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Abstract

Every cell in the human body has a unique set of somatic mutations, yet it remains difficult to 

comprehensively genotype an individual cell1. Here, we developed solutions to overcome this 

obstacle in the context of normal human skin, thus offering the first glimpse into the genomic 

landscapes of individual melanocytes from human skin. As expected, sun-shielded melanocytes 

had fewer mutations than sun-exposed melanocytes. However, within sun-exposed sites, 

melanocytes on chronically sun-exposed skin (e.g. the face) displayed a lower mutation burden 

than melanocytes on intermittently sun-exposed skin (e.g. the back). Melanocytes located adjacent 

to a skin cancer had higher mutation burdens than melanocytes from donors without skin cancer, 
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implying that the mutation burden of normal skin can be harnessed to measure cumulative sun 

damage and skin cancer risk. Moreover, melanocytes from healthy skin commonly harbor 

pathogenic mutations, though these mutations tended to be weakly oncogenic, likely explaining 

why they did not give rise to discernible lesions. Phylogenetic analyses identified groups of related 

melanocytes, suggesting that melanocytes spread throughout skin as fields of clonally related cells, 

invisible to the naked eye. Overall, our study offers an unprecedented view into the genomic 

landscapes of individual melanocytes, revealing key insights into the causes and origins of 

melanoma.

Cutaneous melanomas are skin cancers that arise from melanocytes, the pigment producing 

cells in the skin. Thousands of melanomas have been sequenced to date, revealing a high 

burden of somatic mutations with patterns implicating sunlight as the major mutagen 

responsible for their formation. It is currently unknown precisely when these mutations are 

acquired during the course of tumorigenesis and whether their rate of accumulation 

accelerates during neoplastic transformation.

In normal skin, melanocytes reside within the penetrable range of UV-A and UV-B radiation 

in the basilar epidermis. They make up a minor fraction of the cells in the epidermis, which 

is mainly comprised of keratinocytes. Keratinocytes have a p53-dependent program that 

triggers apoptosis after exposure to high doses of UV radiation, resulting in the sloughing 

off of epidermal sheets after a sunburn2. As a result, clonal patches of TP53-mutant 

keratinocytes are prevalent in sun-exposed skin3,4, and these can eventually give rise to 

keratinocyte cancers.

By contrast, the homeostatic mechanisms governing melanocytes and selective pressures 

operating on melanocytes during early phases of transformation are less well understood. 

While some melanomas arise from nevi (i.e. common moles), most arise in the absence of a 

precursor lesion. Understanding the mutational processes and kinetics of mutation 

acquisition in pre-malignant melanocytes of normal skin would provide important insights 

into the early phases of transformation, before clinically visible neoplastic proliferations 

have formed.

Most DNA sequencing studies are performed on a bulk group of cells, yielding an average 

signal from the complex mixture of cells that are sampled. Bulk-cell sequencing of normal 

blood5, skin4, esophageal mucosa6, and colonic crypts7 has identified mutations in these 

tissues, including the presence of pathogenic mutations, offering valuable insights into the 

earliest phases of carcinogenesis in these tissue types. However, bulk-cell sequencing is not 

suited to detect mutations in melanocytes because melanocytes are sparsely distributed in the 

skin4.

Genotyping studies at the resolution of individual cells are rare and none have been 

performed on melanocytes. Genotyping an individual cell is difficult because there is only 

one molecule of dsDNA corresponding to each parental allele in a diploid cell. There are 

primarily two strategies to overcome this bottleneck. First, an individual cell can be 

sequenced after amplifying its genomic DNA in vitro8,9. Unfortunately, in vitro 
amplification regularly fails over large stretches of the genome, reducing the sensitivity of 
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mutation detection, and errors are frequently incorporated during amplification, diminishing 

the specificity of subsequent mutation calls1. Alternatively, a cell can be clonally expanded 

in tissue culture, prior to sequencing, to increase genomic starting material10–13, but only 

limited types of primary human cells can sufficiently expand in tissue culture, reducing the 

scope of this strategy. Here, we combine elements of each strategy, allowing us to genotype 

melanocytes from normal skin at single-cell resolution.

Results

A workflow to genotype individual skin cells

We collected clinically normal skin from 19 sites across 6 donors. Skin biopsies were 

obtained from cadavers with no history of skin cancer or from peritumoral tissue of donors 

with skin cancer (Fig. 1a). All donors were of light skin tone, European ancestry (Extended 

Data Fig. 1a), and ranged from 63 to 85 years in age.

From each skin biopsy, epidermal cells were established in tissue culture for approximately 

two weeks and subsequently single-cell sorted and clonally expanded. On average, 38% of 

flow-sorted melanocytes produced colonies, ranging from 2-3000 cells (median 184 cells, 

Supplementary Table 1), indicating that we are studying a prevalent and representative 

population. Despite the small size of these colonies, there was sufficient starting material to 

achieve an allelic dropout rate of only 0.14% (Extended Data Fig. 2a).

Next, we extracted, amplified, and sequenced both DNA and RNA from each clonal 

expansion, as described14,15. Our tissue culture conditions were tailored for melanocyte 

growth, but some keratinocytes and fibroblasts also grew out. The RNA sequencing data 

confirmed the identity of each cell (Fig. 1b, Extended Data Fig. 1b–c). The matched 

DNA/RNA sequencing data also permitted genotype/phenotype inquiries, as described in 

subsequent sections.

Polymerases often introduce errors during amplification, and these artifacts can be difficult 

to distinguish from somatic mutations. The matched DNA/RNA sequencing data improved 

the specificity of mutation calls because mutations in expressed genes could be cross-

validated, whereas amplification artifacts arise independently during DNA and RNA 

amplifications and thus do not overlap (Fig. 1c). To further improve the specificity of 

mutation calls, we leveraged haplotype information to root out amplification artifacts. When 

reads are phased into their maternal and paternal haplotypes using heterozygous germline 

variants, neighboring somatic mutations occur within all amplified copies of that haplotype, 

whereas amplification artifacts rarely display this pattern (Fig. 1d)16,17.

Altogether, we were able to confidently distinguish true somatic mutations from 

amplification artifacts in portions of the genome that were expressed and/or could be phased. 

Variants that fell outside of these regions were classified as somatic mutations or artifacts 

based on their variant allele frequencies. Heterozygous mutations should have allele 

frequencies of 50%, whereas, amplification artifacts tend to have much lower allele 

frequencies. For each cell, we identified the variant-allele-frequency cutoff that would 

maximize the specificity and sensitivity of somatic mutation calls by comparing the variant 
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allele frequencies of the known somatic mutations and the known amplification artifacts in 

the expressed and phase-able portions of the genome (Fig. 1e, Extended Data Fig. 2b–d).

To assess the quality of mutation calls, we explored the genomic contexts of somatic 

mutations and amplification artifacts classified by each of the methods described above 

(Extended Data Fig. 3). Somatic mutations – whether ascertained by cross-referencing 

RNA-sequencing data, or from their haplotype distribution, or inferred by their allele 

frequency – displayed a pattern similar to signature 7, known to be associated with exposure 

to UV radiation. By contrast, amplification artifacts were more similar to signatures scE and 

scF, recently defined as likely artifacts resulting from multiple displacement amplification18.

Finally, we deduced copy number alterations from both the DNA-seq data and the RNA-seq 

data using the CNVkit software suite19,20. As an additional filter, we required that copy 

number alterations coincide with a concordant degree of allelic imbalance over the region 

affected (Fig. 1f).

