMH5 from Libria-14 outbreak) as well
as dengue virus serotype 3 strains (Messina et al., 2014). A number of
pathogenic bacteria, including Vibrio cholerae elaborate an enzyme
chitin oligosaccharide deacetylase which contains a ChtBD3 domain.
Immense role of this domain in virulence is well-substantiated. CBM49
is a carbohydrate binding module (CBM), found at the C terminal of
cellulases (Guillén et al., 2010; Shoseyov et al., 2006). The binding of
CBM domains to complex glycans has been linked to pathogenesis.
Some dengue virus serotype 2 isolates such as P14337, and Q9WDA6
contain a CBM49, whereas isolate Q9WDA6 contains a CBM25 (a starch
binding domain found in bacterial amylases).

2.1.6. Guanosine triphosphate
RAB is a domain in Rab subfamily of small guanosine triphosphate

(GTPases) (Diekmann et al., 2011). These proteins have wide and
tissue-specific distribution, which play part in vesicle trafficking across
membranes to their destined targets. These GTPases interact with
numerous other components like sorting adaptors, tethering factors,
kinases, phosphatases etc. for proper vesicular transport, defect in
which can lead to immunodeficiencies, inflammations, neural pathol-
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ogies and cancers (Stenmark, 2009). RUN is an N-terminal domain
present in proteins crosstalking with Ras-like GTPase (especially in Rap
and Rab family members), thus plays role in signaling pathways
(Callebaut et al., 2001; Terawaki et al., 2015). The proteins harboring
this domain regulate cytoskeletal organization, autophagy, endocytosis,
and endosomal maturation; the functions clearly indicating role in
pathogenesis. Further, this domain is often associated with DUF4206
domain (Callebaut et al., 2001; Patel and Côté, 2013). DUFs (domains
of unknown function), as their name suggest are heavily-modified
domains with poor annotations (Goodacre et al., 2014). Tubulin is a
domain in tubulin proteins belonging to GTPase family, playing role in
polymer formation (Prigozhina et al., 2001). Tubulin proteins harbor
immense heterogeneity at their C-terminal end (Redeker et al., 1992).
Bacteria have a tubulin homolog, known as FtsZ (filamentous tempera-
ture-sensitive protein Z) proteins, that plays role in cell division. FtsZ
protein is drafted to the membrane by the actin-related protein FtsA,
and together both the proteins form Z ring, initiating bacterial
cytokinesis (Loose and Mitchison, 2014). EFh (EF-hand) are Ca2+

binding α helical domains of Miro GTPases, the Ca2+ sensors main-
taining mitochondrial homeostasis (Suzuki et al., 2014). Trematode
tegument proteins have this domain, which is characterized to show Ig
(immunoglobulin)-binding properties (Wu et al., 2015). ARF (ADP-
ribosylation factor) domains are present in GTPases (like Ras) and
homologues. This domain is involved in post-Golgi vesicular transport
(Boman et al., 2002). A tyrosine kinase Pyk2 regulates Arf1 gene
activity through the protein ASAP1 (Arf GTPase-activating protein)
(Inoue et al., 2008; Kruljac-Letunic et al., 2003).

2.2. Transferases

PreSET are N-terminal part of cysteine-rich Zn2+-binding SET (Su
(var)3–9, Enhancer-of-zeste, Trithorax) domains in histone lysine
methyltransferases (HMTase) (Binda et al., 2010; Dillon et al., 2005).
PreSET domain has been detected in plant pollen allergens (such as Lig
v and Bet v). G3P_acyltransf domain is present in glycerol-3-phosphate
acyltransferase, a rate limiting enzyme for triacylglycerol biosynthesis
(Wendel et al., 2009). This enzyme is required for immune response of
the host as observed in Coxsackievirus infection to mice (Karlsson et al.,
2009). Some aggressive viral pathogens like dengue serotype 2 isolates
lack it, though other serotypes harbor it. CAT (chloramphenicol
acetyltransferase) is a trimeric domain that exists in chloramphenicol
acetyltransferase, a bacterial enzyme that can metabolize antibiotic
chloramphenicol, leading to drug resistance (Biswas et al., 2012; Yao
et al., 1999). CTD (C-terminal domain) of RNA polymerase II plays role
in pre-mRNA processing, including splicing via phosphorylation (at Tyr
residue) (Millhouse and Manley, 2005). On the other hand, transcrip-
tion termination can occur by dephosphorylation of the Tyr residue at
the CTD (Schreieck et al., 2014). CTD crosstalks with the complex
transcript elongation factor SPT4/SPT5 to regulate transcription (Dürr
et al., 2014). RPOL8c is a subunit of RNA polymerase I, II and III, with
role in transcription (Cramer et al., 2001) and microRNA gene
regulation (Wang et al., 2010).

2.3. Kinases

KbaA is a key domain in the protein for KinB-signaling pathway
activation in sporulation. KinA kinase regulates sporulation initiation in
Bacillus subtilis, by controlling phosphate supply to the phosphorelay
system (Dartois et al., 1996). Going by the literature, this domain in
dengue virus might be involved in signaling pathways as well. Though
most of these viruses contain this domain, it is missing in a serotype
isolate P27909. TPK_B1_binding domain of thiamine pyrophosphoki-
nase binds to vitamin B1 as the enzyme transfers pyrophosphate group
from ATP to vitamin B1, in order to form the coenzyme thiamin
pyrophosphate (Baker et al., 2001). This coenzyme is required for
functionality of cytosolic transketolase and mitochondrial enzymes for

