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Abstract In cooperative systems exhibiting division of labor, such as microbial communities, 
multicellular organisms, and social insect colonies, individual units share costs and benefits through 
both task specialization and exchanged materials. Socially exchanged fluids, like seminal fluid 
and milk, allow individuals to molecularly influence conspecifics. Many social insects have a social 
circulatory system, where food and endogenously produced molecules are transferred mouth-to-
mouth (stomodeal trophallaxis), connecting all the individuals in the society. To understand how 
these endogenous molecules relate to colony life, we used quantitative proteomics to investigate 
the trophallactic fluid within colonies of the carpenter ant Camponotus floridanus. We show that 
different stages of the colony life cycle circulate different types of proteins: young colonies prioritize 
direct carbohydrate processing; mature colonies prioritize accumulation and transmission of stored 
resources. Further, colonies circulate proteins implicated in oxidative stress, ageing, and social insect 
caste determination, potentially acting as superorganismal hormones. Brood-caring individuals 
that are also closer to the queen in the social network (nurses) showed higher abundance of oxida-
tive stress-related proteins. Thus, trophallaxis behavior could provide a mechanism for distributed 
metabolism in social insect societies. The ability to thoroughly analyze the materials exchanged 
between cooperative units makes social insect colonies useful models to understand the evolution 
and consequences of metabolic division of labor at other scales.

Introduction
In the course of social evolution, related organisms have formed cooperative entities such as multi-
cellular organisms or groups of social animals (Szathmáry, 2015; Queller, 1992; Hamilton, 1963). 
In social animal groups, collective decisions on movement, reproduction and even development are 
needed for survival (Miller et al., 2013; Couzin, 2009). Some social groups have taken this coordi-
nation to a very high level: social insect societies develop and function as a single unit instead of as 
competing individuals, as ‘superorganisms’ paralleling the development of multicellular organisms as 
a single unit rather than as a set of competing cells (Johnson and Linksvayer, 2010; Boomsma and 
Gawne, 2018).

In these superorganismal societies, reproductive queens and males function as the germline, 
and workers as the soma. Similarly to different tissues in multicellular organisms, workers can 
be further specialized and exhibit division of labor across different behavioral and morpholog-
ical castes (Bourke, 2011). While morphological castes are determined during development, the 
behavioral caste of an individual worker typically changes during its lifetime. At the beginning 
of their adult life, workers specialize inside the nest as nurses focusing on brood care, and as 
they age, they switch to foraging outside of the nest (Huang and Robinson, 1996). Social insect 
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colonies also go through life stages. Young colonies have an initial growth phase where they solely 
produce one type of worker, and only later in their life cycle they may produce more specialized 
worker castes and finally, males and queens (Wilson, 1971). The switch to reproductive phase is a 
major life-history transition at the colony level, and connected to female caste determination. In 
social Hymenoptera, determination of whether a female larva develops into a queen or a worker, 
and what kind of worker exactly, is controlled by intricate differences of gene expression of the 
same female genome, guided primarily by environmental factors, in particular nutrition and social 
cues, sometimes partially influenced by genetics (Wheeler, 1986; Anderson et al., 2008; Raja-
kumar et al., 2018; Schwander et al., 2010).

Coordinated function of tightly integrated groups such as social insect colonies, and subgroups 
such as their different castes, has been described as social physiology (Friedman et  al., 2020), 
consisting of various behavioral, morphological, and molecular mechanisms that ensure cooperation 
and inclusive fitness benefits for all group members. As a part of their social physiology, some social 
insect societies have developed a form of social circulatory system (Wheeler, 1928), where nutri-
tion and endogenously produced functional molecules, such as hormones, are transferred mouth-to-
mouth from the foregut of one individual to another (LeBoeuf et al., 2016; LeBoeuf et al., 2018). 
This social fluid transfer is called stomodeal trophallaxis (Meurville and LeBoeuf, 2021). It ensures not 
only that food is distributed to all adults and larvae within the colony, but also that all individuals of the 
colony are interconnected through shared bodily fluids. Trophallactic fluid of ants and bees typically 
contains endogenous proteins involved in digestion, immune defense and developmental regulation 
(LeBoeuf et al., 2016), indicating that this fluid transmits more than food.