In summary, we implemented a series of experimental and bioinformatic solutions to 

overcome the major obstacles associated with genotyping individual melanocytes. 133 

melanocytes passed our quality control metrics and were included in all subsequent 

analyses. Tissue pictures, cellular morphologies, and genomic features are shown for each 

melanocyte in an extended dataset hosted by figshare (https://figshare.com/s/

bb5614d5ab4554516278)21.

Mutational landscape of melanocytes from normal skin

For each clone, we performed RNA-sequencing of the entire transcriptome and DNA-

sequencing on a panel of 509 cancer-relevant genes (Supplementary Table 2). For a subset of 

48 cells we performed an additional round of DNA-sequencing over the entire exome, 

providing more power to measure the mutational signatures operating in those cells. The 

mean number of mutations per cell from targeted and whole exome sequencing were 

respectively 37 and 790 mutations.

We observed an average mutation burden of 7.9mut/Mb (mutations per megabase); however, 

this ranged from less than 0.82mut/Mb to 32.3mut/Mb, depending upon several factors 

(Supplementary Table 3). The mutation burdens of melanocytes first varied within people by 

anatomic site. As expected, melanocytes from sun-shielded sites had fewer mutations than 

those on sun-exposed sites (Fig. 2a,b and Extended Data Fig. 4). Consistently, sun-shielded 

melanocytes had little evidence of UV-radiation-induced mutations, whereas, this was the 

dominant mutational signature in melanocytes from sun-exposed skin (Fig. 2a).

Surprisingly, among sun-exposed melanocytes in this dataset, cells from the back and limbs 

had more mutations than cells from the face (Fig. 2a,b and Extended Data Fig. 4). Typically, 

skin from the back and limbs is only exposed intermittently to sunlight and expected to 

accumulate lower levels of cumulative sun exposure than skin from the face, neck, and bald 

scalp. The finding of lower mutation burdens in chronically sun-exposed sites deserves 

further study as it indicates possible differences in mutation rate, DNA repair or turnover 

among melanocytes from these anatomic sites. However, our observations are consistent 
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with the fact that melanomas are disproportionately common on intermittently sun-exposed 

skin as compared to other forms of skin cancer22,23.

The mutation burdens of melanocytes also varied between donors. For example, we 

sequenced melanocytes from a common site, the back, of five donors. Among these, the 

melanocytes from donors 6 and 13 harbored the highest mutation burdens (Fig. 2c) with 

more than half of melanocytes exceeding the median mutation burden of melanoma – this 

was notable because these donors had skin cancer adjacent to the skin that we sequenced.

For several donors, we observed a wide range of mutation burdens among the melanocytes 

harvested from the same anatomic site. This is surprising as cells originating from the same 

area of skin (~3cm2) would be expected to have similar levels of exposure to UV radiation 

and therefore comparable mutagenic profiles. To further understand the broad range of 

mutation burdens, we sought to identify genes whose expression correlates with mutation 

burden using differential expression analysis (Supplementary Table 4 and Extended Data 

Fig. 5). Among the significant genes, MDM2 was more highly expressed in melanocytes 

with elevated mutation burdens. MDM2 promotes the rapid degradation of p53, raising the 

possibility that there is heterogeneity among melanocytes with respect to p53 activity, which 

could affect the ability of a cell to repair mutations or undergo DNA damage-induced cell 

death. Although MDM2 provides a convincing narrative to explain the mutation burden 

heterogeneity, it is just one out of a number of significantly correlated genes that may be 

contributing to the phenotype. Another possibility is that the melanocytes may have different 

residence times in the epidermis. For instance, the low mutation burden melanocytes may 

reside, or have resided for some portion of their life, in a privileged niche, such as the hair 

follicle, thereby protecting them from UV-radiation. Future studies will be needed to better 

resolve why melanocytes from a single site can exhibit such a broad range of mutation 

burdens.

Melanocytes were harvested near a site with melanoma in two patients, and tumor tissue was 

available from one of these donors. The mutation burden of the melanoma, determined by 

bulk sequencing, was comparable to that of the individual melanocytes from its surrounding 

skin (Fig. 2d). There was no overlap between mutations in the melanoma and surrounding 

melanocytes, suggesting that few, if any, melanoma cells strayed beyond the excision 

margins into the normal skin. While more cases need to be studied, our findings suggest that 

melanomas have mutation burdens similar to their neighboring normal cells. This would 

contrast with colorectal cancers, which have higher mutation burdens than surrounding 

normal colorectal cells24.

Copy number alterations were relatively uncommon in melanocytes (Fig. 2a middle panel, 

Extended Data Fig. 6), with the exception of recurrent losses of the Y-chromosome and the 

inactive X-chromosome (Supplementary Table 5). Mosaic loss of the Y-chromosome and the 

inactive X-chromosome has been reported in normal blood25,26, suggesting that this is a 

generalized feature of aging. The rarity of autosomal copy number alterations in 

melanocytes from normal skin is consistent with previous reports that copy number 

instability is acquired during the later stages of melanoma evolution, and thus unlikely to be 

operative in pre-neoplastic melanocytes27,28.
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Pathogenic mutations in melanocytes from normal skin

We next explored the mutations to identify those that have been previously attributed as 

drivers of neoplasia. A set of 29 pathogenic mutations were identified in 24 different cells 

(Table 1). In particular, there were numerous mutations predicted to activate the Mitogen-

Activated Protein Kinase (MAPK) pathway. These include loss-of-function mutations in 

negative regulators of the MAPK pathway, affecting NF1, CBL, and RASA2. There were 

also gain- or change- of-function mutations in BRAF, NRAS, and MAP2K1, however, 

BRAFV600E mutations – the most common mutation in the MAPK pathway occurring in 

melanocytic neoplasms29,30 – were not detected.

The World Health Organization (WHO) classification of melanoma distinguishes two major 

subtypes of cutaneous melanoma – the low cumulative sun damage (low CSD) subtype and 

the high cumulative sun damage (high CSD) subtype. Low CSD melanomas are driven by 

BRAFV600E mutations and often originate from nevi31. By contrast, high CSD melanomas 

are driven by a more diverse set of MAPK-pathway mutations, similar to the ones seen in 

our study, and they arise de novo rather than from nevi31. Previous functional studies suggest 

that the MAPK-pathway mutations in our study are weak activators of the MAPK signaling 

pathway32–35, possibly explaining why they do not give rise to discernible neoplasms by 

themselves, but they could eventually progress to high CSD melanomas should additional 

driver mutations arise (Fig. 3).

We also observed driver mutations in other signaling pathways, including mutations that 

disrupt chromatin remodeling factors and cell-cycle regulators (Table 1). These mutations 

are presumably not sufficient to induce a neoplasm but likely accelerate progression in the 

event that the harboring cell acquires a MAPK pathway mutation36 (Fig. 3). This 

evolutionary trajectory may explain the evolution of nodular melanoma, a type of melanoma 

that occurs in the absence of a nevus and grows rapidly37.

Interestingly, no TERT promoter mutations were found in our study despite their 

prominence in melanoma38,39, suggesting that TERT promoter mutations confer little, if any, 

selective advantage to melanocytes outside of the neoplastic context.

Melanocytes can persist as fields of related cells within the skin

We found shared mutations between nine separate pairs or trios of melanocytes, suggesting 

that these cells stem from clonal fields of melanocytes in the skin (Fig. 4 and Extended Data 

Fig. 7). We ruled out the possibility that these melanocytes emerged during our brief period 

of tissue culture by growing neonatal melanocytes for several months and measuring their 

mutation burdens over time (Extended Data Fig. 8). The number of private mutations in the 

related sets of melanocytes, shown in Figure 4, was many orders of magnitude higher than 

would be expected from two weeks in tissue culture. Moreover, the private mutations from 

sun-exposed melanocytes showed evidence of UV-radiation-induced DNA damage (Fig. 4 

and Extended Data Fig. 7) – a mutational process that does not operate in tissue culture18.

