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Abstract: Non-alcoholic fatty liver disease (NAFLD) is the most prevalent form of chronic liver disease
worldwide, but a reliable non-invasive method to quantify liver steatosis in primary healthcare is not
available. Circulating microRNAs have been proposed as biomarkers of severe/advanced NAFLD
(steatohepatitis and fibrosis). However, the use of circulating miRNAs to quantitatively assess the % of
liver fat in suspected NAFLD patients has not been investigated. We performed global miRNA sequencing
in two sets of samples: human livers from organ donors (n = 20), and human sera from biopsy-proven
NAFLD patients (n = 23), both with a wide range of steatosis quantified in their liver biopsies. Partial least
squares (PLS) regression combined with recursive feature elimination (RFE) was used to select miRNAs
associated with steatosis. Moreover, regression models with only 2 or 3 miRNAs, with high biological
relevance, were built. Comprehensive microRNA sequencing of liver and serum samples resulted in
two sets of abundantly expressed miRNAs (418 in liver and 351 in serum). Pearson correlation analyses
indicated that 18% of miRNAs in liver and 14.5% in serum were significantly associated with the amount
of liver fat. PLS-RFE models demonstrated that 50 was the number of miRNAs providing the lowest error
in both liver and serum models predicting steatosis. Comparison of the two miRNA subsets showed
19 coincident miRNAs that were ranked according to biological significance (guide/passenger strand,
relative abundance in liver and serum, number of predicted lipid metabolism target genes, correlation
significance, etc.). Among them, miR-10a-5p, miR-98-5p, miR-19a-3p, miR-30e-5p, miR-32-5p and miR-
145-5p showed the highest biological relevance. PLS regression models with serum levels of 2–3 of these
miRNAs predicted the % of liver fat with errors <5%.

Keywords: non-alcoholic fatty liver disease; steatosis quantification; circulating miRNAs;
non-invasive; NAFLD patient screening; NAFLD patient stratification

1. Introduction

Non-alcoholic fatty liver disease (NAFLD), with a global prevalence of ~25% [1,2], is
one of the most important causes of liver disease [3] and will likely emerge as the leading
cause of end-stage liver disease and transplantation soon. Its growing incidence in western
countries is putting increasing pressure on healthcare systems.
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The pathogenesis of NAFLD is considered multifactorial, and multiple mechanisms
may be triggered during the course of the disease in each patient [4–6]. NAFLD involves,
first, the accumulation of triglycerides (TG) in the liver, which may trigger a liver inflamma-
tory response and damage. The histologic features range from isolated hepatic steatosis foci
(non-alcoholic fatty liver; NAFL) to lobular inflammation and hepatocyte ballooning, which
are hallmarks of non-alcoholic steatohepatitis (NASH). NASH very frequently precedes
progressive fibrosis as a hallway to cirrhosis, liver-related and cardiovascular diseases, and
hepatocellular carcinoma [4–6].

The current gold standard in NAFLD diagnosis and prognosis is the liver biopsy,
where steatosis, lobular inflammation, ballooning, and fibrosis are semi-quantitatively
scored. However, this is an invasive and not risk-free procedure, with frequent sampling
errors (i.e., NAFLD does not affect the liver uniformly) and complications (pain, serious
bleeding, injury to other organs, and, in rare cases, fatal outcomes). Moreover, histology
interpretation is strongly influenced by pathologist training and perception [7]. However,
while a number of non- or minimally invasive techniques (i.e., medical imaging) can rule
out advanced fibrosis or cirrhosis, no completely reliable procedure to identify and score
steatosis in early NAFLD patients is available [8].

Ultrasound has been used as a screening tool for fatty liver since it is non-invasive,
inexpensive, and widely accessible in the clinical setting [9,10]. Nevertheless, the sensitivity
and specificity of ultrasound imaging in accurately detecting the steatosis grade is contro-
versial. Previous studies have shown wide ranges of sensitivity of 60–94% and specificity
of 66–95% in detecting fatty liver. Other studies demonstrated that ultrasound is unreliable
in detecting low-grade alterations in hepatic fat content. Moreover, ultrasound cannot
reliably distinguish between fibrosis and steatosis. Finally, ultrasound does not provide
reproducible quantitative information, and it can be influenced by the subjectivity of the
examiner [9,10].