eLife digest Division of labor is essential for cooperation, because groups can achieve more 
when individuals specialize in different tasks. This happens across the natural world, from different 
cells in organisms performing specific roles, to the individuals in an ant colony carrying out diverse 
duties. In both of these systems, individuals work together to ensure the survival of the collective unit 
– the body or the colony – instead of competing against each other. One of the main ways division of 
labor is evident within these two systems is regarding reproduction. Both in the body and in an ant 
colony, only one or a few individual units can reproduce, while the rest provide support. In the case of 
ant colonies, only queens and males reproduce, while the young workers nurse the brood and older 
workers forage for food.

This intense cooperation requires close communication between individual units – in the case of 
some species of ants, by sharing fluids mouth-to-mouth. These fluids contain food but also many 
molecules produced by the ants themselves, including proteins. Given that both individuals and the 
colony as a whole change as they age – with workers acquiring new roles, and new queens and males 
only reared once the colony is mature – it is likely that the proteins transmitted in the fluid also change.

To better understand whether the lifecycles of individuals and the age of the colony affect the 
fluids shared by carpenter ants Camponotus floridanus, Hakala et al. examined the ant-produced 
proteins in these fluids. This revealed differences in the proteins shared by young and mature colo-
nies, and young nurse ants and older forager ants. In young colonies, the fluids contained proteins 
involved in fast sugar processing; while in mature colonies, the fluids contained more proteins to store 
nutrients, which help insect larvae grow into larger individuals, like queens. Young worker ants, who 
spend their time nursing the brood, produced more anti-aging proteins. This may be because these 
ants are in close contact with the queen, who lives much longer than the rest of the ants in the colony. 
Taken together, these observations suggest that ants divide the labor of metabolism, as well as work 
and reproduction.

Dividing the labor of metabolism among individuals is one more similarity between ants and 
the cells of a multicellular organism, like a fly or a human. Division of labor allows the sharing of 
burden, with some individuals lightening the load of others. Understanding how ants achieve this by 
sharing fluids could shed new light on this complex exchange at other scales or in other organisms. 
By matching proteins to life stages, researchers have a starting point to examine individual molecules 
in more detail.

https://doi.org/10.7554/eLife.74005
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Molecular signals are important in controlling the colony life histories and guiding caste determi-
nation both at the colony level and at the individual level. Queen pheromones are central signaling 
molecules acting across individuals (Kocher and Grozinger, 2011; Nijhout and Wheeler, 1982; 
Pamminger et al., 2016). Juvenile hormone and vitellogenin are central signaling molecules in clas-
sical insect development that may also play across-individual roles in some social insects (LeBoeuf 
et al., 2016; LeBoeuf et al., 2018; Scharf et al., 2007; Harwood et al., 2019). Together with funda-
mental nutrient-response signaling pathways (insulin, TOR), these molecules establish the develop-
mental trajectories of individuals (Chandra et al., 2018; Libbrecht et al., 2013). In solitary organisms, 
such molecules are produced and function solely within the organism’s own body. In contrast, in 
social Hymenoptera even the molecules traditionally functioning within-individuals can be secreted to 
the crop and distributed among the society members through trophallaxis and the social circulatory 
system (LeBoeuf et al., 2016).