Four of the sets of related melanocytes harbored a pathogenic mutation in the trunk of their 

phylogenetic trees, implicating the mutation in the establishment of the field. It is possible 

that the remaining fields of melanocytes had a pathogenic mutation that we did not detect or 
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appreciate, but we favor the explanation that fields of related melanocytes can also form 

naturally over time, for instance, as the body surface expands or as part of homeostasis.

Discussion

There is a complex set of risk factors associated with melanoma, including cumulative levels 

of sun exposure, peak doses and timings of exposures throughout life, skin complexion, 

tanning ability, and DNA repair capacity40. It is nearly impossible to quantify and integrate 

the effects of each one of these variables, but we demonstrate here that it is feasible to 

directly measure the mutational damage in individual melanocytes. Moving forward, the 

number and types of mutations in melanocytes warrant further exploration as biomarkers to 

measure cumulative sun damage and melanoma risk.

Our study also offers important insights into the origins of melanoma. Idealized progression 

models typically depict melanomas as passing through a series of precursor stages, but in 

reality, most melanomas appear suddenly, without an association to a precursor lesion41. We 

show that human skin is peppered with individual melanocytes or fields of related 

melanocytes harboring pathogenic mutations known to drive melanoma. These poised 

melanocytes likely give rise to melanomas that appear in the absence of a pre-existing nevus, 

once additional mutations are acquired.

Finally, our genomic studies are an important resource to further understand basic 

melanocyte biology. For example, we found that melanocytes from sun-damaged skin vary 

in their mutation burdens by multiple orders of magnitude. Of note, a similar pattern of 

variable mutation burdens was recently reported in bronchial epithelial cells of former 

smokers13. Melanocytes with few mutations are likely to be more efficient at DNA repair 

and/or have occupied privileged niches, protected from the sun, such as in the hair follicle. 

Melanocyte stem cells in the hair follicle can contribute to the intraepidermal pool of 

melanocytes as is evident in vitiligo patients with repigmenting areas42 – a similar process 

may be operative in the general population to replenish sun-damaged melanocytes.

In summary, the genetic observations described here offer new insights into the early phases 

of melanocytic neoplasia, melanocyte homeostasis, and the consequences of UV radiation.

Methods

Skin tissue collection

Physiologically normal skin tissue was collected from cadavers (up to 8 days post-mortem) 

or from surgical discard tissue of living donors. Skin tissue from cadavers was collected 

from either the UCSF Autopsy program or the UCSF Willed Body Program. Family 

members consented to donate tissue from the UCSF Autopsy program, and Willed-Body 

donors consented to donate their tissues for scientific research prior to their expiration. 

Surgical discard tissue was collected from donors undergoing dermatologic surgery at 

UCSF, and their consent was obtained at the time of surgery. Donors from the UCSF Willed 

Body Program have consented to have any data derived from the donation to be deidentified, 

stored and shared securely, and used for research as required by the Federal Privacy Act of 
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1974, California Information Practices Act of 1977, and HIPAA (Health Insurance 

Portability and Accountability Act). Donors from clinical practice have consented to the 

release and sharing of deidentified clinical data and genetic testing information via HIPAA 

as guided by the NIH National Human Genome Research Institute. Specifically, the study 

utilized tissue samples banked under the Pathogen Discovery in Cutaneous Neoplasia/

Cutaneous Neoplasia Tissue Bank protocol (10-01451) at UCSF.

Here, we define physiologically/clinically normal skin as skin lacking palpable or visible 

lesions. High resolution photos (Nikon D3300 fitted with AF-S DX Micro-NIKKOR 40mm 

f/2.8G lens) of each skin sample are available in the supplemental dataset. Skin tissue was 

stored at 4°C and processed in under 24h from time of collection.

Establishment of epidermal skin cells in tissue culture

Skin tissue was briefly sterilized with 70% ethanol and rinsed with Hank’s Balanced Salt 

Solution (Thermo #14175095). Excess dermis was trimmed off and the remaining skin was 

cut into pieces (approximately 2x2 mm2) using surgical scalpel blades. Tissue was incubated 

in 10mg/ml dispase II (Thermo #17105-041) for 18hr at 4°C. The epidermis was peeled 

away from the dermis, incubated in 0.5% trypsin-EDTA (Thermo #15400-054) at 37°C for 4 

min, and neutralized with 0.5mg/ml soybean trypsin inhibitor (Thermo #17075-029). 

Epidermal cells were plated in Medium 254 (Thermo #M254500) supplemented with human 

melanocyte growth supplement-2 (HGMS-2, Thermo #S0165) and antibiotic-antimycotic 

(Thermo #15240062). Cells were incubated at 37°C, 5% CO2 for 7–14 days.

CRISPR engineering of a subset of cells

Initially, we presumed that it would be impossible to clonally expand single-cell sorted 

melanocytes from adult human skin, so we engineered mutations into the CDKN2A locus, 

as described43. This decision was based on our previous success in engineering CDKN2A 
mutations into foreskin melanocytes and our ability to clonally expand these melanocytes, 

thereby producing isogenetic population of engineered melanocytes. However, during the 

course of these experiments, we recognized that control melanocytes, which were not 

engineered, could clonally expand under optimized tissue culture conditions, so we 

subsequently stopped engineering melanocytes. In total, 5 melanocytes were engineered 

prior to genotyping, as indicated in Supplementary Table 1. Removal of these cell does not 

affect any of the conclusions from this study.

Flow cytometry and cell culture of individual cell clones

Establishing epidermal cells in tissue culture produced a heterogeneous mixture of cells, 

comprised primarily of melanocytes and keratinocytes with some fibroblasts present. 

Differential trypsinization was used to separate melanocytes from keratinocytes using 0.05% 

trypsin-EDTA (Thermo #25300054) at 37°C for 2 min and 10 min, respectively. Trypsin was 

neutralized with 0.5mg/ml soybean trypsin inhibitor. Cells were centrifuged at 300 rpm for 5 

min, resuspended in 300µl sorting buffer (1X PBS without Ca2+ and Mg2+ (Caisson Labs 

#PBL-01), 1mM EDTA (Thermo #AM9262), 25mM HEPES, pH 7.0 (Thermo #15630130), 

and 1% bovine serum albumin (Thermo #BP67110)), strained using test tube with 35µm cell 

strainer snap cap (Corning #352235), and single cell sorted into 96-well plates filled with 
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100µl complete Medium 254 using a Sony SH800S Cell Sorter. Cell sorting was performed 

using a 100μm microfluidic sorting chip with the 488nm excitation laser without fluorescent 

markers.

The next day, cells were screened (Zeiss Axiovert microscope) to decipher their morphology 

and confirm that each well had only one cell. Individual melanocytes were grown in CnT-40 

melanocyte medium (CELLnTEC #CnT-40) supplemented with antibiotic-antimycotic. A 

small number of cells had keratinocyte or fibroblast morphology. Keratinocytes were grown 

in 50:50 complete Medium 254 and Keratinocyte-SFM media (Thermo #17005042), and 

fibroblasts were grown in complete Medium 254 for 10-14 days. After 10-21 days, clone 

sizes ranged from 2-3000 cells (Supplementary Table 1) and ceased any further expansion, 

prompting us to harvest these clones at their peak cell count. Approximately 37.5% of flow-

sorted cells typically produced colonies, providing evidence that we are studying a prevalent 

and representative population.

Extraction and amplification of DNA and RNA from each clone

Clones of 2-3000 cells do not yield enough genomic material to directly sequence using 

conventional library preparation technologies. For this reason, we elected to isolate both 

DNA and RNA from each clone and pre-amplify the nucleic acids prior to sequencing. To do 

this, we utilized the G&T-Seq protocol14,15.

