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Abstract 

Background:  Although both copy number variations (CNVs) and single nucleotide 
variations (SNVs) detected by single-cell RNA sequencing (scRNA-seq) are used to 
study intratumor heterogeneity and detect clonal groups, a software that integrates 
these two types of data in the same cells is unavailable.

Results:  We developed Clonal Architecture with Integration of SNV and CNV (CAISC), 
an R package for scRNA-seq data analysis that clusters single cells into distinct sub-
clones by integrating CNV and SNV genotype matrices using an entropy weighted 
approach. The performance of CAISC was tested on simulation data and four real data-
sets, which confirmed its high accuracy in sub-clonal identification and assignment, 
including subclones which cannot be identified using one type of data alone. Fur-
thermore, integration of SNV and CNV allowed for accurate examination of expression 
changes between subclones, as demonstrated by the results from trisomy 8 clones of 
the myelodysplastic syndromes (MDS) dataset.

Conclusions:  CAISC is a powerful tool for integration of CNV and SNV data from 
scRNA-seq to identify clonal clusters with better accuracy than obtained from a single 
type of data. CAISC allows users to interactively examine clonal assignments.

Keywords:  Single-cell RNA sequencing, Copy number variation, Single nucleotide 
variation, Entropy-based weighted integration
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Background
Cancer progression involves successive waves of clonal selection within the tumor. 
Mutations that increase fitness within the local environment are likely to drive clonal 
expansion, leading to competition and coexistence of clones and tumor heterogeneity, 
both in clone composition and clinical phenotypes. In order to diagnose cancer and 
determine potential therapeutic targets, it is important to quantify this intra-tumor het-
erogeneity by identifying the subgroups of cells (or subclones) that survive as a tumor 
undergoes evolution [1]. Reconstructing phylogenies from bulk tumor samples is dif-
ficult, since they contain mixtures of mutations from many heterogeneous cells [2, 3]. 
Single-cell RNA sequencing (scRNA-seq) addresses this issue by allowing detection 
of mutations in expressed genes when they are present in individual single cells. More 
importantly, co-occurrence patterns among mutations across multiple single cells can 
help define sub-clonal populations and elucidate evolutionary dynamics [2, 4–7]. How-
ever, single cell sequencing data has high rates of amplification and sequencing errors.

Somatic DNA alterations in tumors range the genomic scales, including single nucle-
otide variations (SNVs), copy-number variations (CNVs), and aneuploidy. Presently, 
subclone identification studies mainly assess SNV. There are several limitations to 
this approach with SNV. For example, only a small portion of the SNVs of each cell is 
expected to be derived by the reads of scRNA-seq, meaning that only SNVs in a tran-
scribed region are covered [8]. The coverage at the 5’ end is very low, and most of the 
reads are located on the 3’ end in the data of Smart-seq. If a mutation is located on the 
5’ end, it is difficult to be captured. Therefore, we consider the gene body coverage to 
be poor [9, 10]. As a result SNV-based subclone detection with scRNA-seq is difficult. 
Only some SNVs in each cell are expected to be visible in the scRNA-seq read output; in 
order to be sequenced and observed, the SNV must occur in transcribed regions of the 
genome. Even if the SNV satisfies this condition, the mutated alleles are often missing 
due to biological or technical dropout. Because of the “burst” nature of gene transcrip-
tion, large fractions of genes are only expressed from one of the alleles at any given time, 
and hence an SNV residing in a gene that is expressed at the bulk tissue levels may not be 
observed in a cell due to chance, a phenomenon known as biological dropout. Addition-
ally, a mutated allele that is expressed must be successfully converted to cDNA in prep-
aration for sequencing in order to be detected, and absence of such alleles is denoted 
technical dropout. Finally, post-transcriptional modification, low sequencing depth, and 
sequencing errors also impact the sensitivity and specificity of SNV discovery [8].