oxidative decarboxylation of pyruvate, α-ketoglutarate or branched
chain amino acids (Mayr et al., 2011). TyrKc are catalytic domain of
Tyr-specific kinase subfamily, a group of cell surface receptors. This
domain often co-occurs with FN3 (fibronectin type-III), IG (immuno-
globulin) and Igc2 (immunoglobulin C-2 type) domains (Bernsel and
Von Heijne, 2005). UBA (ubiquitin associated) domain is present in C
terminus of proteins like p62, BMSC-UbP, HHR23A, Rad23, SNF1-like
kinases, and plays role in inter- and intramolecular communications
(Chang et al., 2006; Raasi et al., 2004). These proteins bind to ubiquitin
which mediates proteasome complex degradation and optimal protein
level retention in cells (Su and Lau, 2009). HAMP (Histidine kinases,
Adenylyl cyclases, Methyl binding proteins, Phosphatases) are approxi-
mately 55 aa-long domains present in the proteins coded by transducing
genes (Kishii et al., 2007). This domain containing helices and coiled-
coil regions, often undergo conformational changes, relaying signals for
chemotaxis, pathogenesis, and biofilm formation (Airola et al., 2013,
2010; Hulko et al., 2006; Matamouros et al., 2015). HWE_HK domain is
present in HWE type histidine kinases, known to mediate environ-
mental signaling (Galperin, 2005; Karniol and Vierstra, 2004; Lavín
et al., 2007). HisKA is a crucial sensor kinase in pathogenic bacteria,
including plant pathogen Pseudomonas syringae (Willett and Kirby,
2012). It has been detected in pathogenic virus Ebola as well. Hr1
(homology region 1) domain is N-terminal part of Rho effector, or
Serine/threonine C-related kinase proteins (PKN/PRK) that occur in
multiple isozyme forms. PKN1 (Protein Kinase N1) isoforms abound in
neural cells, playing role in cytoskeletal organization and neuronal
differentiation. Neuro-pathologies like amyotrophic lateral sclerosis
(ALS) and Alzheimer's disease arise due to malfunction of PKN1. Hr1
domain interacts with the small GTPases Rho and Rac, regulating actin
dynamics (Flynn et al., 1998; Thauerer et al., 2014; Watson et al.,
2016). Dak2 (di-Mg2+ ATP binding) domain is found in dihydroxya-
cetone kinases family, which helps bacteria to imbibe host fatty acids
into their membrane phospholipids, via phosphotransferase activity
(Kinch et al., 2005; Parsons et al., 2014). YARHG is a 70 amino acid-
long extracellular domain, which gets its name from the corresponding
conserved motif in the protein sequence. This domain is detected in
peptidases and kinase proteins, and predicted to bind bacterial cell wall
or its adjacent components as outer membrane lipid or lipopolysacchar-
ide (Coggill et al., 2013; Coggill and Bateman, 2012).

2.4. Ligase and synthetases

APC2 (cullin homology protein), the anaphase promoting complex
or cyclosome is part of a ubiquitin ligase that regulates phase transition
of mitosis (Puliyappadamba et al., 2011; Zhang et al., 2010; Zhou et al.,
2011). Some dengue virus isolates (such as P14337 and P29990)
contain this domain. Citrate_ly_lig is the C-terminal domain in the
cytosolic enzyme citrate lyase ligase that catalyzes citrate fermentation
into acetyl-CoA, and oxaloacetate, coupled with ATP hydrolysis.
However, apart from lipid biosynthesis, this domain has been discov-
ered to bind DNA as well (Meyer et al., 1997) and to play role in tumor
growth, following acetylation of lysine residues (Lin et al., 2013; Zaidi
et al., 2012). DALR is an anticodon binding domain of tRNA synthetase
(arginyl/cysteinyl), made of α helices. In human, this domain-contain-
ing protein DALRD3 interacts with protein WDR6 (WD Repeat Domain
6) and C3orf60 (chromosome 3 open reading frame 60), involved in
autophagy and protein assembly, respectively (Grinchuk et al., 2010;
Schyth et al., 2015). DALR_1 domain detected in pollen might have role
in manipulating gene expression. DALR_2 domain is found in cysteinyl-
tRNA-synthetases that link amino acid to its cognate transfer RNA
(Tveit et al., 2014). VKc is the catalytic subunit of vitamin K epoxide
reductase. This enzyme processes blood coagulation factors to vitamin
K (Oldenburg et al., 2006).
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2.5. Protease inhibitors

WR1 is domain in Worm-specific repeat type 1 proteins. This
cysteine-rich domain is detected in nematode Caenorhabditis elegans
(Marchler-Bauer et al., 2014); however, many pathogenic viruses
possess this domain or homologues. This domain often co-occurs with
KU (BPTI/Kunitz family of serine protease inhibitors) domains.

2.6. Nucleic acid binding proteins

PWI (proline-tryptophan-isoleucine) domains are present in pre-
mRNA processing components, the spliceosome, and known to bind
RNA as well as DNA (Szymczyna et al., 2003). PWI-like domains are
present in N-terminal of helicases (e.g. Brr2) (Absmeier et al., 2015).
Zinc fingers are motifs known to bind DNA, which can be of many types
such as BED (named after the Drosophila proteins BEAF and DREF),
UBR1 (Ubiquitin Protein Ligase E3 Component N-Recognin 1), UBP
(ubiquitin-binding domain), U1, LIM (named after the LIN-11, ISL-1
and MEC-3 proteins in Caenorhabditis elegans), TTF (transcription
termination factor), DBF, CHCC, CDGSH (Cys-Asp-Gly-Ser-His), ZZ,
PMZ (plant mutator transposase), and C4 (Gupta et al., 2012). ZnF_BED
is a zinc finger domain in chromatin-boundary-element-binding pro-
teins and transposases, required for terminal inverted repeat (TIR) and
sub-terminal repeat binding, facilitating their autonomous transposi-
tion (Smith et al., 2012). ZnF_A20 domain in N terminus of ZNF216
protein is an inhibitor of cell death-like zinc finger. This domain
crosstalking with IKKgamma, RIP, and TRAF6 proteins is involved in
ubiquitin mediated IL-1-induced NF-kappaB activation, apoptosis and
proteasomal degradation (Huang et al., 2004; Searle et al., 2012).
ZnF_NFX (nuclear transcription factor, X-box binding-like 1) is a zinc
finger domain in several proteins, including blast resistance Pi54
protein in rice plant (Gupta et al., 2012). Homologues of all these zinc
finger motifs have been detected in pathogenic viruses like HCV, HIV,
and dengue. ZM (ZASP (Z band alternatively spliced PDZ-containing
protein) -like motif) is about 26 aa-long pattern in an α-actinin-binding
protein ZASP, and homologues (Lin et al., 2014). ZM domain plays a
role in cytoskeletal protein-protein interactions and provides structural
integrity to sarcomeres (Klaavuniemi et al., 2004). As a number of
proteins involved in ion channel interactions, cytoplasmic and nuclear
signaling, enzymatic reactions and cytoskeletal organization bind to Z-
line, mutation in ZASP leads to muscular diseases (Martinelli et al.,
2014). Mutation and aberrant isoforms in ZASP can lead to myofibrillar
myopathy, cardiomyopathy etc. In human, the ZASP binds to mechan-
osensing protein Ankrd2 (Ankyrin Repeat Domain 2) and the tumor
suppressor protein p53. TUDOR domain, a 60 aa-long motif is present
in RNA-binding proteins and is involved in RNA metabolism and
interactions. Several copies have been detected in arthropods like
Drosophila (23 instances), and their epigenetic role in modification of
chromatin, and gene expression has come forth (Altschul et al., 1997).
Binding of this domains to methyl-arginine⁄ lysine residues, ligand,
microRNPs, small RNAs and PIWI (named after P-element Induced
WImpy testis in Drosophila) proteins has surfaced. Literature reveals
their presence in fungi, protozoa, plants and metazoans (Ying and Chen,
2012), but in silico analyses are revealing their presence in viruses as
well. TUDOR domain-containing protein 1, 4 and 5 are antigens
expressed on testis cells and are hallmarks of cancer (Yoon et al., 2011).