G&T-Seq was performed, as described14,15. In brief, clones of cells were lysed in 7.5µl RLT 

Plus Buffer (Qiagen #1053393). mRNA and genomic DNA were separated using a 

biotinylated oligo d(T)30 VN mRNA capture primer (5′-biotin-triethyleneglycol-

AAGCAGTGGTATCAACGCAGAGTACT30VN-3′, where V is either A, C or G, and N is 

any base; IDT) conjugated to Dynabeads MyOne Streptavidin C1 (Thermo #65001). cDNA 

was synthesized using the Smart-Seq2 protocol using SuperScript II reverse transcriptase 

(Thermo #18064014) and template-switching oligo (5′-
AAGCAGTGGTATCAACGCAGAGTACrGrG+G-3′, where “r” indicates a ribonucleic acid 

base and “+” indicates a locked nucleic acid base; Qiagen). cDNA was amplified using 

KAPA HiFi HotStart ReadyMix kit (Roche #KK2502) and purified in a 1:1 volumetric ratio 

of Agencourt AMPure XP beads (Thermo #A63880). The average yield of amplified cDNA 

was 305ng. Genomic DNA was purified in a 0:0.72 volumetric ratio of Agencourt AMPure 

XP beads and amplified using multiple displacement amplification with the REPLI-g Single 

Cell Kit (Qiagen #150345) to yield an average of 815ng amplified genomic DNA per clone.

Library preparation and next-generation sequencing of amplified DNA and RNA

We next prepared the amplified cDNA and amplified genomic DNA for sequencing. Library 

preparation was performed according to the Roche Nimblegen SeqCap EZ Library protocol. 

In brief, 250ng DNA input was sheared to 200bp using Covaris E220 in a Covaris microtube 

(Covaris #520077). End repair, A-tailing, adapter ligation (xGen Duel Index UMI adapters; 

IDT), and library amplification were performed using the KAPA HyperPrep kit (Roche 

#KK8504) and KAPA Pure Beads (Roche #KK8001). Library quantification was performed 

using the Qubit dsDNA High Sensitivity kit and quantitative PCR with the KAPA 

Quantification kit (Roche #KK4854) on a QuantStudio 5 real-time PCR system.
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Target enrichment for next-generation sequencing was performed with the UCSF500 Cancer 

Gene Panel (developed by the UCSF Clinical Cancer Genomics Laboratory; Roche) or the 

SeqCap EZ Exome + UTR library probes (Roche #06740294001). All cells initially 

underwent targeted sequencing, and if a cell had a low mutation burden, or if a cell was 

phylogenetically related to other cells, we sequenced it again with exome baits. The exome 

sequencing data yielded more mutations, allowing us to infer mutational processes in low 

mutation burden cells and in distinct branches of phylogenetically related cells.

Hybridization reaction was performed using the SeqCap EZ Hybridization and Wash Kit 

(Roche #05634253001). xGen Universal blocking oligos (IDT #1075474), human COT 1 

DNA (Thermo #15-279-011), and custom xGen Lockdown probes targeting the telomerase 

reverse transcriptase (TERT) promoter (IDT) were additionally added to the hybridization 

reaction. After library wash and PCR amplification, the captured library was quantified by 

Qubit and analyzed using the High Sensitivity DNA kit on Agilent’s Bioanalyzer 2500.

TERT promoter spike-in baits were made with xGen Lockdown probe sequences (2X tiling):

1. /5Biosg/

GGGCACAGACGCCCAGGACCGCGCTTCCCACGTGGCGGAGGGACTGG

GGACCCGGGCACCCGTCCTGCCCCTTCACCTTCCAGCTCCGCCTCCTC

CGCGCGGACCCCGCCCCGTCCCGAC

2. /5Biosg/

CCCGTCCTGCCCCTTCACCTTCCAGCTCCGCCTCCTCCGCGCGGACCC

CGCCCCGTCCCGACCCCTCCCGGGTCCCCGGCCCAGCCCCCTCCGGGC

CCTCCCAGCCCCTCCCCTTCCTTT

3. /5Biosg/

CGACCCCTCCCGGGTCCCCGGCCCAGCCCCCTCCGGGCCCTCCCAGCC

CCTCCCCTTCCTTTCCGCGGCCCCGCCCTCTCCTCGCGGCGCGAGTTTC

AGGCAGCGCTGCGTCCTGCTGCG

4. /5Biosg/

CTTTCCGCGGCCCCGCCCTCTCCTCGCGGCGCGAGTTTCAGGCAGCGC

TGCGTCCTGCTGCGCACGTGGGAAGCCCTGGCCCCGGCCACCCCCGC

GATGCCGCGCGCTCCCCGCTGCCGA

5. /5Biosg/

TGCGCACGTGGGAAGCCCTGGCCCCGGCCACCCCCGCGATGCCGCGC

GCTCCCCGCTGCCGAGCCGTGCGCTCCCTGCTGCGCAGCCACTACCGC

GAGGTGCTGCCGCTGGCCACGTTCG

Libraries were sequenced on an Illumina HiSeq 2500 or Novaseq (paired end 100bp or 

150bp). On average, we achieved 489-fold unique coverage from targeted sequencing data, 

86-fold unique coverage from exome sequencing data, and 7.75 million reads/clone from 

RNA-sequencing data.
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Calling a preliminary set of variants

Variant call format files for each clone were generated as described27. Briefly, Fastq files 

underwent quality checks using FastQC (v.2.4.1) and were subsequently aligned to the hg19 

reference genome using the BWA-MEM algorithm (v0.7.13). BWA-aligned bam files were 

further groomed and deduplicated using Genome Analysis Toolkit (v2.8) and Picard 

(v.2.1.1). For each clone, variants were called using Mutect (v3.4.46) by comparing to bulk 

normal cells from a distant anatomic site. At this stage, the variants were composed 

primarily of amplification artifacts and somatic mutations. We leveraged the matched 

DNA/RNA sequencing data and haplotype information, detailed in the subsequent section, 

to distinguish between these entities.

Harnessing the matched DNA/RNA sequencing data to remove amplification artifacts

The DNA and RNA from each clone were separately amplified, and consequently, 

amplification artifacts were unlikely to affect the same genomic coordinates in both the 

DNA- and RNA- sequencing reads (Fig. 1c). In contrast, somatic mutations should always 

overlap, assuming there was coverage of the mutant allele in both the DNA- and the RNA- 

sequencing data. We applied the following criteria to determine whether this assumption 

could be met.

To begin, we established rates of allelic dropout in our DNA- and RNA- sequencing data. 

From known heterozygous SNP sites, we empirically deduced that allelic dropout rates were 

less than 0.15% in our DNA-sequencing data. We achieved low levels of allelic dropout 

because of our high sequencing coverage, relatively uniform levels of coverage, and low 

levels of PCR-bias during amplification. Coverage in the RNA-sequencing data was more 

variable due to differences in gene expression, but from known heterozygous SNP sites, we 

empirically deduced that 15X coverage was sufficient to sample both alleles at nearly all 

variant sites. There were a small number of exceptions for which this did not hold true. 

Truncating mutations (nonsense, splice-site, and frameshift) are prone to nonsense-mediated 

decay and were commonly undersampled in our RNA-sequencing data relative to the wild-

type allele. Also, mutations on the X-chromosome from female donors tended to be in 100% 

or 0% of RNA-sequencing reads, depending on whether they resided on the active or 

inactive X-chromosome. Aside from these examples, allelic variation in expression was 

minimal, particularly for highly expressed genes, as was previously reported44.