There have been many models used in single-cell phylogenetic analysis that allow 
missing values of SNVs [1]. Both scSNV and scCNV play important roles in tumor 
generation and progression in cancer and contribute to tumor heterogeneity [2, 5, 
11, 12]. A model that incorporates both SNV and CNV data for inference of phyloge-
netic structures would potentially provide more accurate reconstructions of single-cell 
tumor phylogenies [8]. Previous studies have shown that joint analysis of scDNA-seq 
and scRNA-seq enables cell-resolved investigation of pathological tissue clones [13, 14]. 
Clonal definitions with only one type of marker may lead to loss of detail [1]. We illus-
trate in Additional file 1: Fig. S1C: subclone A is located at the root, and other subclones 
result from point mutations and CNVs. The two SNVs give rise to subclones B and D, 
and the two CNVs give rise to subclones C and E. If we infer the clone tree using only 
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SNV data, we generate a linear evolutionary history, without information of copy loss 
and gain (Additional file 1: Fig. S1B). Therefore, clone C cannot be distinguished from 
clone A as they have the same SNV profile (Additional file 1: Fig. S1A). Similarly, clone 
B cannot be distinguished from clone E. In this case, complete ontogeny can only be 
reconstructed with both SNV and CNV profiles.

To the best of our knowledge, SCARLET (single-cell algorithm for reconstructing loss-
supported evolution of tumors) is the only method that integrates SNV and CNV data 
from single cell DNA-seq [1]. SCARLET builds a coarse phylogenetic tree with CNV 
data alone, and SNV data are employed to refine the tree. However, SCARLET does not 
utilize a unified evolutionary model for both SNV and CNV data. Instead it provides a 
way to directly integrate SNVs with prior evolutionary CNV models, which could result 
in lower quality measurements of SNVs and CNVs. Here, we present a new algorithm 
termed as Clonal Architecture with Integration of SNV and CNV, or CAISC, which 
allows subclone detection by integration of both SNV and CNV data and generates more 
accurate and robust clustering results (Fig. 1). We derive two cell–cell distance matri-
ces using SNV and CNV data, from DENDRO [8] and infercnv [7], respectively. These 
matrices are integrated using an entropy weighted method into a final distance matrix 
that is used to cluster the cells into subclones. Using the adjusted rand index (ARI), we 
evaluated the CAISC approach against other SNV-based and CNV-based approaches. 
The CAISC package, implemented in R, is available at https://​github.​com/​lizam​athews/​
CAISC, where we also provide source code and sample datasets.

Results
Cells in clones defined by SNV tend to have similar CNV profiles

We compared CNV distances between cells in clones defined by SNVs. We found that 
the distances between cells in the same SNV-derived clones were smaller than the dis-
tances between all cells, indicating that the clones had similar CNV profiles (Fig. 2A).

Using the 4 real datasets, we found that when cells were ordered using clustering 
results from the SNV mutation data, there was a clear pattern of CNVs, indicating a co-
occurrence of SNVs and CNVs (Additional file 2 and Additional file 3, Fig. 3C).

Finally, we assessed the concordance of results from scSNVs and scCNVs. Figure 2B 
shows the tanglegrams of the results. Cells that appear in the same clusters of scSNVs 
tended to also appear in the same clusters defined by scCNVs [15]. High cophenetic 
correlation (0.80) indicated good concordance between clustering results of SNV and 
CNV (Fig. 2B). High concordance (cophenetic correlation = 0.61) was also observed in 
GSE73122, in which all cells come from the same patient (Fig. 4C).

Accuracy assessment and clone identification using simulated data
We assessed CAISC against SNV- and CNV-based clustering approaches using the sim-
ulated dataset generated from GSE45719. This dataset contained both SNVs and arti-
ficial CNVs that included chromosome gain and loss (Fig. 3C). We define the CAISC, 
SNV, and CNV approaches as methods which applied hierarchical clustering on the 
integrated distance matrix (Dcombined), SNV distance matrix (DSNV), and CNV distance 
matrix (DCNV), respectively.

https://github.com/lizamathews/CAISC
https://github.com/lizamathews/CAISC
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Fig. 1  Clonal Architecture with Integration of SNV and CNV (CAISC). Overview of the computational 
framework that integrates both SNV and CNV profiles for clonal identification from scRNA-seq data. 
scRNA-seq reads are aligned with STAR, mutations are identified with GATK, and the read counts were 
calculated to represent gene expression. DENDRO is used to calculate a distance matrix based on allele 
reads of mutations. Infercnv is used to convert gene expression level data to a CNV profile matrix and 
then to calculate a distance matrix between cells. These two distance matrices are integrated using 
an entropy weighted method. Finally, a clonal tree is generated using the integrated matrix to more 
accurately identify subclones and infer their evolutionary relationship. The interactive figure generated by 
interactiveComplexHeatmap allows for manual examination of inferred clones
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In Fig. 3A, the results of the CNV, SNV and CAISC approaches were compared to pre-
defined clone types using fan dendrograms, and a significantly higher accuracy of clone 
identification by CAISC was evident.