2.7. Adhesion and immunity-related proteins

Human cell membrane manipulation property was evidenced from
domains like MHC_II_beta, and Integrin_B_tail etc. MHC_II_beta (Class II
histocompatibility antigen beta) domain is part of the MHC II glyco-
proteins expressed on antigen-presenting cells (APC) like macrophages,
dendritic cells and B lymphocytes. These components are critical as
they display fragmented antigens for recognition by helper T cells and
successive immune response (Vyas et al., 2008). Integrin_B_tail (Integ-

rin beta subunit cytoplasmic) domain is involved in cell adhesion
(Bodeau et al., 2001). Flo11 domain made mostly of β sheets occurs at
the N-terminal of Flo11 protein (a flocculin family adhesion protein) as
found in yeast (Saccharomyces cerevisiae). This protein mediates hyphal
formation, invasive growth and plays role in inter-cellular communica-
tions (Goossens and Willaert, 2012; Kraushaar et al., 2015). Excalibur
(extracellular calcium-binding region) are domains of bacterial surface
proteins, showing similarity with Ca2+-binding loop of calmodulin-like
EFh domains (Rigden et al., 2003). SVWC (Single domain von Will-
ebrand factor type C) is a group of adhesin proteins. These cysteine-rich
proteins play role in immunity and diseases. Bone morphogenetic
protein (BMP) is regulated by proteins with VWC domain such as
chordin, CHL2 (chordin-like 2), and CV2 (crossveinless 2) (Fujisawa
et al., 2009; Zhang et al., 2007). TNFR (Tumor necrosis factor receptor/
nerve growth factor receptor) are repeat-rich extracellular domains,
with role in growth factor and cytokine binding. TNF-α (tumor necrosis
factor-alpha) is a cytokine mediating diverse inflammatory conditions.
The pathological mechanism involves binding of TNF-α to TNFR (Deng,
2007). TNFR-1 acts as a death receptor on ligand-mediated activation,
leading to apoptosis (Park et al., 2014). TSP1 (thrombospondin)
domain is characterized to regulate cell interactions in vertebrates.
Thrombospondins are glycoproteins with calcium-dependent anti-an-
giogenic property (Iruela-Arispe et al., 2004; Lawler and Lawler, 2012).
SCPU (Spore Coat Protein U) domain is found in a bacterial protein
family including spore coat proteins, adhesive pili proteins and biofilm-
forming proteins (Chin et al., 2015). Myxococcus xanthus mcu gene
cluster (a CU (chaperone/usher) gene cluster) plays role in spore coat
formation (Cao et al., 2015). SCP (sperm coating protein) is a member
in the large family SCP/Tpx-1/Ag5/PR-1/Sc7, known to contain
extracellular domains. This domain, spanning 120–170 aa and capable
of acquiring α-β-α sandwich conformation has been identified in
nematode secretome, insect allergen, and semen. During pathogenesis,
the expression of genes coding for this protein is upregulated, playing
role in immune exacerbation and chronic condition (Chalmers et al.,
2008). DISIN (disintegrins) domains inhibit ligand-receptor association.
The disintegrin proteins and metalloproteases, are together termed as
ADAMs (a disintegrin and metalloprotease), which mediate cellular
adhesion and recognition of sequences (Huang et al., 2003). An ADAM
with thrombospondin type 1 repeats-13 (ADAMTS13) inhibits platelet
aggregation and arterial thrombosis by cleavage of VWF (Xiao et al.,
2011). Canary grass (Phalaris canariensis) pollen Pha a 1 DISIN is likely
to induce pathogenesis via interference with adhesion of integrins.
Amb_V domain is found in Amb V pollen allergen in ragweed (Ambrosia
sp.). A C-terminal helix is the key T cell epitope, leading to immune
reactions, though free sulfhydryl groups play role too (Canis et al.,
2012). The presence of a similar domain in HCV indicates strong
conservation of this domain. C4 is the C-terminal domain in type 4
procollagens, distributed in skin. This domain with tandem repeat
renders the triple-helix collagen protein kinked and sheet-like. Muta-
tion in this protein leads to autoimmune diseases like Goodpasture's
syndrome (kidney and lungs inflammation) and Alport syndrome
(kidney disease) (Abreu-Velez and Howard, 2012). Cadherin proteins
mediate calcium dependent cell-cell adhesion and CNS (central nervous
system) synapse control. Cadherin_pro domain occurs in N-terminal of
cadherins. This prodomain lacks cadherin-cadherin interaction ability,
but cleavage of its prosequence in the endoplasmic reticulum (ER) and
Golgi apparatus can activate adhesive nature of the cadherin, confer-
ring ability to control synapses (Koch et al., 2004; Latefi et al., 2009;
Reinés et al., 2012). CCP (complement control protein) domain
containing SUSHI repeats (60 aa long and cysteine-rich) was identified
in pathogenic viruses, which played role in complement activation by
them. Literature review implies these CCP domains in arthropods like
mosquitoes (including Aedes sp.) and fruit flies (Drosophila sp.), acting
as human complement analog and eradicating bacteria (Xiao et al.,
2014). CHAD (conserved histidine alpha-helical domain) is an α-helical
domain with conserved His residues, which chelates metals. It interacts
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with CYTH domain present in adenylyl cyclase and the mammalian
thiamine triphosphatases (Iyer and Aravind, 2002). Cell adhesion
necessitates binding of integrins with their ligands, which can be
influenced by multiple domains. B_lectin is domain present in man-
nose-specific proteins. Apart from mannose, it recognizes N-acetylglu-
cosamine, which can activate classical complement pathway (Muto
et al., 2001).