Other more reliable, non-invasive, imaging methods have other disadvantages that limit
their use as a widely applicable screening tool for this prevalent disease. Computed tomog-
raphy offers a semi-quantitative method for hepatic steatosis assessment, but it is distorted
by an iron overload and involves exposure to radiation, which limits its use in longitudinal
studies and in children. Imaging via magnetic resonance offers high accuracy for liver fat
quantification without radiation exposure, but these scanners, in contrast to ultrasonographs,
are costly, resource-demanding and frequently not applicable for certain patients (young
children, claustrophobia, implanted electronic devices, metal implants, etc.) [9].

Consequently, there is an unmet need for reliable, accurate, simple, cost-affordable,
quantitative, and non- or minimally invasive predictive NAFLD biomarkers in the clinical
setting. Some biomolecules could meet this demand. MicroRNAs (miRNAs) are small,
endogenous, noncoding RNAs involved in the control of many cellular pathways through
the posttranscriptional regulation of target mRNAs, which are frequently released out
of the cell into circulation. Liver miRNAs are definitively involved in the pathogenesis
of NAFLD/NASH at various stages of the disease [11]. Consequently, several studies
aimed at identifying circulating biomarkers for NAFLD have focused on miRNAs. Sur-
prisingly, the miRNAs found in these independent studies show a very limited overlap,
and only the liver specific miR-122 was unanimously claimed as a potential circulating
NAFLD/NASH biomarker. Such a lack of agreement is likely to come from the bias in
miRNA pre-selection, the reduced number of miRNAs examined, different technical ap-
proaches to quantify them, small study-size populations, and no biopsy-proven NAFLD
diagnosis [12]. More recently, studies using large cohorts of patients and comprehensive
miRNA profiling have overcome some of the previous shortcomings [13]. Nevertheless,
relevant remaining questions are whether the serum miRNAs claimed as biomarkers (solely
based on their biostatistical significance) do have a significant expression in the liver and
show a quantitatively strong association with the steatosis grade, which is the early hall-
mark of NAFLD. It also needs to be determined whether the liver contributes significantly
to the serum concentration of these postulated miRNAs and whether they have a potential
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implication in lipid metabolism and in the pathogenesis of NAFLD. Thus, it is conceivable
that for an miRNA to be a reliable biomarker of hepatosteatosis, it should be liver-enriched,
regulate lipid metabolism genes and correlate with the level of intrahepatic TGs. However,
to our knowledge, the many studies investigating miRNAs as biomarkers of NAFLD have
generally not addressed these logical premises.

Hepatosteatosis (lipid droplets in more than 5% of hepatocytes) is considered the
primary event in the onset of NAFLD and is preceded by deregulated expression of key
genes and proteins. Therefore, hepatosteatosis could also be associated with changes in
miRNAs that regulate the expression of genes involved in lipid metabolism that, if released
properly into the blood, could become early quantitative circulating NAFLD biomarkers.

Hence, our objective was, first, to comprehensively analyze the miRNAs expressed in
steatotic human livers and examine their correlation with the concentration of liver TGs;
and second, to analyze all human serum miRNAs present in NAFLD patients histologically
diagnosed with different steatosis grades and examine their correlation with the % of liver
fat in the stained liver biopsies—all of this to identify common liver and serum deregulated
miRNAs in steatotic patients, score their relevance, and develop a serum-based model with
the most relevant miRNAs able to predict the % of liver fat in patients with early NAFLD.

2. Results
2.1. Human Liver and Serum MicroRNA Sequencing and Building of Steatosis Predictive Models

Comprehensive microRNA sequencing of 20 liver samples from cadaveric organ
donors resulted in a list of 418 miRNAs detected in at least 18 samples (90%). From these
418 miRNAs, 89 (18%) showed a significant Pearson correlation with the concentration of
liver TGs. Principal component analysis (PCA) showed an association between the scores
of the first principal component (PC), explaining 31.4% of the variance, and the TG content
(Figure 1A).
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Figure 1. PCA of liver and serum miRNA profiles. PCA scores calculated from the analysis of hu-
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Figure 1. PCA of liver and serum miRNA profiles. PCA scores calculated from the analysis of
human liver tissue (A) and serum (B) miRNA profiles. Color scales in the score plots indicate the
reference liver TG concentration (µg TG/mg protein) (A) or the % of fat quantified in hematoxylin-
eosin stained liver biopsies (B).