Based on ARI values, the CAISC approach performed better (ARI = 0.97) than the 
SNV (ARI = 0.79) and CNV (ARI = 0.74) approaches (Fig. 3B).

Fig. 2  Concordance between clustering with SNV and CNV profiles. A Distances between cells were 
calculated by their CNV profiles and grouped by SNV profiles for datasets GSE73122, P4 of GSE99095, 
MGH28-29 of GSE57872, and MGH30-31 of GSE57872. Smaller distances within cells in the same SNV 
identified clone indicate that cells with the same mutation types share similar CNV profiles. Distances among 
all cells are larger than those among cells grouped by SNV profiles, which is consistent with the hypothesis 
that there is co-occurrence between SNVs and CNVs in some clones (Additional file 1: Fig. S1). B The 
tanglegram compares the phylogenetic clustering based on SNV and CNV profiles. Cells in clones defined by 
SNV also appear in the same clones defined by CNV (MGH28-29 of GSE57872). The cophenetic correlation 
between the two clustering results is 0.80



Page 6 of 17Kannan et al. BMC Bioinformatics           (2022) 23:98 

In Fig. 3C, the red group clearly had two CNV subclones from a chromosome 1p and 
half 1q loss, and chromosomes 5 and 7 gains, while the other cluster had no distinct 
CNVs.

With these data, we also simulated the different number of CNVs of different sizes 
(from 1/16 to 9/10 of chromosomes) in the pre-defined clones, CAISC was able to 
extract meaningful clustering results, which were consistent with predefined cell 

Fig. 3  Accuracy of SNV, CNV, and CAISC clustering approaches on simulated data. A Fan dendrograms show 
simulated data with CNV, SNV and the CAISC clustering approaches, which agree with the predefined clone 
types colored with blue, purple, red, and lavender. B Adjusted Rand Index (ARI) was calculated for SNV, CNV, 
CAISC to evaluate effectiveness of clustering approaches with distinctly defined CNV and indistinct CNV. 
CNV heatmaps showing simulated data for two situations: with distinct and indistinct CNVs. These cells were 
clustered and ordered with SNV, then ordered with CNV, allowing for the identification of certain subclones. 
C When there are distinct CNV clones, with a large difference between subclones, patterns can be clearly 
identified. The red group in the SNV annotation can be further separated into two groups, each with different 
CNV. One group has chromosomal 1 loss and chromosomal 5,7 gains, while the other group has no obvious 
chromosomal alterations. D When there are indistinct CNV clones, with only slight differences between them, 
no clear patterns are apparent
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categories (average ARI ≈ 0.85). When there were distinct CNVs in pre-defined clones, 
clustering was significantly improved. The advantage of integration was not significant 
when there were no distinct CNVs across clones (Fig. 3D).

The entropy based approach can lower the weight of CNV matrix when CNV alterations are 

not distinct

As seen in Fig. 3, we demonstrated that CNV data were most useful in clone identifi-
cation when there were distinct CNV patterns in simulation. The entropy method is a 
commonly used weighting technique that measures value dispersion in decision mak-
ing: as the degree of dispersion increases, the degree of differentiation also increases, 
allowing for more information to be derived. When elements in a distance matrix devi-
ate from random distribution, the entropy is low and there is more information inside to 
be extracted, and thus a greater weight.

We simulated data both with and without distinct CNV profiles. When cells had 
clear clonal definition, the entropy of the distance matrix should be lower (Additional 
file 4: Fig. S4A), and the weight given during network integration would be higher. For 
the GSE45719 dataset, we ran simulations both with and without CNVs. As expected, 

Fig. 4  Evaluation of clustering accuracy using ARI on GSE73122 whose clone types are known. A ARI values 
show the integration performance of CAISC compared to CNV and SNV approaches. B Fan dendrograms 
showing the clustering results with SNV, CNV, and integrated approaches. C The tanglegram compares the 
phylogenetic clustering based on SNV and CNV profiles. Cells in clones defined by SNV also appear in the 
same clones defined by CNV. The cophenetic correlation between the two clustering results is 0.61
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entropy decreased when there were distinct CNV patterns in pre-defined clones (right 
bars of Additional file 4: Fig. S4B).

