
Introduction

The mammalian heart is formed from the mesoder-
mal progenitor cells present in the primary heart field 

(PHF) and the anterior heart field (AHF) of the develo-
ping embryo [1–5]. It is generally believed that these
cardiac progenitor cells (CPCs) extensively proliferate
and simultaneously differentiate into multiple cardiac
cell types such as myocytes, epicardial and endocar-
dial cells, vascular and conduction system cells [1].The
undifferentiated CPCs present in both heart fields are
known to express unique markers such as the home-
odomain containing transcription factor Nkx2.5, bHLH
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Abstract

The recent discovery of several myogenic cardiac progenitor cells in the post-natal heart suggests that some
myocardial cells may remain undifferentiated during embryonic development. In this study, we examined the
subcellular characteristics of the embryonic (E) mouse ventricular myocardial cells using transmission elec-
tron microscopy (TEM). At the ultrastructural level, we identified three different cell populations within the
myocardial layer of the E11.5 heart. These cells were designated as undifferentiated cells (43 ± 6%), moder-
ately differentiated cells (43 ± 2%) and mature cardiomyocytes (14 ± 4%). Undifferentiated cells contained a
large nucleus and sparse cytoplasm with no myofibrillar bundles. Moderately differentiated cells contained
randomly arranged myofilaments in the cytoplasm. In contrast, mature cardiomyocytes contained well-devel-
oped sarcomere structures. We also confirmed the presence of similar undifferentiated cells albeit at low lev-
els in the E16.5 (~20%) and E18.5 (~7%) myocardium. Further we used immunogold labeling technique to
test whether these distinct cell populations were also positive for markers such as Nkx2.5, ISL1 and ANF. A
preponderance of anti-Nkx2.5 label was found in the undifferentiated and moderately differentiated cell types.
Anti-ANF label was found only in the cytoplasmic compartment of moderately differentiated and mature
myocardial cells. All of the undifferentiated cells were negative for anti-ANF labeling. We did not find immuno-
gold labeling with ISL1 in any of the three myocardial cell types. Based on these results, we suggest that
embryonic myocardial cell differentiation is a gradual process and undifferentiated cells expressing Nkx2.5 in
post-chamber myocardium may represent a progenitor cell population while cells expressing Nkx2.5 and ANF
represent differentiating myocytes.
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transcription factors Mesp1 and 2 and the T-box pro-
tein brachyury [1, 6, 7]. While the LIM-domain 
containing transcription factor islet 1 (ISL1) is only
expressed in the AHF, markers expressed exclusively
in the PHF are yet to be identified [1]. Interestingly, the
expression levels of transcription factors such as
Mesp, and ISL1 were shown to be down regulated in
the later stages of cardiac development [7–9]. In con-
trast, Nkx2.5 is expressed in both undifferentiated
CPCs of the heart fields as well as in the differentiat-
ed myocytes later in the development [1, 10–12].
However, differentiated myocytes in the embryonic
heart differ from the CPCs in that they express typical
markers such as sarcomeric proteins (myosin heavy
chain, actin, myosin light chains, etc.) and secretory
proteins such as ANF [13–15].

Recent studies have identified several rare popula-
tions of CPCs in the postnatal myocardium [8,16–20].
These new findings have raised the possibility that
some of the PHF and AHF derived mesodermal cells
may remain undifferentiated during embryonic heart
development. However, there is no information avail-
able on the existence, fate and structural attributes of
the CPCs in the embryonic heart post-chamber spec-
ification. In this study, we sought to determine
whether the embryonic ventricular myocardium con-
tains any undifferentiated cells expressing markers
such as Nkx2.5 or ISL1 post-chamber specification.
Using transmission electron microscopy (TEM), we
have identified several undifferentiated cells that are
positive for the earliest known cardiac marker Nkx2.5
but not ISL1 in the embryonic (E) day 11.5 ventricular
myocardium. We also found a progressive decrease
in the undifferentiated cell pool and a concomitant
increase in the number of mature cardiomyocytes
during heart development.