A PLS model was built, providing a statistically significant RMSECV = 421 (permutation
test p-value = 0.01). The recursive feature elimination (RFE) algorithm was employed to
find the subset miRNA providing the lowest RMSECV in predicting the %TG. From results
depicted in Figure 2A, a subset of 50 miRNAs was selected, providing an RMSECV = 240
(57% of the error obtained using the whole miRNA set).
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Figure 2. PLS regression of liver and serum miRNA profiles. PLS predicted TG concentrations
(µg TG/mg protein) ((A), left) or % fat ((B), left) by LOOCV, and evolution of the RMSECV as a
function of the number of retained features included in the PLS models during the recursive feature
elimination analysis for model optimization in liver tissue ((A), right) or serum ((B), right) samples.

The same strategy was followed for the analysis of serum miRNA profiles. Whole
miRNome sequencing of 23 serum samples from NAFLD patients resulted in a list of 351
miRNAs that were detected in at least 19 serum samples (82.5%). From these 351 miRNAs, 51
(14.5%) showed a significant Pearson correlation with the % of fat in the paired liver biopsies
of these patients. PCA showed an association between the scores of the first PC, explaining
22.0% of the variance, and the % of fat (Figure 1B). A PLS model was built using the complete
set of retained miRNAs, providing a statistically significant RMSECV = 6 (permutation test
p-value = 0.03). Results by RFE enabled the identification of a subset of 50 miRNAs, providing
an RMSECV = 3 (50% of the error initially obtained using the whole miRNA set) (Figure 2B).
The comparison of the two subsets of miRNAs selected from the liver and serum datasets
showed that 19 miRNAs (listed in Table 1) were coincident.

Table 1. Pearson correlation coefficients (R) and biological significance of 19 selected miRNAs.

miRNA Guide Passenger
(1/0)

Liver
R

(p-Value)

Serum
R

(p-Value)

Lipid Metab.
Target Genes L/S

Ratio *
Penalty
ScoremirPath

microTcds
mirDIP

Target Scan

miR-10a-5p 1 0.61 (0.003) −0.65 (0.0007) 18 20 99 0

miR-98-5p 1 −0.49 (0.02) 0.74 (0.0001) 29 39 48 0

miR-19a-3p 1 −0.56 (0.008) 0.61 (0.001) 36 39 63 0

miR-30e-5p 1 −0.61 (0.003) 0.44 (0.03) 40 31 12 0

miR-32-5p 1 −0.45 (0.03) 0.51 (0.01) 42 36 14 0

miR-145-5p 1 0.62 (0.002) −0.54 (0.007) 8 23 104 −1

let-7d-5p 1 0.64 (0.002) 0.49 (0.02) 15 43 2 −1

miR-181c-5p 1 0.70 (0.0003) −0.47 (0.02) 12 41 6 −1

miR-23a-3p 1 0.70 (0.0004) −0.47 (0.02) 36 34 6 −1

let-7b-5p 1 0.61 (0.003) 0.43 (0.04) 29 41 4 −1

miR-148a-3p 1 −0.59 (0.004) 0.23 (0.3) 31 51 331 −1

miR-191-5p 1 0.47 (0.03) −0.49 (0.01) 0 2 3 −2

miR-769-5p 1 0.69 (0.0005) −0.47 (0.02) 3 0 6 −2

mir-140-3p 1 0.68 (0.0006) −0.41 (0.05) 19 0 5 −2

mir-660-5p 1 −0.58 (0.005) −0.40 (0.06) 8 0 21 −2

miR-335-5p 1 −0.29 (0.2) 0.28 (0.2) 9 22 11 −3

mir-30a-3p 0 0.56 (0.007) 0.58 (0.003) 8 0 189 −3

miR-136-3p 0 −0.62 (0.002) 0.42 (0.04) 3 0 62 −3

miR-17-3p 0 −0.51 (0.02) −0.17 (0.4) 17 0 11 −5

Note: *: Ratio of mean values in liver and serum samples.
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2.2. Biological Significance of the 19 miRNAs Identified Both in Liver and Serum That Show
Correlation with Liver Steatosis