Integration of CNV to SNV identifies more clones from real scRNA‑seq data

We applied CAISC to analyze the scRNA-seq data of primary human glioblasto-
mas (GSE57872) and bone marrow cells (P4 of GSE99095) [5, 6, 16]. CAISC gener-
ated CNV heatmaps of expression data of P4 in GSE99095 (Fig.  5). Clustering and 
ordering these cells with SNVs showed that a purple SNV cluster (row annotation 
on the left of Fig. 5A) could be further separated into two CNV subclones (Fig. 5B, 
highlighted by the horizontal red lines). One of these subclones had chromosome 
8 gain, while the other had no obvious chromosomal alterations. Both had 1q gain 
and chromosome 7 loss. Clustering in this way allowed for examination of cells 
that had gained chromosome 8 and removed effects of SNV mutations and other 
CNVs on the transcriptome. CNV heatmaps of expression data of MGH30-31 of 
GSE57872 showed that a blue cluster originated from MGH31 (Additional file 2: Fig. 

Fig. 5  P4 of GSE99095 CNV heatmaps showing expression data generated by infercnv analysis. A These 
cells were clustered and ordered with SNV. The red lines show that there are 2 groups of CNV patterns in the 
purple group. The cells present in the purple group share the same SNV mutation profile. B The purple group 
in the SNV column can be further separated into three groups, each with different CNVs. One group has 
chromosome 8 gains, while the other group has no obvious chromosome 8 alterations. Both groups have 1q 
gain and chromosome 7 loss
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S2). This cluster clearly had two CNV subclones, one with multiple chromosome 
gains and the other with indistinct chromosome gains. Both clusters had chromo-
some gain and chromosome loss. CNV heatmaps of expression data of MGH28-29 
of GSE57872 showed that the lavender cluster comes only from MGH29, and it has 
two distinct CNV subclones (Additional file 3: Fig. S3). One had multiple chromo-
some gains, while the other had no distinct chromosome gain. Both had chromo-
some gains and chromosome losses. Thus, integrating CNV and SNV elucidated 
more clones from real scRNA-seq data that would have otherwise not been observed 
by clustering based only on SNV. The CAISC method allowed for identification of 
more subclone characteristics, as could be seen from identification of chromosome 
gains and losses as described above. One exception was that integration with CNV 
did not identify new subclones in GSE73122 data (Additional file 5: Fig. S5), which 
might indicate that no new clones had arisen from CNV (Additional file 1: Fig. S1).

Accuracy assessment using real datasets

We benchmarked CAISC with two real datasets. First, we applied CAISC to a renal 
cell carcinoma dataset (GSE73122). This dataset contained 116 cells obtained from 
three tumors from one patient [17]. The three tumor types were patient-derived 
xenograft (PDX), metastasis to the lung (Pt_mRCC), and a PDX of the lung metas-
tasis renal cell carcinoma (PDX_mRCC). Cells should share common early driver 
mutations, but the metastasis and in vitro culture should have generated new SNVs 
and CNVs. Thus, the three tumors should be clonally distinct. All three algorithms 
could distinguish cells with high accuracy (Fig.  4A, B). Based on ARI values, the 
CAISC approach performed better (ARI = 0.76), than the SNV (ARI = 0.61) and 
CNV (ARI = 0.65) approaches did (Fig. 4A, B). Furthermore, there was high consist-
ency between results for scSNVs and scCNVs (Fig. 4C).

Second, we applied CAISC to analysis of data from a study of primary human 
glioblastomas (GSE57872_28_29, GSE57872_30_31 datasets). The patients in these 
datasets share many SNVs and CNVs because there were many common driver 
mutations. We first assessed whether CAISC separated MGH28 cells from MGH29 
cells and MGH30 cells from MGH31 cells, since inter-individual similarity of SNVs 
and CNVs should far exceed intra-individual similarities. All three approaches could 
separate cells with high accuracy (Additional file 6: Fig. S6A). For GSE57872_28_29, 
CAISC again performed better (ARI = 0.64), than the SNV (ARI = 0.51) and CNV 
(ARI = 0.62) approaches did (Additional file 6: Fig. S6A). For MGH30 and MGH31 of 
GSE57872, we found that integration did not increase accuracy, but CAISC was able 
to identify more subclones (Additional file 2 and Additional file 6: Fig. S6B).