Materials and methods 

Experimental animals

Experiments were performed on the heart tissue isolated from
different stages of mouse embryos.The initial breeding pair of
C3H/FeJ mouse strain was obtained from the Jackson
Laboratory (Bar Harbor, ME). The breeding colony was main-
tained in-house and female mice were mated with males
under a 12 hr light/dark cycle.The noon time on the day when
the copulation plug was found was designated as embryonic

0.5 day post coitus (p.c). For the collection of tissue speci-
mens, pregnant mice were sacrificed, embryos were isolated
from the uterine horns and the embryonic hearts were dissect-
ed using a stereomicroscope. Atrial appendages from all
these samples were carefully removed and only ventricular tis-
sue was processed for embedding. All of these procedures
were performed according to the guidelines set by the
Canadian Council on Animal Care and were approved by the
Dalhousie University Committee on Laboratory Animal Care.

Routine TEM method

Ventricular specimens isolated from the embryonic hearts
were fixed in 2.5% glutaraldehyde (Canemco-Marivac,
Quebec) in 0.1 M sodium cacodylate buffer (pH 7.2) at 4°C
for 2 hrs, post-fixed in 1% osmium tetroxide (Canemco-
Marivac) for 2 hrs and placed in 0.25% uranyl acetate
(Canemco-Marivac) at 4°C overnight. Tissue specimens
were dehydrated in graded series of acetone and embedded
in Epon Araldite resin (Canemco-Marivac) and polymerized
for 48 hrs at 60°C. Ultrathin sections (~80 nm) were cut using
an ultramicrotome (LKB Huxley, England), placed on copper
grids and stained with uranyl acetate and lead citrate.
Samples were examined using a JEOL JEM 1230 transmis-
sion electron microscope (TEM) and images were captured
using a Hamamatsu camera.

Immunogold labeling technique

Ventricular specimens were fixed overnight with 4%
paraformaldehyde and 0.5% glutaraldehyde in 0.1 M sodium
cacodylate buffer and dehydrated in a graded series of
ethanol. After embedding in LR White resin (Canemco-
Marivac), ultrathin (~80 nm) sections were cut, placed on
nickel grids, washed in sodium borohydride followed by 30
mM glycine in 0.1 M borate buffer (pH 9.6), blocked in Tris-
buffered saline (TBS, pH 8.1) containing 1% skim milk and
1% BSA for 45 min. and incubated with primary antibodies
against Nkx2.5 (sc-14033, Santa Cruz Biotechnology Inc.),
ANF (#CBL66, Chemicon) or ISL1 (Clone 39.4D5, DSHB,
University of Iowa) overnight at room temperature. Sections
were subsequently incubated with anti-mouse IgG antibodies
coupled to 5 nm gold particles (Sigma, Ontario) or anti-rab-
bit IgG antibodies coupled to 10 nm gold particles (Sigma)
for 1 hr, washed with TBS, post-fixed in 2.5% glutaraldehyde,
rinsed and counterstained with uranyl acetate and lead cit-
rate. For double immunogold labeling, the grids were incubat-
ed first with Nkx2.5 antibodies followed by anti-rabbit IgG sec-
ondary antibodies and subsequently with ANF antibodies fol-
lowed by anti-mouse IgG secondary antibodies. For controls,
primary antibodies were omitted from the procedure.
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Statistical analysis

Data are presented as mean ± S.E.M. Between-group com-
parisons were analysed by ANOVA multiple comparisons test
(Graphpad Insat 3). Significance was assumed at P < 0.05.