Based on these observations, a variant was considered a somatic mutation if it was present in 

both the DNA- and the RNA- sequencing data from the same clone. Conversely, a variant 

was considered an amplification artifact if the following conditions were met: the variant 

was present in the DNA-sequencing data but not the RNA-sequencing data, and there was at 

least 15X coverage in the RNA-sequencing data, and the variant was not truncating or on the 

X-chromosome. We declined to make a call in either direction for any variant that did not 

fulfil these conditions.

A limitation to this approach was that some variants did not reside in genes that were 

expressed. Nevertheless, 11.6% of variants could be classified as either a somatic mutation 

or amplification artifact by cross-validating the DNA/RNA sequencing data.
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Harnessing haplotype information to remove amplification artifacts

We also used haplotype information to distinguish between somatic mutations and 

amplification artifacts. Somatic mutations occur in cis with nearby germline polymorphisms, 

and this pattern is preserved during amplification (Fig. 1d). By contrast, amplification 

artifacts do not occur in complete linkage with nearby germline polymorphisms for the 

reasons described below (Fig. 1d).

The germline polymorphisms operate like unique molecular barcodes, designating which 

amplicons descended from each parental allele. The main reason why amplification artifacts 

are not in complete linkage with nearby polymorphisms is because there are multiple 

template molecules, associated with each parental allele, from which to amplify, and each 

template molecule can be amplified more than once – it is unlikely that the exact same 

mistakes are made during each independent amplification reaction over an error-free 

template. For example, we sequenced clonal expansions of cells, so each cell provided one 

molecule of double-stranded DNA from each allele. Furthermore, both strands of DNA are 

subject to amplification, thereby doubling the number of template molecules relative to the 

starting cell number. Finally, a single strand of DNA is repeatedly amplified during multiple 

displacement amplification, further enhancing the number of times an error-free template is 

utilized during amplification. Amplification artifacts therefore reveal themselves in the 

sequencing data by not occurring in complete linkage with nearby polymorphisms.

There was an exception for which the pattern described above did not hold true. A copy 

number gain or copy-number-neutral loss-of-heterozygosity (LOH) results in two or more 

copies of a single parental allele. If a somatic mutation occurs after the allelic duplication, 

then the somatic mutation would not be in complete linkage with nearby polymorphisms. 

Consequently, we did not apply this methodology to root out amplification artifacts over 

regions of the genome for which there was an allelic duplication.

A limitation to this approach is that we used short-read sequencing technologies, so some 

variants were too far away from the nearest polymorphic sites to be phased. Nevertheless, 

14.7% of variants could be classified as either a somatic mutation or amplification artifact, 

using the phasing approach.

Inferring the mutational status of variants outside of the expressed or phase-able portions 
of the genome

In total, 25.1% of variants could be classified as either a somatic mutation or amplification 

artifact, using either the expression or the phasing approaches, described above. The 

remaining variants did not reside in portions of the genome that were sufficiently expressed 

or close enough to germline polymorphisms to permit phasing. For these variants, we 

inferred their mutational status from their variant allele frequency.

The majority of somatic mutations in our study were heterozygous, and these mutations, as 

expected, exhibited a normal distribution of mutant allele frequencies centered at 50% (Fig. 

1e, Extended Data Fig. 2b). The standard deviation of mutant allele frequencies in a given 

clone was dictated primarily by the number of starting cells, indicating that allelic biases, 

introduced during amplification, were the primary drivers of “noise” in our data.
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By contrast, amplification artifacts exhibited a much different distribution of allele 

frequencies. Most amplification artifacts occurred in later rounds of amplification, and 

therefore had extremely low variant allele frequencies. However, a small number of 

amplification artifacts occurred in relatively early rounds of amplification and were 

disproportionately amplified thereafter. As a result, amplification artifacts exhibited a 

distribution of allele frequencies with a low peak but a long tail, sometimes extending into 

the range of allele frequencies seen for somatic mutations (Fig. 1e, Extended Data Fig. 2b). 

As expected, the tail of this distribution was more extreme in clones with fewer starting cells 

because amplification biases were more exacerbated in these clones.

Due to the distinct distributions of variant allele frequencies for somatic mutations and 

amplification artifacts, a variant allele frequency cutoff could distinguish the vast majority of 

somatic mutations from amplification artifacts. However, the sensitivity and specificity of 

somatic mutation calls, using this approach, varied for each clone, primarily based on the 

clone size for the reasons described above. We were able to precisely define the sensitivity 

and specificity of mutation calls, and we could optimize the VAF cutoff for each clone by 

studying the overlap in variant allele frequencies from known somatic mutations and known 

amplification artifacts.

For each clone, we had a set of known somatic mutations and known amplification artifacts, 

situated in the expressed and phase-able portions of the genome. We were therefore able to 

determine the proportion of false positives and false negatives under the assumption that all 

variants above a given variant allele frequency were somatic mutations. Here, a “false 

positive” is an amplification artifact that would have been called somatic mutations, and a 

“false negative” is a somatic mutation that would have been called an amplification artifact. 

We plotted the sensitivity and specificity of mutation calls at different variant allele 

frequency cutoffs for each clone, and we chose the variant allele frequency cutoff that 

maximized these values – this value was then applied to the variants whose mutational status 

was unknown – i.e. the variants outside of the expressed and phase-able portions of the 

genome. For clones greater than 5 cells, we could typically infer somatic mutations at 

greater than 98% specificity and 98% sensitivity (Extended Data Fig. 2c,d). We indicate in 

Supplementary Table 3 whether each mutation was validated or inferred by this approach.

Copy Number Analysis

Copy number alterations were inferred from both the DNA- and the RNA- sequencing data 

using CNVkit (v0.9.5.3)19,20. We also integrated allelic frequencies from somatic mutations 

and germline heterozygous SNPs.

First, we inferred copy number alterations from the DNA-sequencing data. CNVkit can be 

run in reference or reference-free mode. We elected to run CNVkit in reference mode, and in 

doing so, we created several references, encompassing panels of clones without copy 

number alterations that were amplified and prepared for sequencing in similar batches. This 

approach consistently produced the least noisy copy number profiles, as compared to 

reference-free mode or a universal reference. All other parameters were run on their default 

settings.

Tang et al. Page 13

Nature. Author manuscript; available in PMC 2021 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Second, we inferred copy number alterations from the RNA-sequencing data. Briefly, 

CNVkit assumes the expression of a gene correlates with its copy number status. Of course, 

the expression of a gene is dictated by several factors, including, but not limited, to copy 

number. As an input, CNVkit accepts correlation values from an independent dataset 

between expression and copy number. Here, we included correlation values from the 

melanoma TCGA project. Given this input, CNVkit downweighs genes whose expression 

does not correlate well with copy number.

Third, we calculated allelic imbalance over germline heterozygous germline SNPs. Copy 

number alterations are expected to induce imbalances over these sites. Additionally, we 

calculated the allelic frequencies of somatic mutations across the genome, as these, too, 

would be modulated by copy number alterations.

Finally, we manually reviewed the copy number and variant allele information to call copy 

number alterations that were supported by each approach.

Establishing cell identity

We made morphologic predictions when screening single cell clones of melanocytes, 

fibroblasts, and keratinocytes to designate cell identity. Melanocytes have a cell body with 

stellar or dendritic projections, are darker due the presence of melanin, and tend to grow in 

tighter clusters than fibroblasts, albeit not as tight as keratinocytes. Keratinocytes have a 

polygonal cell shape with more regular dimensions and grow in a very tight cluster due to 

the presence of desmosomes. Fibroblasts are flat, oblong or triangular shaped cells that 

divide very quickly in a diffuse cluster as a characteristic meshwork. In addition to cell 

morphology, we inspected the gene expression of MLANA, TYR, PMEL, and S100B. The 

protein products of these genes are well-established markers of the melanocyte cell lineage 

and are commonly used in the clinical setting to distinguish melanocytes and tumors of 

melanocytic origin from other cell lineages and other tumor types. There was a clear 

separation of gene expression levels of these genes between the cells that we nominated as 

melanocytes versus keratinocytes/fibroblasts (Extended Data Figure 1c).