In summary, SNV-based clustering approaches were not able to identify certain 
clones that occurred as a result of distinct CNV (Additional file  1: Fig. S1), thus 
leading to biased results. The above evaluations of CAISC compared to the SNV and 
CNV methods showed that CAISC (the integrated approach) could identify more 
subclones, increased the accuracy of subclone identification, and revealed details 
about clones in real data.
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Integration of SNV and CNV allows more accurate examination of expression changes 

between subclones

In the comparison of two groups, matching cofactors is required to improve study effi-
ciency [18]. Detailed identification of subclones allows for removal of co-factor effects. 
In our previous study, P4 was excluded from our analysis due to its complicated pattern 
of mutation variants [6]. When focusing on the purple cluster defined by SNV (Fig. 5B), 
effects of single nucleotide mutations and other CNVs would be removed because all 
cells in the purple cluster had the same mutation profile, and monosomy 7 and 1q dupli-
cation. Differentially expressed (DE) genes were generated by comparing trisomy 8 cells 
and non-trisomy 8 cells in the purple cluster. DE genes of trisomy 8 cells were associ-
ated with the TNF-α related pathways, with annotation of GO:0071706 (tumor necro-
sis factor superfamily cytokine production) [19]. TNF-α plays important roles in the 
pathophysiology of MDS by inhibiting normal hematopoiesis and inducing programmed 
cell death of normal CD34 + cells [20]. Patients with MDS involution and trisomy 8 can 
be successfully treated with adalimumab, a TNF blocker. DE genes are also implicated 
in apoptosis, with annotation of GO:0007254 (JNK cascade) and GO:0032872 (regula-
tion of stress-activated MAPK cascade). Our analysis is preliminary due to the limited 
number of cells from a single patient, but it implies the potential of CAISC to examine 
expression alterations despite extensive genetic complexity in tumor cells.

Interactive examination of identified clones with the Shiny app

In addition to generating heatmap figures, CAISC allows us to use the Shiny web app to 
visualize results and interactively examine identified clones, using a third-party interac-
tive heatmap package (https://​github.​com/​joker​goo/​Inter​activ​eComp​lexHe​atmap). This 
package allows for data examination and visualization, through zooming and focusing 
on selected clones and chromosome regions (Additional file 7: Fig. S7). The left panel 
shows an original heatmap of all cells and all chromosomes. Parts of cells and chromo-
somal regions can be shown in the right panel when the rectangular selection is indi-
cated. Though this is one way to visualize results, users can choose to use other methods 
at their own discretion.

Discussion
Incorporating CNVs into clone definition and reconstruction of tumor phylogeny should 
be helpful in elucidating tumor progression, as CNVs are frequent with tumor hyper-
mutability. Further integration of both types of data is necessary, considering their 
co-occurrence in cellular clones and the high background noise inherent in single cell 
methods to detect CNV and SNV [1, 21, 22]. Our method is not applicable to the data 
from the currently popular platform of 10 × Genomics, in which only the 5’ or 3’ end of 
the mRNA is sequenced. Measuring only small regions of the mRNA leads to an insuf-
ficient number of SNVs for individual cells, which would not be ideal for BAM files by 
Cellranger.

SNV based clustering approaches are unable to identify clones that occur as a result 
of CNV, thus leading to incomplete results. CAISC uses an integrated entropy weighted 
strategy to combine SNV and CNV results from DENDRO and infercnv respectively, for 
the purpose of obtaining more accurate and robust clustering results. There is no perfect 

https://github.com/jokergoo/InteractiveComplexHeatmap
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algorithm to call SNV [23]. In this study, we used the GATK best practices pipeline to 
call the SNV [24], which is computationally complex and usually relies on resources 
from a high performance computing (HPC) cluster. We have included a script in our 
GitHub repository for running GATK on a HPC cluster. It takes about 5 h to finish call-
ing SNVs in an HPC cluster with about 50 CPUs and 50 GB RAM.