2.8. Cytoskeletal protein binding

ACTIN domain is characteristic of ACTIN subfamily in ACTIN/
mreB/sugarkinase/Hsp70 superfamily, clustered together by their
common ATPase domain. Cortactin is an actin (F-actin- and Arp2/3
complex)-binding protein, regulating cytoskeleton dynamics and cor-
tical actin-assembly (Shvetsov et al., 2009). PROF domain binds to actin
monomers, membrane polyphosphoinositides and poly-L-proline
(Michaelsen-Preusse et al., 2016). Robl_LC7 (Roadblock/LC7 family)
domains regulate dynein, a motor protein, mediating several other
adaptive functions. Mgl is a type of Robl_LC7, gene for which co-occur
with gene encoding small GTPases (such as Ras superfamily involved in
transduction pathways) (Miertzschke et al., 2011; Wuichet and
Søgaard-Andersen, 2015). Also, Robl_LC7 domains group with PROF
domain, under profilin-like clan. MIT, involved in microtubule manip-
ulation is present in virulent strains (Zaire and Sudan) of Ebola, while
missing in avirulent strain (Reston). Kelch is a conserved domain with
β-propeller topology. This repeat-rich domain is widely present across
organisms, from virus (Wang et al., 2014; Wilton et al., 2008), plants to
humans, and it mediates protein-protein interactions. The kelch-like
(KLHL) gene family is spread across multiple chromosomes in human,
and several of their coded proteins bind to the E3 ligase cullin 3,
playing role in ubiquitination, signaling (such as NF-κB pathway
inhibition), gene expression, actin binding and involved in several
diseases (Dhanoa et al., 2013). GAS2 (Growth-arrest-specific protein 2)
domains manipulate actin microfilaments, bind to microtubules and
lead to cell division arrest (Zhang et al., 2011). Bet v protein essentially
contains a GAS2 domain. B41, a plasma membrane-binding domain
appears to be a critical domain for pathogenesis. It clearly indicates the
role of this domain in attaching to host membrane. A conserved
neuronal protein GRP1-associated scaffolding protein (GASP) has a
B41 domain (as part of a FERM domain), implicated in binding to
membrane as well as cytoskeletal elements like actin (MacNeil and
Pohajdak, 2009). DPBB (double-psi beta-barrel) domains are N terminal
motifs present in lipoproteins like expansins (such as Phl p) (Kerff et al.,
2008).

2.9. Lipid biosynthesis and metabolism

TLC, the acronym of TRAM, LAG1 and CLN8 homology is a domain
in membrane proteins, and it has been linked to ceramide synthesis,
lipid regulation and neural processes (Winter and Ponting, 2002).
Dengue virus polyprotein has this domain, and as the virus manipulates
human neural system, it seems rational. AAI (alpha-amylase inhibitor)
domain is a tetra-helix fold, which forms a part of LTP (lipid transfer
protein) proteins (Zottich et al., 2011). Polyketide synthases are a large
group of multifunctional enzymes responsible for elaboration of myriad
secondary metabolites, the polyketides, including antibiotics (Anand
et al., 2010; Ansari et al., 2004). The diverse array of polyketides is
formed by molecular assembly, characterized by the successive addition
of chain extension units. This group of enzyme occurs in bacteria, fungi
and plants. Apart from the acyl carrier protein (ACP), acyltransferase
(AT), and a ketosynthase domains, a variety of β-carbon processing
domains (such as ER, KR) occur in these long, modular proteins (Cane,
2010), some of which have been discussed here. PKS_ER are domains in
enoylreductase in polyketide synthase enzymes (Gu et al., 2009).
PKS_KR is a ketoreductase that reduces keto group to a hydroxy group.
Also, studies have found the epimerase activity of PKS_KR which lies in

the conserved Tyr or Ser, flanked by either Tyr or the triad of Leu, Asp,
Asp residues (Bonnett et al., 2013; Xie et al., 2016). PKS_TE are
domains in thioesterases, catalyzing non-ribosomal synthesis of cyclic
peptide antibiotics (Heathcote et al., 2001). PLP (proteolipid protein) is
a transmembrane myelin protein or lipophilin, playing role in stabiliza-
tion of myelin sheaths and axonal survival. Mutant form of this protein
causes neuropathies like Pelizaeus-Merzbacher disease and spastic
paraplegia type 2 (Arvanitis et al., 2002; Garbern et al., 1997; Miller
et al., 2009). COLIPASE is a domain in small pancreatic protein with
five conserved disulfide bonds, playing role in lipid metabolism (Berton
et al., 2007). In human, colipase-dependent pancreatic triglyceride
lipase digests fat into fatty acids and monoacylglycerols (Johnson et al.,
2013). COLIPASE is part of flavivirus polyprotein propeptide (119–204
amino acid).