First, most of the selected miRNAs matched the guide strand of their miRNA duplex
(Table 1). The guide strand is retained in Ago proteins and stably forms the RISC complex.
The other strand, known as the passenger strand (or miRNA *), is discarded and usually
degraded. Nevertheless, in some cases, both arms of the duplex give rise to functional
mature miRNAs that are loaded into Ago proteins. As our goal was to identify circulating
miRNA biomarkers, the more abundant guided strands were preferred. Secondly, we
assessed the trend and strength of the association of each miRNA with liver TGs and % of
fat. We unexpectedly found that for most of the selected miRNAs (80%), the positive or
negative association with steatosis in the liver usually translated into an association with
the opposite trend in serum (Table 1, Figure 3). Thus, most miRNA that increased with
TG levels in the liver, steadily decreased in serum with the % of liver fat, and vice versa.
Results suggest that, for most miRNAs, hepatosteatosis influences the dynamics of miRNA
release rather than miRNA biogenesis.
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It was also important to consider the absolute value and significance of the Pear-
son correlation coefficient. Some serum miRNAs selected by the PLS-RFE model (i.e.,
148a-3p, 660-5p, 335-5p and 17-3p) did not show a significant correlation (Table 1), and this
could limit their convenience as individual predictive circulating biomarkers. To check the
biological relevance of the selected miRNAs, we used the DIANA-microT-CDS [14] and
the mirDIP algorithms [15] against the collection of lipid metabolism genes, as specified
by REACTOME Id: R-HSA-556833, containing 749 proteins from 730 genes. Many of the
selected miRNAs were predicted to regulate numerous lipid metabolism genes, but some
of them (e.g., 191-5p, 769-5p, 660-5p, 30a-3p, and 136-3p) had a very limited impact on
these genes (Table 1). Finally, we assessed the abundance of these miRNAs in the liver. It is
conceivable that a circulating miRNA biomarker of hepatosteatosis will be significantly
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expressed in and released from the liver. Moreover, it is likely that liver-specific miRNAs
will be diluted in the blood, resulting in high liver level/serum level ratios. The more tis-
sues contributing to the serum concentration of a given miRNA, the lower the liver/serum
ratio will be. Liver-enriched miRNAs 122-5p and miR-192-5p exhibit liver/serum ratios
between 300 and 3000. We observed low liver/serum ratios with several of the selected
miRNAs, such as let-7d-5p, let-7b-5p, 191-5p or 140-3p (Table 1).

2.3. PLS Model Based on Only 2-3 Serum miRNAs to Predict % of Fat in NAFLD Patients

A series of PLS models including two or three miRNAs from the subset of 19 common
miRNAs (quantified in serum samples) were investigated by exhaustive feature selection.
The performance for the accurate prediction of liver fat % was again evaluated. The combi-
nations of 2–3 miRNAs with higher biological significance and more accurate prediction of
fat % (lower RMSECV) were finally selected (Table 2, Figure 4). Therefore, according to
these models, it would be possible to predict the % of fat in the liver of NAFLD patients by
quantifying 2–3 miRNAs in the serum with an error of around 4–5%. This could become
a very useful tool to screen early NAFLD in the general population and stratify patients
according to their liver fat %.

Table 2. Best serum miRNA combinations predicting fat % with an error <5% of fat. Values in
parentheses correspond to the coefficients (autoscaled intensities, C1, C2, C3) in the corresponding
PLS regression vector formula (fat% = miRNA1 × C1 + miRNA2 × C2 + miRNA3 × C3).

RMSECV miRNA 1 miRNA 2 miRNA 3

4.4 miR-98-5p
(2.55)

miR-19a-3p
(2.25)

miR-145-5p
(−2.00)

4.4 miR-98-5p
(2.81)

miR-32-5p
(2.05)

miR-145-5p
(−2.20)

4.5 miR-30e-5p
(1.73)

miR-98-5p
(3.14)

miR-145-5p
(−2.46)

4.5 miR-98-5p
(3.75)

miR-145-5p
(-2.93)

4.6 miR-98-5p
(3.75)

miR-32-5p
(2.73)

4.7 miR-98-5p
(3.13)

miR-19a-3p
(2.76)
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3. Discussion

A group of experts has recently proposed a change in nomenclature from non-alcoholic
fatty liver disease (NAFLD) to metabolically associated fatty liver disease (MAFLD). The
new term better reflects the pathophysiology of NAFLD as a metabolically driven dis-
ease, shifting from “exclusion” criteria to “positive” diagnosis criteria. One important
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additional difference is that NAFLD diagnosis is based primarily on histological criteria,
being steatosis-graded by anatomical pathologists. However, for MAFLD, steatosis may
be diagnosed non-invasively with either imaging techniques or biomarkers [16]. In this
regard, ultrasonography, contrary to other imaging techniques, is widely available and
could be the first-line diagnostic tool for assessing suspected hepatic steatosis or a screening
tool for asymptomatic NAFLD [17]. However, while ultrasonography could be reliable
at detecting moderate steatosis, its sensitivity is thought to be poor when <20–30% of
hepatocytes are steatotic [17]. For instance, in a comparative study of different imaging
techniques, ultrasonography showed the lowest sensitivity (65%) and specificity (77%) in
detecting ≥5% histologically defined hepatic steatosis [18]. In addition, ultrasonography
usually reports steatosis on a semiquantitative scale (normal, mild, moderate, and severe).
Thus, the complementation of widely available imaging techniques along with circulating
biomarkers could increase accuracy in steatosis diagnosis, and with a quantitative score.