The Pearson correlation coefficient of CNV profiles is used to calculate the distance 
between cells. However, we found that Pearson correlation was not sensitive when there 
were only small CNVs in clones. Furthermore CAISC did not always perform better 
than the approach with SNVs and CNVs only, meaning there is room to improve our 
algorithm, Pearson correlation worked well when there were large CNVs, such as chro-
mosomal or sub-chromosomal aneuploidy. Other indices, such as mutual information 
and partial correlation, as well as the filtering strategies to only keep informative CNVs, 
will be examined in the future. In our current version of CAISC, we used hierarchical 
clustering, which involved many arbitrary decisions, such as single linkage, complete 
linkage, centroid linkage, or full linkage clustering. We will examine other advanced 
clustering approaches, such as density-based spatial clustering of applications with noise 
(DBSCAN) algorithms, which can detect arbitrarily-shaped clusters [25]. Our software 
focuses on scRNA-seq data only, but our methods can be applied to the scDNA-seq and 
scRNA-seq data of the same cells [26]. Our current analysis was based on the SNVs in 
transcriptome regions only, and we expect to have better performance when there is a 
dataset which separates and sequences genomic DNA and full-length mRNA from the 
same single cells. This is because high number of SNVs in non-transcriptional regions 
provide more information, and CNVs from DNA and mRNA can be validated against 
each other [27, 28].

Conclusions
As the technology of variant calls develops, it becomes more important to model differ-
ent types of available signals mathematically in order to fully characterize tumor evo-
lution. In the present study, we included SNVs, which are point mutations, and CNVs, 
which are larger structural variations. There are multiple levels of genetic heterogene-
ity associated with cancer, including single nucleotide polymorphisms, microsatellite 
shifts, copy number variations, and karyotypic variations (structural aberrations and 
aneuploidy). Thus, it is necessary to integrate multiple levels of genetic variations when 
studying tumor heterogeneity. Our entropy-based framework is suitable for integration 
of multiple types of information. Evaluations of CAISC compared to other methods 
showed that the integrated approach could increase accuracy of subclone identification, 
characterize frequency and mutation profiles of clones, and infer phylogenetic relation-
ships among clones from real data.

Method
Cell–cell distance matrix construction using SNV and CNV profiles by DENDRO and infercnv

DENDRO (DNA based EvolutioNary tree preDiction by scRNA-seq technOlogy) is a 
statistical and computational framework that creates a phylogenetic tree of tumor sub-
clones based on genetic divergence, which is calculated from cell–cell DNA mutations 
detected in scRNA-seq [8]. The framework factors in technical dropout, expression 
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stochasticity, and sequencing errors. First, raw scRNA-seq data was aligned with the 
STAR 2-pass method which is commonly used to call CNV and SNV from scRNA-seq 
data [29]. Next, the resulting BAM files entered a pipeline of processing steps, starting 
from sorting, to joining read groups, removing duplicated reads, removing overhangs 
into intronic regions, realigning, and finally recalibration. The GATK tool, Haplotype 
Caller, was used to call variants in these processed BAM files to generate VCF files, 
which were subsequently filtered so that only mutations that occurred in a minimal set 
number of cells were retained [23, 24]. Subsequently, alternative allele read counts, total 
allele read counts, and a mutation profile matrix for each cell and loci were extracted 
from the filtered VCF files. These data were filtered to remove low-expressed and high-
dropout-rate cells and to calculate cell–cell genetic divergence based on total reads and 
mutation frequencies. The results of these calculations were used to create a cell–cell 
distance matrix of mutations [8].

Infercnv is a computational tool used to analyze tumor scRNA-seq data: it identifies 
somatic large-scale chromosomal copy number variations (gains or deletions of chro-
mosomes) [7, 16]. Infercnv analyzes the expression intensity of genes across the tumor 
genome and compares them to that of a set of “normal” reference cells. In order to gen-
erate an infercnv object, three inputs are required. First, a raw counts matrix containing 
assigned read counts must be generated, in which rows are genes, and columns are cells. 
Second, a sample annotation file was used to define different cell categories and direct 
how cells should be grouped. Third, a gene ordering file provided a chromosomal loca-
tion for each gene. Once the infercnv object was created, the expression data was used 
to compute correlation values. Correlations allowed the computation of distance values, 
from which a normalized cell–cell distance matrix of mutations could be generated. The 
distance matrix was used for hierarchical clustering to define CNV clones and examine 
intratumor heterogeneity [4].

The ability of a CNV to differentiate between clone clusters depends on its character-
istics. In this study, “distinct” CNV was defined as a CNV which had (1) highly heteroge-
neous profiles across different clones and showed homology in the same clone; and (2) 
a strong signal, which was high enough to be detected from the noisy scRNA-seq data. 
A CNV with a weak signal or a subtle difference between clones is considered “an indis-
tinct CNV”.