2.10. Transcriptional regulators and stress-related proteins

UreE_C is the C-terminal domain in an accessory protein UreE,
which hydrolyses urea into ammonia and carbamic acid. A study
reports that Klebsiella aerogenes urease catalytic site binds to nickel
ions and interacts with accessory proteins, including UreE for activation
(Merloni et al., 2014; Song et al., 2001). Skp1 (S-phase kinase-
associated protein 1) is a component of the kinase complex and it
binds to F-box containing proteins like Cdc4, Skp2, and cyclin F. These
adapter proteins act as transcription elongation factor and carry out
proteasomal degradation of target proteins (in the form of Skp1-Cul1-F-
box protein (SCF), the E3 ubiquitin ligase) by ubiquitylation (Chandra
Dantu et al., 2016; Yumimoto et al., 2013). FoP_duplication domain,
the acronym of C-terminal duplication domain of Friend of PRMT1, is a
target of arginine methyltransferases in humans (van Dijk et al., 2010).
Fop is associated with chromatin and is an activator of estrogen
receptor target genes (van Dijk et al., 2010). Most isolates of dengue
virus have this domain in their polyprotein. H4 is the domain of Histone
H4 protein, which is likely to be involved in manipulating human
interferon-beta (IFN-β) genes, as literature on hyperacetylation of H3
and H4, inactivating interferon gene expression exists (Parekh and
Maniatis, 1999). A yeast study has reported the role of H4 in
nucleosome assembly during replication (Shibahara et al., 2000). This
domain is conserved in pathogenic viruses like dengue. HALZ is a
homeobox associated leucin zipper domain present in transcription
factors. The homeodomain binds to DNA while the leucine zipper
carries out protein-protein interactions. With prolific growth regulatory
role, this domain has been widely studied in plants (Elhiti and Stasolla,
2009). HTH_MARR domain is a helix-turn-helix motif occurring in
MarR-family transcriptional regulators, thus facilitating in multiple
antibiotic resistance. Also, this DNA binding domain is frequently found
in hypothetical proteins, as in Staphylococcus aureus (Mohan and
Venugopal, 2012), so likely to be present in other bacterial hypothetical
proteins as well. Cyclin_C are domains in Cyclin family of proteins,
critical for cell cycle progression. The proteins and cyclin-dependent
kinase (Cdk) enzymes work in sync to induce phosphorylation of RNA
polymerase II. The C-type cyclin along with Cdk8 (recruited by the
multi-protein complex Mediator) also responds to stress and carries out
transcription regulation and modulation of gene expression by recruit-
ing the fission tools comprising mitochondrial fragmentation and
programmed cell death (Strich and Cooper, 2014). Connexin_CCC is a
cysteine-rich domain in gap junction channel protein connexin
(Riquelme et al., 2013). This protein has many subtypes. The C-terminal
of connexin43 regulates assembly, gating, and binding to regulatory
proteins by undergoing phosphorylation by kinases (Shin et al., 2001).
BAG domain in heat shock protein regulator plays role as co-chaperone
of Hsp70 chaperones for proper protein folding with quality control and
degradation pathways (Bracher and Verghese, 2015). Role of this
domain in regulating the heat shock protein quality check pathways
can be correlated to the pathogenesis of the isolates harboring it. BTP
(in bromodomain transcription factors and PHD domain (a small
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protein domain) containing proteins) are domains of histone-like
transcription factors (chromatin-associated proteins, histone acetyl-
transferases) (Koutelou et al., 2010). This domain recognizes lysine in
histones and acetylates them, following which chromatin configuration
and gene expression change, leading to viral replication, cancer, and
inflammation (Sanchez and Zhou, 2009). BTAD (bacterial transcrip-
tional activator domain) is present in Actinobacteria (Huang et al.,
2015); BRLZ (basic region leucin zipper also known as bZIP) is a
domain in DNA-binding transcription regulators. This domains per-
forms myriad critical gene regulation tasks by undergoing certain
degree of flexibility in their configuration (Miller, 2009). Some well-
characterized members of this group of proteins include CREB (cAMP
response element binding protein) (Thiel et al., 2005), and MafK (MAF
BZIP Transcription Factor K) (Töröcsik et al., 2002). WHy domain
occurs in water stress and hypersensitive response proteins, playing role
in adaptation to stress, including cold temperature, and desiccation
(Ciccarelli and Bork, 2005; Jaspard and Hunault, 2014). This domain is
found in LEA (late embryogenesis abundant) proteins, detected in
bacteria and archaea, plants, nematodes, and typically induced by
exposure to stress conditions (Anderson et al., 2015).

2.11. Membrane-associated proteins

LANC_like domains are present in membrane-associated
Lanthionine synthetase C-like protein (LanC) (Chen and Ellis, 2008).
The proteins LANCL1 (P40 seven-transmembrane-domain protein) and
LANCL2 (testes-specific adriamycin sensitivity protein) are produced
profusely in the brain and testes, for their immune defense role
(Landlinger et al., 2006; Mayer et al., 2001). Lanthionines (macrocyclic
thioether) are present in lantibiotics, a type of antimicrobial peptides,
elaborated by some bacterial strains. OmpH (outer membrane protein
H) domain has been found critical for pathogenesis. Pasteurella multo-
cida, a Gram-negative bacterium causes fatal diseases in animals
(porcine atrophic rhinitis, bovine diseases), birds (avian fowl cholera)
and sometimes in human, of which OmpH is a major surface antigen
(Lee et al., 2007; Okay et al., 2012). Also, other enteric pathogenic
bacteria like Salmonella typhimurium, Escherichia coli, Yersinia enteroco-
litica have the ompH genes, which can be borne in chromosome or
plasmids. OmpH shares homology with α helix of the HLA-B27 (human
leukocyte antigen subtype), which has been suspected to play role in
inflammatory arthritis (Singh and Karrar, 2014). Presence of this
critical domain in pollen of grasses suggests similar pathogenic
mechanism. Some other pathogenicity-causing motifs in several pollens
were readily identified, such as OmpH in KBG41 (Kentucky bluegrass)
allergen. Bac_rhodopsin (Bacteriorhodopsin-like protein for sensory
function) domain is present in G protein-coupled receptors, a type of
photoreceptors (Palfi et al., 2010). Cg6151-P domain is part of a
conserved membrane protein of about 190–200 aa long, but little
functional characterization (Yao et al., 2009). 7TM_GPCR_Srsx domain
occurs in serpentine type seven-transmembrane G-protein-coupled
receptor class chemoreceptor Srsx (a Srg superfamily member)
(Nagarathnam et al., 2012). This domain has been detected in
pathogenic viruses, including dengue virus. AAA are domains in the
metalloproteases ATPases, the membrane-tethered enzymes with wide
array of functions, including degradation of misfolded proteins, mem-
brane quality control, membrane fusion, DNA replication etc. (Krzywda
et al., 2002). The AAA domain is located in the middle of the protein
and it often co-occurs with C-terminal Zn2+-dependent protease
(Scharfenberg et al., 2015). Viral non-structural protein NS4A contains
this domain as well.