Results 

TEM analysis of myocardial cells in the

E11.5 ventricular myocardium

At day E 11.5, the right and left chambers of developing
ventricles are separated by a primitive septum and
the ventricular wall is composed of an outer layer of
epicardial cells, a myocardial cell layer and an inner
layer of endocardial cells [21]. To investigate whether
there are any undifferentiated cells in the embryonic

hearts, we examined subcellular characteristics of E
11.5 ventricular myocardial cells using the routine
TEM. At the ultrastructural level, we observed three
different cell populations within the myocardial layer
which include small undifferentiated cells, moderate-
ly differentiated cells and mature cardiomyocytes (Fig.
1A–C). These cells were clearly distinguishable from
the epithelial cells, endothelial cells, blood cells, inter-
stitial cells, nerve fibers and other non-muscle cell
types by their distinct ultrastructural characteristics.
Each of the smaller undifferentiated cells contained a
large nucleus and very sparse cytoplasm. The majori-
ty of the nuclear chromatin in these cells appeared as
clumps lining immediately below the nuclear envelope
and the nucleoplasm contained only a few blocks of
chromatin. The cytoplasmic compartment of these
cells lacked myofibrillar bundles and contained fewer
organelles such as mitochondria, Golgi apparatus,

Fig. 1 Ultrastructure analysis of 
E 11.5 ventricular myocardium.
(A) Two adjacent undifferentiated
cells with sparse cytoplasm: note
the presence of belt desmsomes
between these two cells (arrows),
Scale bar = 2 µm. (B) A moder-
ately differentiated myocardial
cell with loosely arranged myofil-
aments (arrowhead) and a primi-
tive sarcomere (arrow) in the
cytoplasm, Scale bar = 2 µm. (C)
A mature myocardial cell contain-
ing myofilament bundles with
well-defined sarcomeres (arrow-
heads), Scale bar = 500 nm. (D)
A belt desmosome (arrow)
between two undifferentiated
cells, Scale bar = 100 nm. (E) 
A spot desmosome (arrow)
between moderately differentiated
cells, Scale bar = 500 nm. (F) An
intercalated disc between two mature
myocardial cells: fascia adherens
(arrowheads) and desmosome
(arrow). Scale bar = 500 nm.
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endoplasmic reticulum (ER) and small vesicles
(Fig.1A). Undifferentiated cells were frequently found
in close proximity to the endocardial cell layer. Many of
these undifferentiated cells formed cell to cell junctions
with adjacent undifferentiated or moderately differenti-
ated and mature myocardial cells via spot or belt 
desmosomes (Fig. 1D).

In addition to undifferentiated cells, the myocardial
layer in E11.5 ventricle was also composed of several
mature cardiomyocytes exhibiting well-developed
sarcomere structures as well as moderately 
differentiated cells at varying stages of differentiation.
Both moderately differentiated and mature cell types
contained abundant cytoplasm and a large nucleus
with several blocks of clumped chromatin dispersed
in the nucleoplasm (Fig. 1B and C). The cytoplasmic
compartment of moderately differentiated cells 
contained randomly arranged myofilaments lacking a
well-organized sarcomeric structure, organelles such
as mitochondria, Golgi, ER and small vesicles as
well as secretory granules (Fig. 1B). In contrast, the 
cytoplasmic compartment of mature cells contained
several myofilament bundles arranged into well-
organized sarcomeric structures, abundant mitochon-
dria, secretory granules as well as other organelles
(Fig. 1C). Both moderately differentiated and mature
myocardial cell types formed cell to cell junctions
with each other mainly via desmosomes and fascia
adherens (Fig. 1E). Intercalated discs containing gap
junctions, desmosomes and fascia adherens were also
observed in many of the differentiated cells (Fig. 1F).