Using DENDRO and infercnv, we generated two cell–cell distance matrices for inte-
grative analysis:

Integration of SNV and CNV matrices with an entropy weighted method

The computational framework of CAISC is shown in Fig. 1, in which we used an entropy 
weighted method for integration.

The matrices derived from DENDRO and infercnv can be regarded as a weighted net-
work, in which each cell is a node, and the distance between nodes are edges. Entropy 
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measures the structural complexity of a network, thus its concept can be utilized to inte-
grate multiple weighted graphs or networks, or in this case, to integrate the cell–cell dis-
tance matrices generated by the DENDRO and infercnv analyses. For each edge in the 
intersection of the edge sets of the two matrices in Eq. 1, a new edge weight is calculated 
based on the edge weights of the two networks [30–32] to generate an integrated matrix.

For a given graph G with vertex vi , let di be the degree of vi . For an edge vivj , we defined:

where w(vivj) is the weight of the edge vivj and w(vivj) > 0 . In our case, the weight was 
the normalized distance Di,j between cells i and j. The node entropy H for a network k 
was defined by pij in Eq. 2:

We then calculated an α value for each network k of two networks with Eqs.  4 and 
5. The integration parameters αk are inferred by normalizing Ck . A smaller value of αk 
should be given to the network with larger entropy, as a network with large entropy is 
high in disorderly structural diversity. A weight function which decreases with the 
increase of H is defined as follows, same as in [33]:

where θ > 0 is an adjustment parameter, which can be properly selected by network 
property [33]. We assigned θ = 2 because we were integrating two networks. Given our 
two distance matrices, we calculated two C values: CCNV  and CSNV  with Eq. 4, gener-
ated from the infercnv and DENDRO data, respectively. Our function was specifically 
designed to restrict the integration parameter Ck in the area (0, 1), with a sum of 1. We 
designed the integration parameters αk by normalizing Ck as follows:

Using the alpha values in Eq. 5, we could compute a new integrated matrix Dcombined 
from matrices DCNV  and DSNV  in Eq. 1:

The elbow point and gap statistic for estimating the optimal number of clusters

One challenge in cluster analysis is estimating the optimal number of clusters. We 
included two approaches in the CAISC package for users to select: elbow point and gap 
statistic [34].

A common method used to determine this estimate is the elbow point, in which the 
error measure Wk (within cluster dispersion) is plotted against the number of clusters.
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Let Dr represent the sum of all intra-cluster distances between points ( xi, xj ) in a given 
cluster Cr containing nr points, calculated using the squared Euclidean distance.
Wk is calculated by summing the normalized Dr in order to determine the pooled 

within-cluster sum of squares around the cluster means.

While initially, the error measure decreases monotonically as the number of clusters k 
increases, eventually at some k onwards, the decrease flattens. This point is known as the 
“elbow” and can be used to estimate the optimal number of clusters. However, the elbow 
point cannot always be definitively identified.

Alternatively, the gap statistic method can be used to formalize the elbow heuristic 
[34]. The graph of log(Wk) can be standardized by comparison with its expectation 
under an appropriate null reference distribution of the data, and the optimal number of 
clusters can be estimated as the value of k for which log(Wk) falls the farthest below this 
reference curve.

Construction of simulated data

We generated simulation data by adopting an scRNA-seq dataset of GSE45719 as the 
reference [35]. The clonal definition of each cell within this dataset was well defined. 
For every simulated locus, we sampled an SNP from this reference, same as in a study 
from DENDRO [8]. We randomly assigned one allele of the sampled SNP as the mutated 
allele for cells with mutations. When cells lacked mutation values, we set the mutated 
allele counts as 0 and used the sum of the two alleles from the reference as the total 
read counts. To simulate random sequencing errors, binomial noise was also added to 
read counts [8]. Simultaneously, we downloaded the expression data and created artifi-
cial CNVs in different pre-defined clones. The simulations included both chromosome 
or sub-chromosome gain (with 50% or 100% increase of expression) and chromosome or 
sub-chromosome loss (with 50% decrease of expression). The script for one simulation is 
available at https://​github.​com/​lizam​athews/​CAISC.

