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The increased popularization of cycling has brought an increase in cycling-related injuries, which has been suggested to be
associated with muscle fatigue. However, it still remains unclear on the utility of different EMG indices in muscle fatigue evaluation
induced by cycling exercise. In this study, ten cyclist volunteers performed a 30-second all-out cycling exercise after a warm-up
period. Surface electromyography (sEMG) from vastus lateralis muscle (VL) and power output and cadence were recorded and
EMG RMS, MF and MPF based on Fourier Transform, MDF and MNF based on wavelet packet transformation, and C(n) based
on Lempel–Ziv complexity algorithm were calculated. Utility of the indices was compared based on the grey rational grade of
sEMG indices and power output and cadence. The results suggested that MNF derived from wavelet packet transformation was
significantly higher than other EMG indices, indicating the potential application for fatigue evaluation induced by all-out cycling
exercise.

1. Introduction

The increased popularization of cycling in transportation,
recreation, and competition has brought an increase in
cycling-related injuries [1]. It was found that about 42% to
65% of recreational cyclists may experience overuse knee
pain [1, 2]. The incidence of all nontraumatic injuries among
cyclists may reach 85% [3]. As muscle fatigue may change the
kinematics and muscle activation patterns so as to maintain
target performance, the injuries has been suggested to be
caused by biomechanical alterations associated with muscle
fatigue [4, 5], which indicate that muscle fatigue monitoring
and assessment may be helpful in protocol arrangement to
reduce injuries during cycling exercise.

Surface electromyography (sEMG) has been widely used
in muscle fatigue evaluation due to its noninvasiveness, real
time, and applicability [6]. In previous researches, many
sEMG indices have been suggested and compared in muscle
fatigue assessment, including root mean square (RMS), the

median (MF), and mean power frequencies (MPF) based
on Fourier Transform [6]. However, these researches have
been documented especially for isometric and isokinetic
contraction conditions and studies have rarely focused on the
EMG-based muscle fatigue evaluation in cycling exercise. As
a result, on the utility of different EMG indices in muscle
fatigue evaluation induced by cycling exercise still remains
unclear.

Muscle fatigue has been defined and quantified by the
reducedmaximumcapacity to generate force or power output
[7]. Particularly, the decrease of maximal force or power
output has been used as the valid criterion to evaluate the
utility of other approaches (e.g., sEMG) in muscle fatigue
assessment [8, 9]. In previous researches, the proximity of
researched indices changes and the decrease of maximal
force or power output has been compared and adopted
to evaluate the utility of indices [10], while grey relational
analysis is a method to quantifying the proximity of changing
trends between inspected sequences and standard sequence
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by grey relational grade [11, 12]. Therefore, the utility of EMG
indices inmuscle fatigue can be evaluated by comparing their
changing trends with maximum force or power output using
grey relational analysis.

This work aims at comparing the utility of sEMG indices
in assessing muscle fatigue induced by all-out cycling exer-
cise. EMG indices representing fatigue were calculated and
grey rational grade of EMG indices and power output were
calculated and compared. The research was performed on
the vastus lateralis muscle (VL) as it has been suggested to
be the principal power producers during cycling exercise [13,
14]. Results were expected to provide improved EMG-based
methods in muscle fatigue assessment for all-out cycling
exercise to help reduce injuries of cyclists.

2. Materials and Methods

2.1. Participants. Seven male and three female cyclist vol-
unteers (age 21.50 ± 4.67 years, height 175.00 ± 8.25 cm,
and weight 75.40 ± 10.91 kg) participated in this study,
which was approved by the Ethics Committee of Tongji
University. The subjects were all healthy, with no known
neuromuscular disorders or musculoskeletal injuries, and
had not participated in strenuous physical activity in 24 hours
before experiment.

2.2. Experimental Protocol. The experiment was conducted
in laboratory with the indoor temperature of about 24∘C
and comprised a warm-up exercise and a test exercise. All
the exercises were performed on an air-braked ergometer
(Wattbike Pro;Wattbike Ltd., Nottingham, United Kingdom)
that allows the resistance to be set between 1 and 10 levels.The
Wattbike measures the forces applied to the chain over a load
cell and angular velocity of the crank twice per revolution to
calculate power output at a rate of 100Hz. Power output and
cadence during track cycling were measured using SRM pro-
fessional power cranks (Schoberer Rad-Messtechnik, Julich,
Germany). To ensure accurate measures, a static calibration
procedure was conducted before the study for both devices
[15].