Quantitation of undifferentiated and

mature myocardial cells in the 

developing ventricular myocardium

Based on the ultrastructural characteristics
described earlier, we assessed the percentages of
undifferentiated, moderately differentiated and 
differentiated cells in the E11.5 ventricular myocardium
(Fig. 2). We defined myocytes as moderately 
differentiated cells when the cytoplasm contained
scattered myofilaments lacking organized sarcomeric
structures. At E11.5, we found that the majority of
ventricular myocardial cells were either undifferentiated
or moderately differentiated. Interestingly, mature or
differentiated myocytes represented only ~14% of
the E11.5 ventricular myocardium. We subsequently

confirmed the presence of these three types of cells
and structural characters in the E16.5 and E 18.5
ventricular myocardium (Table 1). Quantitative analyses
indicated a decrease in the undifferentiated cell pool
(E11.5 = 43%, E16.5 = 20% and E18.5 = 7%) and an
increase in the number of mature cardiomyocytes
(E11.5 = 14%, E16.5 = 38%, E18.5 = 61%) during
development (Table 1).

Immunocharacterization of 

undifferentiated and mature 

myocardial cells in the 

E11.5 ventricular myocardium 

To test whether these distinct cell populations identi-
fied by the routine TEM were also positive for markers
such as Nkx 2.5, ISL1 and ANF, immunogold staining
technique was used. At E11.5 stage, a preponderance
of anti-Nkx 2.5 label was found in the undifferentiated
and moderately differentiated cell types and was
distributed evenly between the nuclear and cytoplasmic
compartments (Figs 3C and 4A). We also found low
levels of Nkx2.5 labeling in mature cardiomyocytes
(Fig. 4B). In contrast, the anti-ANF label was only
found in the cytoplasmic compartment of moderately
differentiated and mature myocardial cells (Fig. 4C
and D). A unique feature of the anti-ANF labeling was
that the majority of signal was clearly associated with

Fig. 2 Relative distribution of undifferentiated (UC),
moderately differentiated (MDC) and mature (MC)
myocardial cells in E11.5 ventricular myocardial cell
layer. Data is presented as mean value ± S.E.M., N = A
total of 1000 cells from five different hearts. * ^ρ < 0.005
compared to MC.
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clusters of secretory granules. As anticipated, all the
undifferentiated cells were negative for anti-ANF
labeling (Fig. 3B). In addition, we did not find
immunogold labeling with ISL1 in any of these
myocardial cell types (data not shown).

To further substantiate these results, we used a
double immunogold staining technique and simulta-
neously assessed the percentages of myocardial
cells expressing Nkx2.5 and or ANF markers in the
E11.5 hearts. In agreement with ultrastructural features
and single immunogold staining results, double staining
revealed that all of the undifferentiated myocardial
cells were positive for only anti-Nkx2.5 label while
differentiated myocardial cells were positive for both
anti-Nkx 2.5 and ANF labels (Fig. 5A). Based on the
double immunogold labeling experiments on three
independent E11.5 ventricles, undifferentiated cells
positive for Nkx2.5 represented approximately 36%
of the total cells counted (Fig. 5B). In addition, the
majority of myocardial cells (~59%) were positive for
both Nkx2.5 and ANF markers, while about 5% of the
myocardial cells were positive for only ANF (Fig. 5B).
As anticipated, the later two groups of immunogold
positive cells (Nkx2.5+ANF or ANF only positive)
comprised of both moderately differentiated and
mature myocardial cells but not undifferentiated cells.
Collectively, our results indicate that a large number
of myocardial cells expressing the transcription factor
Nkx 2.5 remain undifferentiated in the embryonic
heart post-chamber specification.

Discussion

Although various steps involved in the morphogenetic
transformation of the embryonic heart are clearly
defined [13, 22], there is no spatiotemporal informa-
tion on the differentiation status of the cardiogenic
mesodermal cells that are mainly responsible for
the formation of the heart. In the present study, we
studied the ultrastructural properties of different cell
populations within the myocardial layer of the E 11.5
heart using the routine TEM technique. Our results
suggest that the bulk of myocardial cells remain undif-
ferentiated or partially differentiated in the embryonic
heart immediately after chamber specification.
Based on ultrastructural features, these cells were
clearly distinct from other non muscle cell types
including smooth muscle cells [23] and recently dis-
covered interstitial cajal-like cells [24–26].