Real datasets for assessment

The scRNA-seq datasets of three studies: GSE99095, GSE73122, and GSE57872 from 
GEO (https://​www.​ncbi.​nlm.​nih.​gov/​geo/) were used to examine the performance of 
CAISC. The first dataset (GSE99095) was obtained from human bone marrow cells, 391 
control cells from 4 healthy donors and 588 cells from 5 patients with bone marrow fail-
ure and cytogenetic abnormalities [6]. Previously, we were able to identify CNVs within 
this dataset, but did not identify SNVs due to low sequencing read numbers and lim-
ited sequencing coverage [6]. A renal cell carcinoma dataset of GSE73122 included three 
types of known clones to benchmark accuracy [17]. We also applied our approach on 
primary human glioblastoma data (GSE57872) to examine clones and genetic heteroge-
neity. We combined MGH28 and MGH29, and MGH30 and MGH31 for data analysis to 
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examine whether CAISC could separate cells from different patients [4, 36]. (The same 
assessment strategy (i.e. accuracy of separating cells from patients) has been used by 
others [8].)

Evaluation of CAISC performances

We compared the performance of CAISC to SNV-only and CNV-only clustering 
approaches using adjusted Rand Index (ARI). This index evaluates the capability of an 
algorithm to separate elements belonging to different classes. It analyzes each pair of ele-
ments and not only evaluates the separation of elements in different groups, but also the 
relation of elements in the same group. ARI is a more sensitive performance index than 
the Rand Index, can accept constant values like 0, and assumes the partitions are chosen 
at random [1, 8].

Partition V

U # of Pairs in same group # of Pairs 
in different 
groups

# of Pairs in same group a B

# of Pairs in different groups c D

The expected value is 0 for random partitioning, and the maximum value is 1 for per-
fect agreement between the two partitions. This index was used to evaluate how well our 
combined algorithm clustered cells compared to SNV and CNV clustering approaches.

Availability and requirements
Project name: CAISC home page: https://​github.​com/​lizam​athews/​CAISC. Operating 
system(s): Cross-platform. Programming language: Shell, R License: GPL-3.0.

Abbreviations
CNV: Copy number variation; SNV: Single nucleotide variation; scRNA-seq: Single-cell RNA sequencing; ARI: Adjusted 
rand index; CAISC: Clonal architecture with integration of SNV and CNV.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​022-​04625-x.

Additional file 1: Figure S1. Integrating SNV and CNV data identifies subclones that would have otherwise been 
missed with only SNV data. A) SNV and CNV subclone matrices show mutations in different samples and subclones. 
Rows represent samples. Columns represent subclones. B) Phylogeny tree generated with only SNV data C) Phylog-
eny tree generated with both SNV and CNV data. When analyzing data with SNV only, clones A and C and clones B 
and E were not identified as distinct subclones.

Additional file 2: Figure S2. MGH 30-31 of GSE57872 CNV heatmaps calculated with Infercnv analysis. A) The cells 
were clustered and ordered with SNV. (B) The blue group in SNV can be further separated into two groups with 
different CNVs. Though there are many of the same CNV alterations (6 gain, 2p gain), one group has chromosome 10 
and 14 loss. The other group has no obvious alterations on these two chromosomes.
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Additional file 3: Figure S3. MGH 28-29 of GSE57872 CNV heatmaps calculated with infercnv analysis. A) The cells 
were clustered and ordered with SNV. (B) The lavender group in SNV can be further separated into two groups with 
different CNVs. One group has chromosome 10 and 15 losses. Another group has no obvious alterations on these 
two chromosomes.

Additional file 4: Figure S4. Entropy of distance matrices with and without subclones. A) Each node is a cell, and 
the edge widths represent the proximity (reciprocal of distances) between cells. Compared to cells that belong to 
different clones, cells that are in the same clones have a shorter distance between them. The entropy of a distance 
matrix with subclones will be lower, and therefore a higher weight will be given for integration. B) Entropy of simu-
lated distance matrix calculated by the gene expression with subclones (6–11) and without subclones (1–5).

Additional file 5: Figure S5. GSE73122 CNV heatmaps calculated with infercnv analysis. The cells were clustered and 
ordered with SNV. No new subclones were found after integration with CNVs.

Additional file 6: Figure S6. Evaluation of MGH28-29 of GSE57872 and MGH30-31 of GSE57872 datasets with SNV, 
CNV, and CAISC. A) Fan dendrograms show MGH28-29 of GSE57872 data with SNV, CNV and the CAISC cluster-
ing approaches. B) Fan dendrograms show MGH30-31 of GSE57872 data with SNV, CNV and the CAISC clustering 
approaches.

Additional file 7: Figure S7. The screen shot of interactively examination of the identified clones with Shiny app.
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