The warm-up exercise consisted of a 5min cycling exer-
cise with the air resistance on the ergometer set at level 3
and the cadence at 90 rpm followed by a complete rest of
3min before the beginning of the test. Based on previous
tests with the subjects, the air resistance on the Wattbike
ergometer was set to the level at which the subject may
produce the maximum power output during all-out cycling
exercise. According to this criterion, the air resistance on the
ergometer was set to level 10 for sevenmale cyclists and level 6
for three female cyclists. According to the calibration report,
levels 6 and 10 of air resistance on the Wattbike ergometer
result in power outputs of 45 and 55W at a cadence of 40 rpm
and 785 and 1045W at a cadence of 130 rpm. Subjects were
asked to produce the highest possible power output for 30
seconds and were verbally encouraged throughout the trials.

2.3. EMG Measurement. Surface electromyographic signals
were recorded with three round bipolar Ag/AgCl electrodes
of ME 6000 P8 Surface EMG acquisition instrument (Mega

Electronics System, Finland). Electrodes were placed over
the belly of right vastus lateralis (VL) with center-to-center
electrode distance setting to 2 cm. The skin was shaved and
cleaned with alcohol wipes before the electrodes were fixed.
Medical adhesive tape and plastic casts were applied to fix the
electrodes. Raw EMG signals were amplified, simultaneously
digitized, and acquired by the MegaWin system (Mega
Electronics System, Finland) at a sampling rate of 1 kHz.

2.4. EMG Data Processing. EMG signals recorded from VL
were band-pass filtered at 5–500Hz using a 4th-order zero-
phase-shift Butterworth filter and were divided into every
3-second epochs. For each epoch, EMG RMS, MF (median
frequency) and MPF (mean power frequency) based on
Fourier Transform, MDF and MNF based on wavelet packet
transformation, and C(n) based on Lempel–Ziv complexity
algorithm were calculated.

RMS is defined as

RMS = √∑𝑛𝑖=1 󵄨󵄨󵄨󵄨rawData𝑖󵄨󵄨󵄨󵄨𝑛 , (1)

where 𝑖 represents the order number of the dealing sample
point, rawData𝑖 is the value of the 𝑖th sample point, and 𝑛 is
the total number of the data points.

MF and MPF are defined as follows:

∫MF

0

𝑆 (𝑓) 𝑑𝑓 = ∫∞
MF
𝑆 (𝑓) 𝑑𝑓 = 12 ∫

∞

0

𝑆 (𝑓) 𝑑𝑓,
MPF = ∫

∞

0
𝑆 (𝑓) ⋅ 𝑓 ⋅ 𝑑 (𝑓)
∫∞
0
𝑆 (𝑓) ⋅ 𝑑𝑓 ,

(2)

where 𝑓 is the frequency, 𝑆(𝑓) is the power at frequency 𝑓,
and 𝑑(𝑓) is the frequency resolution.

Wavelet packet transformation was employed to analyze
sEMG and a wavelet that was a member of the Daubechies
family (order 6) was implemented in this analysis. On this
basis, MDF and MNF were calculated. MDF and MNF are
defined as

∫MDF

0

𝑃 (𝑡, 𝜔) 𝑑𝜔 = ∫∞
MDF
𝑃 (𝑡, 𝜔) 𝑑𝜔

= 12 ∫
∞

0

𝑃 (𝑡, 𝜔) 𝑑𝜔,
MNF = ∫

∞

0
𝜔𝑃 (𝑡, 𝜔) 𝑑𝜔
∫∞
0
𝑃 (𝑡, 𝜔) 𝑑𝜔 ,

(3)

where 𝑃(𝑡, 𝜔) represents the power spectrum of EMG signals
based on wavelet packet transformation.

Lempel–Ziv complexity was calculated based on com-
plexity C(n) algorithm devised by Kaspar and Schuster [16]
and its value is between 0 and 1.