An overview of the genetic landscape of each sequenced melanocyte

We have included individual summaries of the 133 sequenced clones which describes 

cellular morphology and tissue images, validation of variant allele fraction of raw calls, copy 

number alterations, and CDKN2A status (where applicable) (https://figshare.com/s/

bb5614d5ab4554516278).

Admixture Analysis (related to Extended Data Figure 1a)

Bulk normal cells were analyzed to identify germline variants present in each studied donor. 

Donor ethnicity was inferred via Admixture analysis using a Bayesian modelling approach 

employed by the tool STRUCTURE (v2.3.4)45. A set of 7662 common variants (1000 

genomes population allele frequency > 0.05) with a sequencing depth of greater than 10 

across all donors and all 2504 samples from the 1000 genomes study46 were selected. The 

burn-in period and analysis period were both completed with 10,000 repetitions as per the 

tool recommendations to achieve accurate estimations of admixture. To select an appropriate 
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number of populations (K), the algorithm was run using K estimations of 5 to 9. A final K 
value of 8 was selected to appropriately cluster populations without overfitting. The data 

were plotted using the STRUCTURE GUI plotting tool. Ethnicity of donors within this 

study was inferred by their similarity to known populations within the 1000 genomes set46.

RNA gene expression analysis (related to Figure 1b and Extended Data Figure 1b)

RNA sequencing reads were aligned to the transcriptome as well as the hg19 reference 

genome using STAR alignment tool (v2.5.1b)47. Transcripts were quantified using RNA-Seq 

by Expectation-Maximization (RSEM) (v1.2.0)48 and filtered to remove those with fewer 

than 10 reads across all clones as recommended by DESeq2 R package documentation. A 

variance stabilizing transformation was applied to the data and a Barnes-Hut T-distributed 

stochastic neighbour embedding (t-SNE) algorithm was performed to cluster related cells on 

the expression of the top 500 genes using the Rtsne R package (v0.15) with a perplexity of 6 

over 1000 iterations.

Differential expression analysis was completed on the quantified transcript values using 

DESeq2 R package49 (v1.22.2). Three experimental designs were produced, selecting for 

differentially expressed genes that are over-expressed in fibroblasts, melanocytes, and 

keratinocytes independently. The data were log2 transformed and a heatmap was generated 

presenting the top 20 significantly differentially over-expressed genes per cell type.

Gene set enrichment analysis was performed across the significantly differentially over-

expressed genes from each cell type using the Molecular Signatures Database (v6.2) 

webtool. The top significantly enriched pathways were examined for their relation to the 

cell-type of interest.

Mutation burden and signature analysis (related to Figure 2)

The mutation burdens reported in Figure 2 correspond to the number of somatic mutations in 

a given clone divided by the genomic footprint for which mutations could be detected. Due 

to differences in depth of coverage across bam files and the unevenness of coverage in a 

given bam file, mutations were not callable at every base present in target region. 

Additionally, we used both a targeted and exome sequencing panel in this study, which 

produce two different sequencing footprint sizes. To account for these issues, we calculated 

callable sequencing footprints for each clone and corresponding reference. On-target bam 

files were created per clone and per bulk normal. The coverage of each on-target base was 

calculated using the bedtools (v2.25.0) genomecov command, and the number of bases 

covered by more than 5 reads was counted in each bam file. The minimum value between a 

clone’s bam and its reference bam was used as the footprint from which to calculate a 

mutation burden for each clone.

Linear mixed-effect models were generated using the lmertest library in R to identify any 

association between sun-exposure (as determined by the anatomic site from which the single 

cell was derived) and mutation burden while correcting for the donor of origin. P values of 

each pairwise comparison derived from this model with the lmertest package are shown in 

figure 2b. To further account for the repeated measurements per donor, a model was created 
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excluding the sun-exposure variable and an ANOVA was performed comparing the fit of the 

two models.

To perform mutational signature analysis, surrounding genomic contexts were applied to 

single nucleotide variants identified in each clone using the Biostrings hg19 human genome 

sequence package (BSgenome.Hsapiens.UCSC.hg19 v1.4.0). Variant contexts were used to 

assess the proportion of each clone’s mutational landscape that could be attributed to a 

mutagenic process using the deconstructSigs R package (v1.8.0). A set of 48 signatures 

recently described by Petljak et al18 were analysed, with particular attention paid to the 

single base substitution signatures 7a, 7b, and 7c that are associated with ultraviolet light 

exposure.

Identifying Pathogenic Mutations (related Table 1)

Here, we define a pathogenic mutation to be a mutation that is under positive selection in 

cancer.

To identify gain- or change- of-function mutations affecting oncogenes, we interrogated 

whether the mutations in our study overlapped with previously defined mutational hotspots. 

First, we referenced the COSMIC database (see column M “COSMIC_ID” of 

Supplementary Table 3). There are thousands of entries in the COSMIC database, so 

mutations could recur at low frequency at certain positions by chance alone. Therefore, we 

curated these mutations to identify those with a previously published biological function. 

From this analysis, we identified hotspot mutations affecting BRAF, NRAS, MAP2K1, 

CBL, and PPP6C (detailed in Table 1). In parallel, we referenced cancerhotspot.org, a 

curated database of mutational hotspots. From this analysis, we corroborated the hotpot 

mutations affecting BRAF, NRAS, MAP2K1, and PPP6C. In addition, we found an E548K 

substitution affecting PTPRT. Upon further review, we concluded that the PTPRT mutation 

was unlikely to be biologically active because the gene is not expressed in the melanocytic 

cell lineage and the mutations in this gene do not show evidence of positive selection in 

melanoma50, and therefore we elected not to highlight this gene in our analysis.

To identify loss-of-function mutations affecting defined tumor suppressor genes in our study, 

we referred to previous melanoma publications33,50. From this analysis, we identified 

mutations affecting NF1, CBL, RASA2, CDKN2A, ARID2, PTEN, and DDX3X. There 

were also mutations affecting genes that are likely tumor suppressors in melanoma but have 

yet to be unequivocally defined as such. We elected not to highlight these mutations in Table 

1; however, we encourage readers to consult the full list of mutations in Supplementary 

Table 3, as the number of pathogenic mutations likely exceeds the more conservative 

assessment shown in Table 1.

Gene expression correlation with mutation burden (related to Supplementary Table 4 and 
Extended Data Figure 5)

RNA data was used to explore the variability in mutation burdens, often observed over a 

single site. Sites with greater than 3 standard deviations of mutation burdens, demonstrating 

the presence of both high and low mutation burden clones, were selected for analysis. 

Mutation burdens were normalized to the median of each anatomic site. Differential 
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expression analysis was then performed using DESeq2 R package49 (v1.22.2). Genes with 

expression changes significantly associated (adjusted p value < 0.01) with a continuous 

change in mutation burden are highlighted in Supplementary Table 4 and Extended Data Fig. 

5.

Estimating mutation acquisition over time in tissue culture (related to Extended Data Fig. 
8)

We established skin cells in tissue culture for 7-14 days prior to single-cell sorting and 

clonal expansion. Any mutation that arose after clonal expansion would be recognizable 

since it would only be present in a proportion of daughter cells, thus appearing subclonal. 