2.12. Hormone-like and signaling proteins

Knot1 is domain in knottins, a broad array of proteins including
plant lectins, antimicrobial peptides (e.g. a plant cyclotide kalata B1),
plant proteinase/amylase inhibitors, plant γ-thionins and arthropod

defensins. These proteins possess a multitude of functions including
inhibitory, cytotoxic, antiviral or hormone-like activity (Gracy et al.,
2008). The cysteine-rich domain derives its name from its knot-like
topology. Three sulfide bridges in the knot interconnecting each other
provide high stability to the protein against temperature, pH and
chemicals (Herzig and King, 2015). This protein has shown potential
to block insect voltage-gated calcium channels (Herzig and King, 2015).
NH (Neurohypophysial hormone) is a domain in proteins of vasopres-
sin/oxytocin gene family. The neurophysin protein with this domain
serves as receptor for peptide hormone oxytocin, regulated by phos-
phatidylinositol-calcium second messenger system (de Bree and
Burbach, 1998; Elphick and Rowe, 2009; Van Kesteren et al., 1995).
Galanin is a 29 aa-long neuropeptide that controls growth hormone,
insulin, somatostatin, adrenal secretion, smooth muscle activity etc. By
its endocrine regulation, it intervenes in pain, inflammation, memory,
learning, mood swings, feeding, and sexual activities (Kask et al.,
1996). Role of this peptide in neural diseases, angiogenesis, cancer,
obesity and diabetes has come forth as well (Poritsanos et al., 2009;
Stevenson et al., 2012). Pathogenesis via the stimulation of phospho-
lipase C (GAL2) has been recognized (Lang et al., 2015). IB (Insulin
growth factor-binding) domain-containing proteins are growth factors,
which bind to receptors for their functions (Siegfried et al., 1992).
Elicitin is a group of plant necrotic proteins, exuded by pytopathogenic
fungi and oomycetes like Phytophthora, Pythium, Hyaloperonospora,
Albugo etc. (Uhlíková et al., 2016). This PAMP domain is sulfide-rich
(about 6 in number) and it possesses versatile functionality, including
the manipulation of host signaling pathways. Some of this domain's
sulfur residues have been identified as glycosylation sites. Pythiosis-
causing Pythium insidiosum elaborates elicitin, which might be mediat-
ing the human pathogenesis. The elicitin is a sterol-carrying protein
which might be sequestering human cholesterol (Lerksuthirat et al.,
2015). The β isoform of elicitin has higher plasma membrane affinity
than that of α isoform. The genes inf2A and inf2B were identified to
induce the elicitin activity (Huitema et al., 2005). Interestingly,
pathogenic bacteria like Mycobacterium tuberculosis have three inf genes
as well. CT or CTCK (C-terminal cystine knot-like) domains are present
in growth factors such as TGFβ (transforming growth factor-beta), NGF
(nerve growth factor), PDGF (platelet-derived growth factor) and GCH
(human chorionic gonadotropin). The knot formed of six cysteines is
conserved in the CT domain, though the proteins harboring them can
assume multi-meric forms, mediating an array of functions like cell
growth, embryonic development, organogenesis, intercellular commu-
nication, differentiation, tissue repair and remodeling etc. This domain
occurs in VWF, the glycoprotein involved in cell adhesion, homeostasis
(Zhou and Springer, 2014), and mucins (Iyer and Acharya, 2011.
ACTH_domain, which is present in corticotrophins has been linked to
virus immune evasion. As per literature, SARS (Severe Acute Respira-
tory Syndrome), and influenza virus manipulate host corticosteroid
stress response to circumvent the immune response, by expressing
protein homologous to host ACTH (adrenocorticotropin hormone)
(Wheatland, 2004). As host immunity produces antibodies against the
viral ACTH, the antibody binds to host ACTH as well, leading to adrenal
gland injuries, hampering corticosteroid secretion (Wheatland, 2004).
Also, adrenal deficiency, and the dearth of ACTH in HIV patients has
been reported (Shashidhar and Shashikala, 2012). ACTH_domain has
been detected only in dengue serotype 2 isolates (P14337, P29990,
Q9WDA6 etc.). This ACTH-based molecular mimicry mechanism might
be linked to the higher virulence of this serotype. Amelin (Ameloblastin
precursor) are a group of proteins, found in mammalian enamel matrix.
This amenoblastin amelin plays role in tooth crystal formation, as
growth factor, though it has been detected to occur in extracellular
matrix during embryogenesis and has been discovered to play role in
bone repair (Tamburstuen et al., 2011). Ameloblastin binds to calcium
and is sensitive to matrix proteases like enamelysin and kallikrein. A
study has found that ameloblastin can regulate the genes related to
immune responses, by expression of cytokines and induction of STAT
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(signal transducer and activator of transcription) in the interferon
pathway (Tamburstuen et al., 2010). Interestingly, analysis has showed
that HCV and HIV have amelin domain in their glycoproteins. DEP
(named after the proteins Dishevelled, Egl-10, and Pleckstrin P) domain
is present in G-protein signaling regulatory proteins. This globular
domain made of three-helix bundle, a β-hairpin and two other β-strands
modulates signal transduction by manipulating GTPase activity
(Capelluto et al., 2014; Wong et al., 2000). DDRGK is a domain
occurring widely in plant and vertebrate proteins, and it is named after
the corresponding amino acid motif. Studies reveal its role in multiple
cell signaling pathways, including NF-kappaB signaling (Wu et al.,
2010). Cache_2 is an extracellular domain involved in signaling via
recognition of small-molecules. Proteins forming voltage-gated Ca2+

channels and bacterial chemotaxis receptors possess this domain. This
domain has been well-studied in Vibrio cholerae (Upadhyay et al.,
2016). CHASE (cyclase/histidine kinase-associated sensing extracellu-
lar) is a conserved extracellular sensory domain that helps in perception
of environmental changes. As the name indicates, this domain is present
in signal transducing systems like histidine kinases, adenylate cyclases,
diguanylate cyclases, serine/threonine protein kinases, phosphodies-

terases and methyl-accepting chemotaxis proteins. CHASE domains can
be of many types based on functions, out of which CHASE2, 3, 6 are
well-studied. CHASE2 are part of serine/threonine kinases, which is
followed by transmembrane helices (Mascher et al., 2006; Zhulin et al.,
2003). Adequate numbers of studies report their presence in bacteria
(Cyanobacteria etc.) signal sensing proteins, however their presence in
viruses and pollen is rather new discovery. AgrB (Accessory gene
regulator B) family proteins include AgrB from Staphylococcus aureus
and FsrB from Enterococcus faecalis, both regulating expression of
virulence genes (Robinson et al., 2005). These are quorum-sensing
apparatus in the bacteria, coordinating bacterial communication (Hsieh
et al., 2008). Also, these signaling genes have been recently discovered
in bacteriophage genomes (Hargreaves et al., 2014). This domain is
assumed to perform regulatory role in the dengue virus. Fig. 1
illustrates the pathogenic mechanisms of these domains.