2.5. Grey Rational Grade Calculation. In the grey relational
grade calculation, EMG indices were selected as inspected
sequences while power (or cadence) was chosen as standard
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Table 1: Grey relational grade between EMG indices and pedaling performance.

RMS MF MPF MDF MNF C(n)
Power 0.47 ± 0.06 0.70 ± 0.06 0.71 ± 0.03 0.68 ± 0.06 0.78 ± 0.05 0.56 ± 0.09
Cadence 0.43 ± 0.09 0.70 ± 0.06 0.69 ± 0.06 0.67 ± 0.08 0.74 ± 0.05 0.47 ± 0.07

sequence. Each data of inspected sequences and standard
sequence was normalized by dividing the average value
of each sequence. Then the grey relational coefficient was
calculated using Deng’s grey relational grade formula:

corr (𝑥0 (𝑘) , 𝑥𝑖 (𝑘)) = Δmin + 𝑝ΔmaxΔ 0𝑖 (𝑘) + 𝑝Δmax
, (4)

where

(1) 𝑖 = 1, 2, 3, . . . , 𝑚, 𝑘 = 1, 2, 3, . . . , 𝑛;
(2) 𝑥0 is standard sequence and 𝑥𝑖 is inspected sequence;
(3) Δ 0𝑖 = ‖𝑥0(𝑘)−𝑥𝑖(𝑘)‖ is the difference between 𝑥0 and𝑥𝑖;
(4) Δmin. = ∀min.min.

𝑖
∀𝑘‖𝑥0(𝑘) − 𝑥𝑖(𝑘)‖, Δmax. =∀max.max.

𝑖
∀𝑘‖𝑥0(𝑘) − 𝑥𝑖(𝑘)‖;

(5) 𝑝 is distinguishing coefficient, and 𝑝 ∈ [0, 1]. In this
study, we took 𝑝 = 0.5 according to previous research
[11].

When the grey relational coefficient is calculated, the
mean value of the grey relational coefficient is taken as the
grey relational grade:

CORR (𝑥0, 𝑥𝑖) = 1𝑛
𝑛∑
𝑘=1

corr (𝑥0 (𝑘) , 𝑥𝑖 (𝑘)) . (5)

Grey relational grade of CORR in this study ranged from
0 to 1. A larger value of CORR indicates a more proximity of
changing trends between EMG index and power output and
thus a better utility to evaluate muscle fatigue.

Data processing was performed using MATLAB R2016a
software (Mathworks, USA).

2.6. Statistical Analysis. The statistical analysis was per-
formed using SPSS 13.0 for windows (SPSS, Inc., Chicago, IL,
USA). Normality was tested using the Kolmogorov-Smirnov
test. One-way repeated-measures variance analysis was used
to determine the difference of power, cadence, and EMG
indices in different pedaling phases. Two-factor variance
analysis was used to compare the grey relational grade of
different EMG indices and pedaling performance (power and
cadence). All significance thresholds were fixed at 𝛼 = 0.05.
3. Results

Examples of power output, cadence, and raw EMG signals
of vastus lateralis are shown in Figure 1. It can be observed
from the figure that, during the 30-second all-out cycling
exercise, subjects reached their maximum value of power
output and cadence in approximately the 4th and 6th second

of the exercise, respectively. Power output and cadence began
to decrease progressively once they reach the peak value in
the later exercise.

Figure 2 shows the average power output (a) and cadence
(b) of all subjects calculated for every 3-second during
cycling exercise. The power reached the maximum value
of 939.50 ± 212.06W in the second 3-second epoch and
declined to 481.50 ± 105.56W in the last 3-second epoch.
Correspondingly, the cadence reached 144.50 ± 4.95RPM
in the second 3-second epoch and decreased to 115.37 ±4.63RPM in the last 3-second epoch. One-way repeated-
measures variance analysis results revealed that power output
and cadence had significant difference in 10 pedaling periods
(power: 𝐹 = 32.858, 𝑃 ≤ 0.001; cadence: 𝐹 = 46.705,𝑃 ≤ 0.001). Power output and cadence showed a progressively
approximate linear decrease tendency from the third 3-
second cycling exercise.