Several classic biomarkers are included in algorithms intended to score steatosis. How-
ever, most of these biomarkers are nonspecific enzymes unrelated to liver TG accumulation.
The hepatic steatosis index, NAFLD liver fat score, and fatty liver index include typical
liver enzymes such as hepatic transaminases or γGT. However, it is well known that normal
enzyme levels can be found in NAFLD patients representing the entire spectrum of disease
severity, from simple steatosis to advanced NASH [19].

The search for novel useful biomarkers for early NAFLD that could routinely and
economically be applied to patients to diagnose, screen, and/or monitor the extent and
progress of NAFLD led us to examine in detail biomolecules that originated in the liver,
are present in patient’s sera, and could account for the % of fat in the liver. By using two
separate cohorts, we identified, from the large number of miRNAs present in liver tissue
and sera of individuals with a variable grade of steatosis, those having a stronger association
with the % of liver fat and mechanistically involved in lipid metabolism regulation.

A key feature making serum miRNAs excellent potential biomarkers is their stability.
They are resistant to different external insults because they do not circulate as free RNA;
instead, they are encapsulated in membranous vesicles (micro-vesicles, exosomes, apoptotic
bodies), complexed to RNA-binding proteins (e.g., Ago2) or associated with lipoproteins,
which protect them from endogenous RNases. Another aspect making miRNA molecules
attractive biomarkers is that the RT-qPCR technique used for their detection is extremely
sensitive and cost-effective [20].

Several previous studies have also investigated miRNA as biomarkers for NAFLD. In
a previous study, we attempted to validate many of these miRNAs postulated in previous
studies, but the rate of success was very low. Our results suggested that measurement de-
sign, technical and methodological differences, the pre-selection of miRNA to be measured,
and the reduced number of miRNAs examined likely limited reproducibility [12]. In the
present study, a comprehensive miRNAseq encompassing all of the expressed miRNAs
in serum and liver tissue was performed. Another important bias is that in some studies,
NAFLD diagnosis is not biopsy-proven, thus opening the possibility that false positive and
negative patients could be inadvertently included. Our study is the first including not only
biopsy-proven patients but also patients with an accurate quantification of steatosis either
by biochemical methods (µg TG/mg liver protein) or by image quantifications (based on
the % of the area occupied by lipid droplets in the hematoxylin-eosin stained liver biopsy).
As an important contribution to minimize subjective biasing in the score of steatosis, we
had high-quality and sufficiently large biopsies analyzed by the same pathologist in a blind
manner; that is, she was not aware of the clinical features and diagnosis of the patients at
the time of examination. On top of that, steatosis was estimated not only visually but also
by computer analysis of images taken from various fields of hematoxylin-eosin stained
tissue sections. This image quantification was based on previous studies [21] and validated
before being applied in this work by comparing computer data analysis and the lipid
content (biochemically determined) from the same liver samples.
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Out of the large number of miRNAs identified in liver tissue and serum, a much
smaller number fulfilled the criteria we set ourselves, i.e., (a) be liver-enriched, (b) be
involved in the regulation of lipid metabolism genes, and (c) correlate significantly with the
level of intrahepatic lipids. Only a few of the model-selected miRNAs met these criteria.

The relevance of some of the miRNAs selected after our regression modeling and
biological fine-tuning was reinforced by previous studies searching for miRNA biomarkers.
Thus, miR-23a-3p and miR-19a-3p were found to be deregulated (with an opposite trend) in
the serum of patients with NASH [22]. Similarly, miR-19a and b were both upregulated in
the serum of simple steatosis NAFLD patients [23], whereas in a different study, miR-30a-3p
was also substantially upregulated in NAFLD patients, and its suppression attenuated
hepatic steatosis in HepG2 cells [24]. In an animal model, miR-145-5p increased in steatotic
liver in response to a high-fat diet [25]. Moreover, ingestion of a high-fat high-saturated
meal was able to deregulate miR-145-5p in human serum [26].