To further characterize embryonic myocardial
cells, we used the immunogold labeling technique
and assessed the expression of independent markers
such as Nkx2.5, ISL1 and ANF. We found that all of
the undifferentiated cells in the E11.5 myocardium
expressed the transcription factor Nkx2.5 but not
ISL1 and ANF (Fig. 3). These undifferentiated cells
differ from other non-cardiac cell types based on
their unique morphology. Since cardiac fibroblasts
were shown to be devoid of Nkx2.5 expression 
[12, 27], undifferentiated cells identified in this study

Developmental stage
Undifferentiated cells

(UC)

Moderately differentiated

cells (MDC)

Mature cardiomyocytes

(MC)

E11.5 43.0 ± 5.5%* 43.0 ± 2.0% 14.0 ± 4.2%**, #

E16.5 20.0 ± 2.1%^ 42.0 ± 2.3% 38.0 ± 1.0%

E18.5 7.0 ± 0.3%$ 32 ± 0.4%^^ 61.0 ± 0.7%

Table 1 Relative distribution of three myocardial cell types in the ventricular myocardium during development

Data is presented as mean ± S.E.M., N = A total of 600–1000 cells from three to five hearts per group.
*p < 0.05 E11.5 UC versus E16.5 UC and p < 0.005 E11.5 UC versus E18.5 UC.
**p < 0.005 E11.5 MC versus E11.5 UC and E11.5 MDC.
#p < 0.05 E11.5 MC versus E16.5 MC and p < 0.005 E11.5 MC versus E18.5 MC.
^<0.05 E16.5 UC versus E16.5 MDC.
$<0.05 E18.5 UC versus E18.5 MDC and p < 0.005 E18.5 UC versus E18.5 MC.
^^<0.005 E18.5 MDC versus E18.5 MC.
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can be easily ruled out as putative fibroblast 
population. Moreover, expression of Nkx2.5 in undif-
ferentiated cells clearly suggests that not all the PHF
and AHF derived cells are simultaneously 
differentiated in the developing heart. In contrast,
moderately differentiated and mature cardiomy-
ocytes did not express ISL1, but were positive for
ANF and Nkx2.5 expression.

Furthermore, our double immunogold labeling
experiments also revealed ANF expression in
moderately differentiated and mature cardiomyocytes
but not in Nkx2.5 positive undifferentiated cells 
(Fig. 5B). Although there was a discrepancy between
the relative percentages of undifferentiated cells iden-
tified via double immunogold labeling (~36%, Fig. 5B)
and those identified via routine TEM (~43%, Fig. 2),
this was not due to a real heterogeneity of undifferen-
tiated cells since all of them expressed only Nkx2.5.
Moreover, this difference is not statistically significant
and thus can be attributed to individual animal or
experimental variations. Surprisingly, a small percentage
of myocardial cells positive only for ANF were also
found in E11.5 myocardium (Fig. 5B). These ANF
positive cells could be resulting from the non-Nkx2.5
positive CPCs that were shown to form venous pole
of the developing heart [28]. Alternatively, Nkx2.5
expression in these cells may be developmentally
downregulated. Certainly, downregulation of 
transcription factors such as GATA4 that are known
to control Nkx2.5 gene expression [29, 30] may also
account for the absence of Nkx2.5 protein in cells
positive for only ANF. Similarly, absence of ISL1
expression in E11.5 myocardial cells is in agreement
with the reported downregulation of this gene during
early cardiac development [8]. From these results we
infer that undifferentiated myocardial cells lacking
myofilaments and expressing only Nkx2.5 may repre-
sent putative CPCs while cells expressing Nkx2.5 and
or ANF with apparent sarcomeric structures repre-
sent differentiating myocytes. We have recently used
a real-time fluorescent reporter based approach to
confirm that the E11.5 myocardial cells expressing
only Nkx2.5 but not markers such as ANF and MLC-
2V are indeed capable of differentiating into a more
mature phenotype (McMullen et al., in preparation).