Figure 3 showed the average EMG RMS, C(n), MF,
MPF, MDF, and MNF of all subjects calculated for every 3-
second during cycling exercise. The RMS, C(n), MF, MPF,
MDF, and MNF in the first and last 3-second epoch were22126.89 ± 17805.51 𝜇V, 55.80 ± 6.45Hz, 119.82 ± 7.77Hz,101.83±5.23Hz, 137.49±8.02Hz, 0.61±0.06 and 17635.63±11687.06 𝜇V, 48.95±4.06Hz, 104.73±7.37Hz, 92.72±8.05Hz,121.79 ± 7.82Hz, and 0.56 ± 0.08, respectively. During the
pedaling exercise, the EMG RMS, C(n), MF, MPF, MDF,
and MNF all showed a declining tendency while EMG MF,
MPF, MDF, and MNF showed a more significant decreased
tendency compared with EMG RMS and C(n). One-way
repeated-measures variance analysis results revealed that the
duration time factor had significant influence on EMG RMS,
MF, MPF, MDF, MNF, and C(n) (RMS: 𝐹 = 2.957, 𝑃 ≤ 0.05;
MF: 𝐹 = 6.315, 𝑃 ≤ 0.001; MPF: 𝐹 = 13.114, 𝑃 ≤ 0.001;
MDF: 𝐹 = 3.969, 𝑃 ≤ 0.001; MNF: 𝐹 = 8.915, 𝑃 ≤ 0.001;
C(n): 𝐹 = 6.087, 𝑃 ≤ 0.001). Post hoc analysis showed that
most of MF, MPF, MDF, and MNF values were significantly
decreased compared to the value of precedent.

Table 1 shows the grey relational grade between EMG
indices and pedaling performance.The grey relational grades
between EMG indices of RMS, MF, MPF, MDF, MNF, C(n),
and power were 0.47±0.06, 0.70±0.06, 0.71±0.03, 0.68±0.06,0.78 ± 0.05, and 0.56 ± 0.09, while the grey relational grades
between EMG indices and cadence were 0.43 ± 0.09, 0.70 ±0.06, 0.69 ± 0.06, 0.67 ± 0.08, 0.74 ± 0.05, and 0.47 ± 0.07.

The statistical analysis revealed significant effects of both
inspected sequences (𝐹 = 68.241, 𝑃 ≤ 0.001) and standard
sequences (𝐹 = 7.348, 𝑃 ≤ 0.01) on the grey relational grade
value. No significant interaction effect of inspected sequences
by standard sequences was found (𝐹 = 1.207, 𝑃 > 0.05).
Post hoc analysis showed that grey relational grade calculated
between EMG indices and power was significantly greater
than between cadence. On the other hand, grey relational
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Figure 1: Power output, cadence, and raw EMG signals of vastus lateralis for two representative subjects during 30-second all-out cycling
exercise.
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Figure 2: Average power output (a) and pedaling rate (b) of all subjects calculated for every 3-second during cycling exercise.
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Figure 3: Average EMG RMS, C(n), MF, MPF, MDF, and MNF of all subjects calculated for every 3-second during cycling exercise.

grade of MNF was significantly higher than other EMG
indices, while grey relational grade of RMS and C(n) was
significantly lower than other four EMG indices (𝑃 < 0.05).
4. Discussion

The main purpose of this study was to determine the utility
of several EMG-based fatigue indices in the context of cycling
exercise. In the comparative research of EMG-based muscle
fatigue evaluation, previous studies have mainly focused on
isometric and isokinetic contraction conditions and rarely
have focused on the cycling exercise [6, 10, 17, 18]. In the
present study, the utility of the EMG indices inmuscle fatigue
evaluation was quantified based on the grey rational grade

between EMG indices and power output. Results of this study
suggested that grey relational grade of MNF was significantly
higher than other EMG indices, indicating the potential
application for fatigue evaluation induced by all-out cycling
exercise.