Serum levels of several members of the group of 19 miRNAs (miR-145-5p, miR-23a-3p,
miR-148a-3p, and miR-191-5p) were also significantly altered in patients with metabolic
syndrome or with NAFLD-associated metabolic alterations [27].

Several of the miRNAs proposed as steatosis biomarkers have demonstrated links
to key important lipid metabolism pathways. Thus, miR-98-5p inhibits PGC-1β mRNA
expression in the liver, and PGC-1β plays an important role in the regulation of hepatic
lipogenesis by activating genes such as Scd1 and Fas [28]. The decrease in liver miR-98-5p
observed in our study would likely result in more PGC-1β and lipogenesis.

In a different study, miR-32-5p targeted KLF3, which in turn represses lipogenic
regulators such as PPARγ and C/EBPα [29]. In this case, the decrease in liver miR-32-
5p observed in our study will result in higher KLF3 and lower lipogenesis as a likely
compensatory response.

Another recent study showed that hepatocytes release let-7b-5p after stimulation
with palmitic acid by a TGFβ-dependent mechanism. Moreover, let-7b-5p overexpression
increased hepatocyte fatty acid transport [30]. In our study, this miRNA was upregulated
both in the liver and serum.

Nevertheless, the potential utility of the proposed novel miRNA biomarkers might be
limited by other factors, such as the complex contribution of other co-morbid pathologies,
particularly obesity, T2D and dyslipidemia. Further improvements to give confidence
to our findings would include performing a paired analysis of liver and serum miRNAs
from the same cohort of patients, as well as running a prospective study to monitor the
progression of the disease by miRNA analysis, medical imaging, and whenever possible,
liver biopsy. This clinical study is currently ongoing.

Moreover, due to the limited sample size of the two study cohorts, further efforts will
be required to validate our results in much larger sample size cohorts. However, if these
results are confirmed in future studies, patients with NAFLD may benefit from diagnostic
or surveillance programs based on minimally invasive miRNA biomarkers.

4. Materials and Methods
4.1. Patients and Human Samples

Twenty human liver samples were obtained from organ donors who were primarily
assigned to liver transplantation, but their livers failed to be transplanted and were donated
to research (Biobank Hospital La Fe, Valencia, Spain). Histological analyses were not
performed on these livers, but we did perform biochemical analyses of TG and total
liver lipids and found a wide range of variation (Table 3). Anthropometric and analytical
characteristics of these liver donors have been described elsewhere [31] and are summarized
in Table 3.
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Table 3. Baseline characteristics of the donor study cohort (liver).

Mean ± SD Min Max CV%

µg Liver TG/mg prot 919 ± 494 210 1948 60%
µg Liver lipids/mg prot 730 ± 539 107 1894 70%

Age 57 ± 14 21 75 26%
Weight (Kg) 82 ± 13 60 110 16%
Height (cm) 171 ± 6 157 185 4%

Body mass index (kg/m2) 28 ± 5 21 38 16%
Thorax (cm) 107 ± 13 84 134 13%

Abdomen (cm) 107 ± 12 86 127 12%
Bilirubin (mg/dL) 0.8 ± 0.7 0.1 2.8 81%

Creatinine (mg/dL) 1.0 ± 0.3 0.4 1.6 32%
Glucose (mg/dL) 185 ± 70 84 340 39%

AST (U/L) 38 ± 20 18 103 55%
ALP (U/L) 32 ± 22 13 94 72%

Hemoglobin (g/dL) 11 ± 3 4 15 26%
Urea (mg/dL) 47 ± 17 25 77 36%
K + (mEq/L) 3.9 ± 0.5 3.3 5.1 12%

Na + (mEq/L) 150 ± 13 136 192 9%
QUICK index 81 ± 17 40 100 22%

Cadaveric organ donors comprised 14 men and 6 women, and their causes of death
included cerebrovascular accident (either hemorrhagic or ischemic, n = 15) or cranioen-
cephalic traumatism (n = 5). All of them were not harboring any infectious disease and
tested negative for human immunodeficiency and hepatitis viruses. Livers were obtained
in the operating room and transported in a cold preservation solution (University of Wis-
consin solution). After the reception, and once rejected for transplantation, livers were
immediately cut into small pieces, frozen in liquid nitrogen, and stored at −80 ◦C until
use. In this cohort of donors, the hepatic levels of intrahepatic TG and total lipids covered
a wide range (10–20-fold variation). The predominant lipids in the liver were TG and
consequently, the correlation between total lipids and TG was very high (R Pearson = 0.91).
We also observed significant variability in serum bilirubin and transaminases (AST and
ALT) (Table 3). However, they did not show any correlation with liver TG levels, thus ruling
them out as collinear confounding variables. It is important to remark that biochemical
data from these donors were not necessarily obtained in standard conditions, and some
parameters might be influenced by other factors, such as the timing of blood extraction and
cerebral death.