However, mutations that arose during the brief period of tissue culture preceding clonal 

expansion could be mistaken as a mutation that occurred while the cell was still situated in 

the skin. We therefore sought to establish the rate at which melanocytes accumulate de novo 
mutations in tissue culture to determine whether this was a meaningful contribution to the 

total mutation burden that we observed in our cells.

Towards this goal, we followed the framework recently put forth by Petljak and colleagues18 

– in that study, the authors sequenced subclones of daughter cells from common cancer lines 

at different generational time points for up to 161 days, thereby revealing the mutational 

processes operating during their time in tissue culture. Here, we sequenced a bulk culture of 

normal human melanocytes derived from human foreskin to establish the germline variants 

and somatic mutations in the dominant clones. We continued to culture these cells, and at 

time points of 51, 63, 120, and 239 days, we single-cell sorted and clonally expanded 

individual cells. We genotyped each clonal expansion, following the same protocol that was 

applied to melanocytes in this study. From these analyses, we estimate that mutations occur 

at a rate of .045 mutations/Mb per 7 days in tissue culture. To put this in perspective, the 

mutation burden of melanocytes from the bottom of the foot was .25 mutations/Mb. Based 

on these findings, we conclude that the number of mutations accumulated in tissue culture 

was negligent as compared to the number of mutations that pre-existed in melanocytes that 

were profiled for this study.

We also analyzed the publicly available data from Petljak et al18 to deduce the rate at which 

melanoma cell lines accumulate mutations in tissue culture. From these analyses we estimate 

that mutations occur at a rate of .043 mutations/Mb per 7 days – in line with our estimates 

for normal human melanocytes.

Taken together, it is not surprising that the number of mutations collected from 7 days in 

tissue culture is negligible as compared to the number of mutations collected from decades 

situated in the skin.

Phylogenetic tree construction (related to Figure 4 and Extended Data Fig. 7)

Pairwise comparisons of melanocyte mutation calls were performed to identify sets of 

melanocytes with shared mutations, and when this occurred, phylogenetic trees were 

constructed from the shared and unshared mutations. In Figure 4, trunk lengths correspond 

to the number of shared mutations, and branch lengths correspond to the number of unshared 

mutations. If there was an allelic deletion in one clone, we did not assign mutations in the 
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clone lacking the deletion over the deletion area to the branch. Shared mutations were 

discarded if there was insufficient coverage in the reference to rule out the possibility that 

the mutation was a germline SNP. Unshared mutations were discarded if sequencing 

coverage was insufficient in one clone to definitively make a call. In practice, few mutations 

needed to be discarded by these filtering criteria because we achieved high sequencing 

coverage in our clones.
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Extended Data

Extended Data Figure 1 |. Establishing the ethnicity of donors and identity of cells in this study.
a, Admixture analysis of donors included in this study alongside participants from the 1000 

Genomes Project. Donors in our study were genotypically most similar to European 

participants from the 1000 Genomes Project. EUR- European (TSI-Toscani in Italia, IBS - 

Iberian Population in Spain, GBR - British in England and Scotland, CEU - Utah Residents 

with Northern and Western European Ancestry, FIN - Finnish in Finland), AFR - African, 
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AMR - Latin American, SAS - South Asian, and EAS - East Asian. b, Differential 

expression analysis comparing cells that were morphologically predicted to be keratinocytes, 

melanocytes, or fibroblasts (see Fig. 1B for more details). The top 20 differentially 

expressed genes for each group are shown along with gene ontology terms with significant 

overlap. c, Cells with melanocyte morphology express higher levels of known melanocyte 

markers. Bar plots showing gene expression levels of MLANA, TYR, PMEL, and S100B, 

colored as indicated. A value of 1 is equivalent to the medium FPKM value for that gene 

across cells. Each quartet of bars corresponds to an individual clone, and clones are rank 

ordered by their medium normalized gene expression values for these 4 genes. The zoomed 

inset portrays the 5 melanocyte clones with lowest expression levels of melanocyte markers 

adjacent to the fibroblast and keratinocyte clones.
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Extended Data Figure 2 |. Detection of somatic mutations in small clones of skin cells with high 
specificity and sensitivity.
a, Allelic dropout declines rapidly as a function of clone size. Each data point represents the 

percent of germline SNP alleles that could not be detected for a given clone as a function of 

the number of cells within the clone. b, Establishing a variant allele fraction (VAF) cut-off to 

infer somatic mutations within a clone. The left panel depicts the VAFs for known somatic 

mutations and known amplification artifacts from a single clone. The right panel depicts a 

ROC curve, showing the VAF at which sensitivity and specificity of somatic mutation calls 

would be maximized when inferring the mutational status of variants based on VAF alone. 

Variants that fell within expressed or phase-able portions of the genome were classified as 

mutations or artifacts as described (see Fig. 1c, d). The remaining variants were inferred 

based on the VAF cut-off, which maximized sensitivity and specificity of somatic mutation 

calls. c-d, The specificity (panel c), and sensitivity (panel d), of inferred somatic mutations 

as a function of clone size. The mean specificity and sensitivity of inferred somatic 

mutations was respectively 98.83% and 98.60% for all clones of at least 5 cells. All 

trendlines correspond to a moving average.

Extended Data Figure 3 |. Contexts of single-base substitutions corroborate the quality of 
somatic mutation calls.
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| a, The proportion of somatic mutations identified in chronically sun-exposed, intermittently 

sun-exposed, and sun-shielded skin that belong to each of the 96 trinucleotide substitution 

contexts. Note the similarity to signature 7 (shown for reference in panel c), albeit to a lesser 

extent in sun-shielded skin cells. b, Tri-nucleotide contexts of variants from sun-exposed 

skin validated to be somatic mutations by RNA-seq or phasing as well as variants inferred to 

be somatic mutations by their variant allele frequency (VAF). Note the similarity to 

signature 7. The tri-nucleotide contexts of remaining variants (assumed to be amplification 

artifacts) are also shown. c, Predefined mutation signatures shown for reference; Signature 7 

(associated with UV-radiation-induced DNA damage)51, and SBS scE and SBS scF, which 

are associated with single-cell whole genome amplification artifacts18.

Extended Data Figure 4 |. Median mutation burden of melanocytes from different anatomic sites.
Mutation burden of melanocytes from physiologically normal skin of six donors across 

different anatomic sites with varied sun exposure that are rank ordered by median mutation 

burden (line) within each site. (BCC = Basal Cell Carcinoma, Mel = Melanoma)
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Extended Data Figure 5 |. Differential expression analysis revealing genes significantly 
correlating with mutation burden.
a-c, Gene expression versus normalised mutation burden is shown for two top correlative 

genes (HLA-DPA1 and MDM2) and one (CLEC2B) anti-correlative gene of interest from 

Supplementary Table 4. Clones included in this analysis are from anatomic sites with greater 

than 3 standard deviations of mutation burdens among their cells, thus demonstrating a range 

of mutation burdens. The plotted blue line represents a linear model fit to the data with 95% 

confidence intervals for that model prediction shown in grey.
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Extended Data Figure 6 |. Copy number landscape of melanocytes from normal human skin.
Copy number was inferred, as described, and segments (regions of equal copy number) are 

depicted, here, denoting gains (red) and losses (blue) for each melanocyte (rows). Note that 

copy number alterations over autosomes were rare, whilst the loss of one sex chromosome is 

a common occurrence. All X chromosome deletions in females affect the inactive X (see 

Supplementary Table 5).