2.13. Other proteins

PRP (prion protein) domain occurs in prion proteins, known to
cause neural diseases among animals, such as scrapie, bovine spongi-
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Table 1
Protein classes, subclasses, the protein domains falling under them and the functions of the domains.

Protein class Protein subclass Protein domains Functions

Hydrolase Nuclease/helicase HNHc For recombination, genome rearrangement, and virulence
IENR1 Binds to DNA
YaeQ Shows homology to transcription elongation protein
YqgFc Role in recombination
HELICc Recognize viral PAMPs (pathogen associated molecular patterns)

Protease Pro-kuma_activ Protein hydrolysis
Tryp_SPc Protein hydrolysis

Esterase Lactamase_B Ester hydrolysis
Hydrolyse β-lactam antibiotics

Lipase DDHD Phospholipase and membrane trafficking activity
acidPPc Present in phosphatidate phosphatase

Glycosylase UDG Required for virus DNA replication
PbH1 Present in pectate lyases, and rhamnogalacturonases

Involved in cytokinesis initiation
ChtBD3 In virulence factors of viruses
CBM In virulence factors of viruses, bacteria

Guanosine
triphosphate

RAB Role in vesicle trafficking across membranes
RUN Role in signaling pathways

Role in regulation of cytoskeletal organization, autophagy, endocytosis, and endosomal
maturation

Tubulin Role in polymer formation
FtsZ Role in cell division
EFh Part of Ca2+ sensors maintaining mitochondrial homeostasis
ARF Involved in post-Golgi vesicular transport

Transferases – PreSET Detected in plant pollen allergens
G3P_acyltransf Required for triacylglycerol biosynthesis

Required for immune response of the host
CAT Metabolize antibiotic chloramphenicol
CTD Role in pre-mRNA processing
RPOL8c Role in transcription

Role in microRNA gene regulation
Kinases – KbaA Role in sporulation

TPK_B1_binding Required for the functions of transketolase and mitochondrial enzymes
TyrKc Present in cell surface receptors
UBA Plays role in inter- and intramolecular communications
HAMP Relay signals for chemotaxis, pathogenesis, and biofilm formation
HWE_HK Mediate environmental signaling
HisKA A crucial sensor kinase in pathogens
Hr1 Part of Rho effector or PKN enzyme

Role in cytoskeletal organization and neuronal differentiation
Helps bacteria to imbibe host fatty acids into their membrane phospholipids

YARHG Binds to bacterial cell wall or its adjacent components as outer membrane lipid or
lipopolysaccharide

Ligase and synthetases – APC2 Regulates phase transition of mitosis
Citrate_ly_lig Role in lipid biosynthesis

Binds to DNA
Role in tumor growth

DALR Involved in autophagy and protein assembly
VKc Role in blood coagulation

Protease inhibitors – WR1 Inhibits certain proteins
Nucleic acid binding proteins PWI Binds to RNA as well as DNA

ZnF_BED Present in transposases
ZnF_A20 Role in apoptosis and proteasomal degradation
ZM Provides structural integrity to sarcomeres
TUDOR Involved in RNA metabolism and interactions

Modulates gene expression
Biomarkers of cancer

Adhesion and immunity-related proteins – MHC_II_beta Evoke immune response
Integrin_B_tail Involved in cell adhesion
Flo11 Mediates hyphal formation, invasive growth and plays role in inter-cellular

communication
Excalibur In bacterial surface proteins
SVWC Role in immunity and diseases
TNFR Role in growth factor and cytokine binding
TSP1 Regulate cell interactions in vertebrates
SCPU Present in spore coat protein, adhesive pili proteins and biofilm-forming proteins
SCP Present in nematode secretome, insect allergen, and semen

Play role in immune exacerbation and chronic condition
DISIN Inhibit ligand-receptor association
Amb_V Trigger immune reactions
C4 Component of collagens
Cadherin_pro Control synapses
CCP Role in complement activation by pathogens
CHAD Chelates metals

(continued on next page)
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form encephalopathy (BSE), kuru and Creutzfeldt-Jakob disease. The
disease progresses when cellular α-helix-rich prion protein converts
into β-sheet-rich amyloid fibril-forming form (Krammer et al., 2008;
Kupfer et al., 2009). IGR domain is found in fungal and plant proteins;
however, its annotation is too sparse and its function is unknown.
Antimicrobial21 is a plant peptide, with two disulfide bonds which
gives the peptide an α-helical hairpin fold topology. This peptide is
antimicrobial, and antifungal, which binds to fungal conidia, penetrates
and pools in the cytoplasm, leading to fungal death (Gautam et al.,
2012; Nolde et al., 2011).

Several DUFs (Domain of unknown functions), though poorly-
annotated frequently occur in pathogenesis-related proteins. DUF1237
occur in Ebola virus isolate from Zaire strain (isolate Q6V1Q2). This
domain overlaps with B41 domain, also adjacent domains occurring
before this DUF are exactly same (IENR1, DEP, LamG, Lipid_DES,
YqgFc) in another Zaire isolate (A0A0G2Y8I7) which indicates the
domain DUF1237 might be just a modified form of B41 domain.
DUF1338 in DENV-1 (P17763) and DENV-4 (Q2YHF0 and Q5UCB8)

has zinc-binding function and it is a part of putative metal hydrolase
(Marchler-Bauer et al., 2014). DUF1866 in Ebola virus isolate from
Reston strain (isolate Q8JPX5 and Q91DD4) is likely to be either Cyt-b5
(cytochrome b5-like heme/steroid binding domain) or CASc (caspase,
interleukin-1 beta converting enzyme homologues) domain. DUF862 in
Ebola virus isolate from Reston strain (isolate Q8JPX5) lies just above
HisKA domain, which might be a Telomerase_RBD domain. DUF4208 in
Ebola virus Sudan isolate (Q5XX01) could be PLCYc, RUN, or Cyclin_C
domains.