Human sera were collected from 23 well-characterized NAFLD patients, covering all
grades of steatosis as confirmed by percutaneous liver biopsy. The NAFLD patients did
not consume alcohol regularly (less than 20 g/day), and other potential causes of liver
disease (viral, autoimmune, hepatotoxic drugs, iron overload, Wilson’s disease, etc.) were
excluded. Hematoxylin-eosin and Masson’s trichrome-stained paraffin-embedded liver
biopsy sections were examined and interpreted by the same experienced hepatopathologist
(J.P.-R.), who was unaware of the patients’ clinical data. All liver biopsies examined
showed more than 10 complete portal tracts. Steatosis along with ballooning, lobular
inflammation and fibrosis were assessed as outlined by Brunt et al. [32]. Disease severity
was scored according to both NAS [32,33] and SAF [34,35] systems. Steatosis, as % of
fat in the biopsy, was automatically quantified by image analysis at 20× resolution of
hematoxylin-eosin stained sections in MATLAB 2021b (Mathworks Inc., Natick, MA, USA)
using in-house written scripts and the Image Processing Toolbox (MATLAB), following a
strategy similar to that previously described by Munsterman et al. [21]. Anthropometric
and analytical characteristics of these NAFLD patients have been described elsewhere [12]
and are summarized in Table 4. Anticoagulated venous blood was extracted between 8 and
10 am, after overnight fasting, by the time of liver biopsy. Blood was collected in siliconized
tubes and centrifuged at 2500× g for 10 min. Serum samples were stored at −80 ◦C.
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Table 4. Baseline characteristics of the NAFLD study cohort (serum).

Mean ± SD or no of Cases
(%)

Age (years) 51 ± 11
Sex: Male—Female 11 (48%)–12 (52%)

Body mass index (kg/m2) 31 ± 6
Glucose (mg/dL) 116 ± 40

TG (mg/dL) 154 ± 67
Total cholesterol (mg/dL) 185 ± 27
HDL-cholesterol (mg/dL) 45 ± 16
LDL-cholesterol (mg/dL) 106 ± 29
Total bilirubin (mg/dL) 0.6 ± 0.3

Albumin (g/dL) 4.6 ± 0.2
Platelets (103/µL) 276 ± 90

ALT (IU/L) 50 ± 33
AST (IU/L) 43 ± 33
G-GT (IU/L) 84 ± 61
ALP (IU/L) 83 ± 35

Prothrombin (s) 14 ± 2
Hemoglobin (g/dL) 14 ± 1

Transferrin saturation (%) 27 ± 14
Insulin (µU/mL) 22 ± 15

Steatosis (%)
Grade 0 6 (26%)
Grade 1 6 (26%)
Grade 2 6 (26%)
Grade 3 5 (22%)

Ballooning (%) None (0) 11 (48%)
Moderate (1) 9 (39%)

Severe (2) 3 (13%)
Lobular inflammation (%) None (0) 8 (35%)

Moderate (1) 13 (56%)
Severe (2) 2 (9%)

Fibrosis (%) Stage 0 12 (53%)
Stage 1 7 (30%)
Stage 2 1 (4%)
Stage 3 3 (13%)
Stage 4 0 (0%)

NAS scores (%) NAS: 0–2 12 (53%)
NAS: 3–4 4 (17%)
NAS: 5–8 7 (30%)

SAF activity scores (%) A: 0–1 13 (57%)
A: 2–3–4 10 (43%)

4.2. Quantification of Intrahepatic TG and Total Lipids

Homogenates from human livers were extracted with a methanol-chloroform mixture
and evaporated under nitrogen as described elsewhere [36]. TG and total lipid concentra-
tions were measured in the lipid residue using colorimetric kits from Spinreact (Gerona,
Spain) based on the GPO-POD enzymatic method (#1001311) and the sulfo-phospo-vanillin
reaction (#1001270), respectively. Protein concentration was determined using the Protein
Assay Kit from Bio-Rad Laboratories (Madrid, Spain).