In the previous research [19], we have compared sensitiv-
ity and stability of EMG RMS, MPF, MNF, and C(n) in eval-
uation of rectus femoris fatigue induced by 60-second all-out
cycling exercise and found that MNF have the highest fatigue
sensitivity while RMS had the lowest fatigue sensitivity. The
sensitivity of MPF and C(n) had no significant difference.
Referring to stability, C(n) was the optimum index andMNF
the second, followed by MPF and RMS. In this study, the
optimum utility of MNF and inferior utility of RMS have also
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been found, which is consistent with the previous research.
However, C(n) was not found to have favourable advantage
compared to MF and MPF.

RMS showed inferior utility compared to other indices,
indicating inconsistent performance to evaluate muscle
fatigue. The result is in agreement with previous studies
which have revealed the inconsistent changes of RMS during
contractions [20]. As RMS can be easily influenced by exper-
iment conditions such as muscle contraction style, workload,
endurance time, and other factors, the use of this index as
fatigue indicator should be interpreted with caution [10, 21].

MF and MPF have been accepted as the representative
indicators of muscle fatigue and have been widely employed
in muscle fatigue evaluation in previous researches [22,
23]. It has been reported that, both in isometric and in
dynamic fatiguing contraction conditions, MF and MPF
showed significant decreasing tendency [1, 24, 25]. However,
other studies have shown concern on the use of MF andMPF
as fatigue index in dynamic contraction due to the limitation
of Fourier Transform in nonstationary signal analysis [26]. In
this study, EMG recorded from VL were nonstationary and
nonlinear signals due to the obvious electrode shifts relative
to the muscle fiber and changes in the conductivity property
of the tissues in the strenuous all-out cycling exercise, which
may influence the sensitivity and stability of MF and MPF
as fatigue indices [27–29]. The results showed that the grey
relational grade of MF and MPF were higher than RMS and
C(n) and lower thanMNF, indicating that MF andMPF were
not the optimum fatigue indices in all-out cycling exercise.

Wavelet transformation has been suggested to be suitable
for the analysis of nonstationarymyoelectric signals recorded
in dynamic contractions. Karlsson et al. [30] have shown that
continuous wavelet transform has better accuracy in estimat-
ing time-dependent spectral moments than those obtained
by using short-time Fourier Transform, the Wigner–Ville
distribution, and the Choi–Williams distribution methods
[13]. Karlsson et al. used wavelet transformation to study
movements at different angular velocities and found that
wavelet transform was very reliable for the analysis of non-
stationary biological signals [31]. In agreement with previous
researches, the grey relational grade ofMNFwas significantly
higher than other parameters, indicating the optimum utility
in muscle fatigue assessment.

Lempel–Ziv complexity was calculated using regression
function method and can reflect new pattern generating
speed of time series along with its length increase and
reflects the randomness of the time sequence [32]. Previous
researches have demonstrated that the Lempel–Ziv com-
plexity method is easy to use and effective in revealing the
dynamic characteristics and variations of exercise fatigue
[33, 34]. In our previous research, Lempel–Ziv complexity
showed the highest stability while the sensitivity was lower
than MPF and MNF [19]. Therefore, the poor utility of
Lempel–Ziv complexity C(n) revealed in this study may
attribute to the low sensitivity of reflecting muscle fatigue
and is not suitable for the fatigue index induced by cycling
exercise.

Muscle fatigue represents a complex phenomenon and
encompasses a number of changes occurring at both central

and peripheral level [35–38]. Although central and peripheral
mechanisms are highly interactive, the contribution of two
mechanisms may be quite different in certain conditions. For
example, previous researches have demonstrated that muscle
fatigue induced by very high force level mainly occurred
at perpetual level while sustained contraction at low forces
produces prominent central fatigue [39–42]. In this study,
subjects performed very vigorous dynamic cycling exercise
with high force level and no doubt would lead to remarkable
perpetual fatigue as well as central fatigue. As utility of EMG
indices may be quite different in evaluating central fatigue
and peripheral fatigue [39–42], the difference utility of EMG
variables in muscle fatigue evaluation would be explained
by the different fatigue mechanism of central and perpetual
factors.

In conclusion, surface EMG recorded fromVL during all-
out cycling exercise was nonlinear and nonstationary signals
that refrain the application of Fourier Transform, while
MNF derived from wavelet packet transformation showed
the maximum grey rational grade with both power output
and cadence, indicating the potential application for fatigue
evaluation induced by all-out cycling exercise.
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