Recent loss of function and gain of function stud-
ies have shed some light on the genes and factors
responsible for heart development and morphogene-
sis [31]. However, more work needs to be done in this
area to explain cardiac abnormalities and associated

Fig. 3 Immunogold labeling of undifferentiated myocardial
cells. (A) A lower magnification of E11.5 undifferentiated cell
processed for immunostaining with ANF antibodies, Scale
bar = 500 nm. (B) A higher magnification of the boxed area
in panel A showing the absence of immunogold probe
directed against ANF, Scale bar = 100 nm. (C)
Undifferentiated cell with clusters of immunogold probe
directed against the transcription factor Nkx2.5 (arrow-
heads) in the nuclear compartment, Scale bar = 100 nm.



embryonic deaths seen in several genetic models in
which formation of a chambered heart is unperturbed
or only modestly affected [32–37]. Our findings from
this study suggest that multiple mechanisms may
regulate further maturation of undifferentiated and
moderately differentiated myocardial cells in later
stages of cardiac development. We propose that any
imbalances in regulatory mechanisms that can alter
the ratio of undifferentiated cells to differentiated
myocytes could result in late embryonic or postnatal
mortalities reported for several genetic models
[32–37]. For instance, retinoids were shown to play a
key role in the early stages of cardiac development to
prevent cell differentiation and favour cell proliferation
[37]. Ablation of retinoid signaling pathway was
shown to result in precocious myocardial cell matura-
tion and early embryonic lethality [37]. Similarly,
Nkx2.5 has been shown to regulate the transition
between periods of cardiac induction, AHF progeni-
tor cell proliferation, and outflow tract (OFT) morpho-
genesis via a Bmp2/Smad1 negative feedback loop
[38]. Absence of such regulation in Nkx2.5 mutants
was responsible for initial overspecification of pro-
genitor cells followed by failed progenitor cell prolifer-
ation, OFT defects and early embryonic lethality [38].

In summary, our results suggest that myocardial cell
differentiation is a gradual process in which a relatively
small percentage of cells start to form organized 
sarcomeres at E11.5 and the proportion of differentiated
cells increases dramatically in the later stages of

Fig. 5 Double immunogold labeling of E11.5 ventricular
myocardial cells. (A) Moderately differentiated myocardial
cell with anti-Nkx2.5 label (10 nm gold particles, arrowheads)
in the nuclear compartment and anti-ANF label (5 nm gold
particles, arrow) in the cytoplasm, Scale bar = 100 nm. (B)
Relative distribution of E11.5 ventricular myocardial cells
positive for Nkx2.5 and or ANF. Data is presented as mean
value ± S.E.M., N = A total of 400 cells from three differ-
ent hearts. *p < 0.005 Nkx2.5+ versus Nkx+ /ANF+ and
ANF+, ^p < 0.005 Nkx+/ANF+ versus ANF+.
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Fig. 4. Immunogold labeling of
moderately differentiated and
mature myocardial cells. (A and B)
Clusters (arrowheads) of immuno-
gold probe directed against the
transcription factor Nkx 2.5 in a
moderately differentiated cell (A)
and a mature myocardial cell (B).
Note the presence of well-
organized sarcomeres (S) in the
mature cell. Scale bars: A = 100
nm, B = 500 nm. (C and D)
Clusters (arrowheads) of immuno-
gold probe directed against ANF in
a moderately differentiated cell (C)
and a mature myocardial cell (D).
Note the association of anti-ANF
label with secretory granules.
Scale bars: (C and D) = 100 nm.



gestation. In this context, further work is needed to
identify factors or mechanisms that are essential for
proper maturation of undifferentiated cells in the
embryonic heart post-chamber specification.
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