4.3. RNA Isolation, Small RNA Library Preparation and miRNAseq Analysis

Total RNA was isolated from liver and serum samples using the miRNeasy mini kit
(Qiagen Westburg BV, Leusden, The Netherlands) according to the manufacturer’s protocol,
followed by a DNAse I treatment (Qiagen Inc., Venlo, The Netherlands). RNA concentration
and quality were measured using a BioAnalyzer system (Agilent Technologies, Breda, the
Netherlands). Starting from total RNA samples, small RNAs were size selected and ligated
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for sequencing following the TruSeq Small Prep Kit Preparation (15004197 Rev. D, Illumina,
Eindhoven, The Netherlands). Samples were sequenced on the HiSeq 2000 (Illumina) in
single-end 50 bp. Sequencing data have been deposited on ENA (European Nucleotide
Archives) under the accession number PRJEB53387. Small RNA reads were first trimmed
from the 5′ adapter sequence, and only the post-trimmed reads of 16 to 35 bp were selected.
All trimmed reads were then mapped using Patman [37] against the human precursor
database from miRbase (release 11), allowing no mismatches or gaps. Patman outputs
were parsed to obtain all read mapping to each miRNA arm (5′ and 3′). Normalization and
expression analysis were performed using the R package DESeq2 [38].

4.4. Bioinformatics Analysis and Modeling

The analysis initially included miRNAs commonly detected in both liver and serum
samples. A data clean-up step was carried out to improve the robustness of the analysis.
Accordingly, miRNAs detected in <90% or <82.5% of the liver and serum samples, respec-
tively, as well as those miRNAs showing median reads higher in serum than in liver, were
removed, leaving a set of 154 miRNAs for further analysis.

Two independent multivariate partial least squares (PLS) regression methods were
built to predict: (a) the concentration of TG in human liver based on liver miRNAs and
(b) the steatosis level (% of fat in biopsy images) in human liver based on serum miRNAs.
PLS was selected for multivariate regression because of the expected multicollinearity
among the covariates (miRNAs) and the large number of miRNAs (i.e., 154) compared to
the smaller sample size (i.e., 20–23). The selection of the number of PLS latent variables
was based on results obtained by leave-one-out cross validation (LOOCV). The assessment
of the significance of the figures of merit (e.g., root mean square error of cross validation,
RMSECV), was carried out by permutation testing (500 permutations), where the p-value
was estimated as the fraction of the permuted models, providing a better (i.e., lower
RMSECV) estimate than that estimated using the original y vector.

The recursive feature elimination (RFE) algorithm was employed to find the miRNA
most relevant in predicting the target variable (TG concentration or % of fat assessed in the
biopsy images). Here, a PLS full model was created, and a measure of variable importance
(VIP score) was computed to rank the predictors from most important to least. At each
stage of the search, the least important predictor was eliminated prior to rebuilding the
model. At each iteration, the PLS model performance was assessed using LOOCV, and a
new RMSECV was reported. The analysis of the evolution of the obtained RMSECV during
the RFE searches was used for the identification of two subsets of miRNAs for each model
providing the optimal model performance. The analyses of the two datasets by PLS-RFE
enabled the identification of 50 miRNAs in each of the datasets associated with the liver TG
concentration and biopsy fat%, and 19 among them were commonly selected in both cases.

Finally, PLS regression models to predict steatosis grade with 2 or 3 miRNAs were
built. The low number of miRNAs included in this step allowed us to evaluate all possible
combinations of the list of 19 miRNAs, taken 2 or 3 at a time (i.e., 171 and 969, respectively).
The evaluation of these models was based on the RMSECV and on the biological relevance
of selected miRNAs in lipid metabolism and NAFLD-associated pathways assessed through
an in silico search of mRNA targets.

5. Conclusions

In this proof-of-concept study, we demonstrated that it is possible to identify serum
miRNAs, with biological significance, that correlate with the % of liver fat in NAFLD
patients. Moreover, our findings allowed us to suggest that a panel of biomarker miRNAs,
identified according to the strategy of this study, could become a promising tool to detect
and stratify patients with NAFLD through a minimally invasive procedure. Thus, algo-
rithms based on circulating miRNAs could facilitate a “next level” quantitative diagnosis
and clinical follow-up of NAFLD patients, even at early stages of the disease.
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