Also, a myriad other catalytically-active motifs present in proto-
zoans and metazoans were detected in the virus polyproteins, the
motifs/ domain being Amb_V_allergen, AWS, BTAD, CBD_II, CHAD,
CHASE2, ClpB_D2-small, CT, CTD, CxxC_CXXC_SSSS, Dak2, DALR_1,
DHDPS, DISIN, DPBB_1, DUF1907, EB_dh, EFh, Excalibur, FA58C, FCD,
Galanin, GAS2, GCK, Gp_dh_N, HAMP, HELICc, HWE_HK, Kelch, Knot1,
KR, Lig_chan-Glu_bd, LU, MA, MBD, NH, OmpH, PKS_TE, PROF, PWI,
RAB, RL11, Robl_LC7, Romo1, SAA, ShKT, Skp1, SMC_hinge,
SRP54,TNFR, YaeQ, and ZnF_C3H1. SMART database can be referred

Table 1 (continued)

Protein class Protein subclass Protein domains Functions

B_lectin Can activate classical complement pathway
Cytoskeletal protein binding – ACTIN Regulate cytoskeleton dynamics and cortical actin-assembly

PROF Regulate cytoskeleton dynamics by binding to actin monomers
Robl_LC7 Regulates dynein, a motor protein functions
MIT Manipulate microtubules
Kelch Mediates protein-protein interactions
GAS2 Manipulates actin microfilaments, bind to microtubules and lead to cell division arrest
B41 Attaches to host membrane and controls actin
DPBB High homology to expansins and GH45 enzymes; Part of plant allergens

Lipid biosynthesis and metabolism – TLC Role in ceramide synthesis, lipid regulation and neural processes
AAI Forms a part of LTP (lipid transfer protein) protein, a plant allergen
PKS_KR
PKS_TE

Polyketide synthase enzymes

PLP Role in stabilization of myelin sheaths and axonal survival
COLIPASE Role in lipid metabolism

Transcriptional regulators and stress-
related proteins

– UreE_C Role in urea hydrolysis
Skp1 Role as transcription elongation factor

Role in proteasomal degradation
FoP_duplication Activation of estrogen receptor target genes
H4 Manipulation of human IFN-β genes
HALZ Role in protein-protein interactions
HTH_MARR Part of transcriptional regulators

Confers multiple antibiotic resistance
Cyclin_C Important for cell cycle progression
Connexin_CCC Regulates assembly, gating, and binding to regulatory proteins
BAG Acts as co-chaperones
BTP Part of histone-like transcription factors
BTAD Role as transcription regulator
BRLZ Role as transcription regulator
WHy Plays role in adaptation to stress, including cold temperature, and desiccation

Membrane-associated proteins – LANC_like Have immune defense role
OmpH Highly pathogenic (from bacteria to plant pollens)
Bac_rhodopsin Present in photoreceptors
7TM_GPCR_Srsx Present in pathogenic viruses
AAA Part of ATPases; Play role in degradation of misfolded proteins, membrane quality

control, membrane fusion, DNA replication
Hormone-like and signaling proteins – Knot1 Have inhibitory, cytotoxic, antiviral or hormone-like activity

NH Part of vasopressin/oxytocin
Galanin Controls growth hormone, insulin, somatostatin, adrenal secretion, smooth muscle

activity
IB Part of growth factors
Elicitin Sequesters human cholesterol; manipulates host signaling pathways
CT or CTCK Part of growth factors
ACTH_domain Present in corticotrophins
Amelin Part of growth factors; regulates immune responses
DEP Modulates signal transduction
DDRGK Plays role in NF-kappaB signaling
CHASE Plays role in perception of environmental changes
AgrB Regulates the expression of virulence genes; Controls quorum-sensing

Other proteins – PRP Malfunction can cause neural diseases
IGR –
Antimicrobial21 Exerts antimicrobial, and antifungal properties
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to for further information on these protein domains (Ponting et al.,
1999). Even if some of the domains are non-functional, the findings
indicate homology and phylogenetic conservation among organisms.
Also, positional shuffling of the domains affirms mosaic nature of the
virus nucleic acid, which has been already proven in some DNA virus
(Iyer et al., 2002).

Table 1 lists all the pathogenically-critical protein domains outlined
above.

3. Discussion

The diverse repertoires of domains have originated by stepwise or
drastic reshuffling, depending on the stressors encountered. Several
domains co-occur in one protein and crosstalk for critical functions. A
huge number of above-discussed domains manipulate host actin
protein, hormones and neurons. Its striking that despite being at
different levels of evolutionary hierarchy, organisms have significant
number of domains shared. The identified domain number is vast and
ever-increasing, also they are being frequently re-annotated. Yet, the
domains characterized here constitute the core of the pathogenesis
mechanisms exploited by most pathogens and allergens.

Many proteins are intrinsically unstructured (such as stress encoun-
tering proteins), yet they have highly conserved, structured domains.
These domains are clues to the phylogenetic origin, evolutionary
trajectories and permutation paths leading to the origin of other protein
domains. Many of these critical domains occur in hypothetical proteins
of pathogenic bacteria, which are normally ignored while searching for
drug targets. It can be hypothesized that the hypothetical proteins with
any of these domains are likely to be virulence factors and are eligible
to be targeted. Patel has analyzed and reviewed extensively in this area,
that has shed light on the conserved domains and their obligatory role
in pathogenesis (Patel, 2016a, 2016b, 2016c; Patel, 2017a, 2017b;
Patel and Patel, 2016). The current work will be an interesting addition
in this direction.

4. Conclusion

To conclude, the most-conserved domains in pathogens and aller-
gens are generally VWC, YARHG, WH1, RICTOR_M, Pro-kuma_activ,
IENR1, B41, Y1_Tnp, HOX, HOLI, PLCYc, Hr1, H4, GGDEF, LPD_N,
CHASE2, Galanin, Dak2, DALR_1, HAMP, PWI, EFh, Excalibur, CT,
PbH1, HELICc, Kelch, Robl_LC7, YaeQ, PreSET, Bet_v_1, GAS2, CHAD,
Integrin_B_tail, MHC_II_beta, DISIN, etc. Using these domains as clues,
virulence agents and inflammation mediators can be identified. The
genes responsible for coding these protein sequences deserves attention.
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