Extended Data Figure 7 |. Fields of related melanocytes exist within the skin.
Phylogenetic trees in which each branch corresponds to an individual cell. Mutations that are 

shared between cells comprise the trunk of each tree and private mutations in each cell form 

the branches. Trunk and branch lengths are scaled equivalently within each tree but not 
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across trees. The proportion of mutations that can be attributed to ultraviolet radiation 

(CC>TT or (C/T)C>T) is annotated in the bar charts on each tree trunk or branch.

Extended Data Figure 8 |. Melanocytes accumulate few mutations in tissue culture.
a, We sequenced a bulk culture of neonatal melanocytes to establish the germline SNPs and 

somatic mutations in the dominant clones. We continued to passage the cell line for 239 

days, genotyping individual clones at the timepoints indicated to establish the rate at which 

mutations were acquired in culture. In parallel, Petljak et al18 performed similar experiments 

on common cancer cell lines, and we analysed their data from a melanoma cell line (Mewo) 

included in their study. b, On average, the mutation burden of neonatal melanocytes and 
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Mewo cells respectively increased by 0.090 and 0.086 mutations/Mb for every 2 weeks in 

tissue culture (we typically cultured melanocytes 2 weeks or less in this study). To put these 

mutation burdens in perspective, the average mutation burdens of sun-exposed and sun-

shielded melanocytes from this study are shown in comparison. Based on these results, we 

conclude that the brief period of tissue culture contributed little towards the mutation 

burdens observed in our study.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1 |. A workflow to genotype individual skin cells.
a, Examples of healthy skin from which we genotyped individual cells. Left panel: skin from 

the back of a cadaver. Right panel: skin surrounding a basal cell carcinoma. b, Expression 

profiles classify the cells that we genotyped into their respective lineages. Each cell is 

depicted in a t-SNE plot and colored by their morphology. A subset of 5 cells was 

engineered (see methods) and depicted as triangles. See Extended Data Fig. 1b–c for further 

details on cell identity. c-d, Patterns to distinguish true mutations from amplification 

artifacts. c, Mutations in expressed genes are evident in both DNA- and RNA- sequencing 

data, whereas amplification artifacts are not. d, Germline polymorphisms, distinguished here 

as “A” and “B” alleles, are in linkage with somatic mutations but not amplification artifacts. 

e, Variant allele fractions from an example cell indicate how we inferred the mutational 
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status of variants outside of the expressed and phase-able portions of the genome. Variants 

that were validated as somatic mutations had variant allele fractions (VAFs) around 1 or 0.5, 

and variants that were invalidated had lower VAFs; however, PCR biases sometimes skewed 

these allele fractions. Variants that could not be directly validated or invalidated were 

inferred by their VAF (see methods for details). The dotted line indicates the optimal VAF 

cut-off to distinguish somatic mutations from amplification artifacts for this particular cell’s 

variants (see Extended Data Fig. 2b for more details). f, Copy number was inferred from 

DNA- and RNA- sequencing depth as well as from allelic imbalance -- an example of a cell 

with a gain over chr. 5q, loss of chr. 9, and loss of chr. X is shown.
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Figure 2 |. The genomic landscape of individual melanocytes from physiologically normal human 
skin.
a, Top panel: Mutation burden of melanocytes from physiologically normal skin of six 

donors across different anatomic sites (BCC = Basal Cell Carcinoma, Mel = Melanoma). 

Middle panel: Number of copy number alterations identified within each melanocyte. Lower 

panel: The proportion of each cell’s mutations that are attributable to established mutational 

signatures. Each bar represents one cell (n=1). Error bars represent 95% confidence intervals 

determined by two-sided Poisson test. Hashed bars indicate that there were too few 

mutations for signature analysis. Asterisks denote samples that only underwent targeted 

DNA-sequencing. Crosses denote CDKN2A-engineered cells. b, Comparisons between 

mutation burden of chronically sun-exposed (n=24), intermittently sun-exposed (n=105), 

and sun-shielded sites (n=4). An ANOVA, comparing the results of linear mixed-effect 

models both including and excluding sun exposure to account for repeated donor 

measurements, presented a p-value of 4.43x10−4 demonstrating that sun exposure has a 

significant effect on mutation burden. Pairwise p-values from linear mixed-effects model are 

also shown (LMER p-values). Each box plot shows the 25th and 75th percentile of mutation 
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burdens, where the midline is the data median and outliers are represented as dots. c, 
Mutation burden of site-matched melanocytes adjacent to cancer versus not adjacent to 

cancer. Melanoma mutation burdens from TCGA are shown as a reference. The median is 

denoted by a grey line. d, Mutation burden of melanocytes as compared to an adjacent 

melanoma. Each bar represents one cell (n=1). Error bars represent 95% confidence intervals 

calculated using a two-sided Poisson test.
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Figure 3 |. Distinct trajectories of melanoma evolution.
Based on the data shown here and in conjunction with previous genetic, clinical, and 

histopathologic observations, we propose that melanomas can evolve via distinct trajectories, 

depending upon the order in which mutations occur. MAPK = Mitogen-Activated Protein-

Kinase.
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Figure 4 |. Fields of related melanocytes identified in normal human skin.
Phylogenetic trees in which each branch corresponds to an individual cell. Mutations that are 

shared between cells comprise the trunk of each tree and private mutations in each cell form 

the branches. Trunk and branch lengths are scaled equivalently within each tree but not 

across trees. The proportion of mutations that can be attributed to ultraviolet radiation 

(CC>TT or (C/T)C>T) is annotated in the bar charts on each tree trunk or branch. 

Pathogenic mutations and their location on each tree are indicated in red text. Mel = 

Melanoma.
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Table 1 |
Pathogenic mutations in melanocytes from normal human skin.

A curated list of pathogenic mutations in melanocytes found in this study (see methods for details on how they 

were defined). BCC = Basal Cell Carcinoma, Mel = Melanoma.

Pathway Hugo Symbol Protein Change Donor Site

MAPK

BRAF p.G466R Donor6 Back (adjacent to a BCC)

BRAF p.G466R Donor6 Back (adjacent to a Mel)

BRAF p.D594G Donor6 Back (adjacent to a Mel)

BRAF p.D594G Donor6 Back (adjacent to a Mel)

BRAF p.D594G Donor13 Back (adjacent to a Mel)

BRAF p.D594G Donor13 Back (adjacent to a Mel)

BRAF p.D594G Donor13 Back (adjacent to a Mel)

CBL p.H398L Donor4 Shin

CBL p.H398L Donor4 Shin

MAP2K1 p.E203K Donor4 Shoulder

MAP2K1 p.E203K Donor10 Thigh

NF1 p.W1314* Donor6 Back (adjacent to a BCC)

NF1 p.P1847L Donor13 Back (adjacent to a Mel)

NF1 p.Q2239* Donor13 Back (adjacent to a Mel)

NF1 p.R1276* Donor6 Back (adjacent to a Mel)

NF1 p.V2511fs Donor10 Back

RASA2 p.L83I Donor6 Back (adjacent to a BCC)

RASA2 p.P376S Donor13 Back (adjacent to a Mel)

RASA2 p.P376S Donor13 Back (adjacent to a Mel)

NRAS p.Q61L Donor13 Back (adjacent to a Mel)

Cell Cycle
CDKN2A p.V43M Donor6 Back (adjacent to a BCC)

PPP6C p.R264C Donor10 Back

Epigenetic

ARID2 p.E1670K Donor7 Cheek

ARID2 p.Q1591* Donor4 Buttock

ARID2 p.A18V Donor6 Back (adjacent to a Mel)

ARID2 p.L202S Donor6 Back (adjacent to a Mel)

ARID2 p.P1392L Donor13 Ear

PI3K PTEN p.QYPFEDH87fs Donor13 Ear

RNA Processing DDX3X p.P167L Donor13 Back (adjacent to a Mel)
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