Molecular components transmitted through trophallaxis, namely juvenile hormone and juvenile 
hormone esterase-like proteins, have been shown to influence the development of ant larvae (LeBoeuf 
et al., 2016; LeBoeuf et al., 2018). Thus, it is possible that molecules in trophallactic fluid may influ-
ence caste determination, similarly to honeybee workers feeding larvae with royal jelly to direct their 
development toward a queen fate (LeBoeuf et al., 2016; Buttstedt et al., 2014; Buttstedt et al., 
2016; Kamakura, 2011; Kucharski et al., 2015). The molecular functions of trophallactic fluid are still 
largely unstudied, but it is known, for example, that social isolation changes its composition (LeBoeuf 
et al., 2016), with some protein components of this fluid shifting with social environment. In medicine, 
such correlations are typically used to define biomarkers for specific conditions and treatments, and 
often both accurately predict function and provide mechanistic insights (Strimbu and Tavel, 2010). 
We propose that trophallactic fluid could both reflect and affect the social environments of the colony, 
thus providing important cues for collective decision making. However, it is not yet feasible to study 
the causes and consequences of the molecular composition of trophallactic fluid, as it is still largely 
unknown how much and what kind of qualitative and quantitative variation is present.

If indeed trophallactic fluid acts as a form of social circulatory system, managing distributed 
metabolic processes related to colony maturation, endogenously produced factors should correlate 
with colony life stages. To test this, we analyzed the trophallactic fluid proteome of the carpenter 
ant Camponotus floridanus at different scales. Our aim is to demonstrate that trophallactic fluid 
proteomes are filled with biomarkers reflecting biotic and abiotic conditions at both the colony and 
individual scale.

Results
We sought to determine whether the endogenously produced proteins present in trophallactic fluid 
create a robust biomarker-like signature of colony status. To assess this, we analyzed the trophallactic 
fluid proteomes of colonies at different stages in the colony life-cycle (Young vs. Mature), of colonies 
in natural conditions or kept in the lab (Field vs. Lab), and between colonies found on different nearby 
islands (East vs. West) (Figure 1; Supplementary file 1). Because trophallactic fluid proteins may be 
differentially expressed, transmitted, and/or sequestered across the social network of a colony, we 
also analyzed trophallactic fluid proteomes of single individuals in different colony ‘tissues’ – in-nest 
workers taking care of brood and out-of-nest workers (Nurse vs. Forager).

Overall proteome variation
Over the 73 colony and 40 single-individual trophallactic fluid samples analyzed, a total of 519 
proteins were identified (Figure 2). Trophallactic fluid samples contained a set of 27 ‘core’ trophal-
lactic fluid proteins that were present in all samples regardless of life-cycle, life-stage or environmental 
conditions. Fifty-seven percent of the 519 proteins, we observed were present in less than half of 
the samples. Even though the most common proteins displayed higher average abundance, across 
the entire dataset, protein abundance did not correlate with the proportion of samples containing 
the protein – even proteins present in only a small proportion of the samples in some cases exhib-
ited high abundance (Figure 2—figure supplement 1). The overall protein abundance was higher in 
colony samples relative to single individual samples, reflective of the larger trophallactic fluid volume 
collected. The number of proteins identified for a given sample correlated with trophallactic fluid 

https://doi.org/10.7554/eLife.74005
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Figure 1. Schematic of study design. (A) Four comparisons, Young vs. Mature, Nurse vs. Forager, Field vs. Lab, 
and East vs. West, analyzed in this study with sample numbers indicated in parentheses. In all comparisons sample 
numbers indicate colonies with the exception of Nurse vs. Forager, where samples are from single individuals, ten 
each from four colonies. Palm trees indicate field samples and boxes indicate laboratory samples. (B) Schematic 
of analysis approach to find robustly differing proteins in each comparison. Sample information can be found in 
Supplementary file 1.

https://doi.org/10.7554/eLife.74005
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Figure 2. Protein presence in trophallactic fluid varies with biotic and abiotic factors. (A) Mean ± SD of the 
proportion of proteins present in samples of a given type. Proportion of proteins present in all samples of a given 
type are highlighted in black. (B) Coefficient of variation (standard deviation/mean), calculated for the iBAQ values 
greater than zero of all the proteins identified by sample type. Sample sizes per type are given under their names. 
Mature L and Mature N are mature colonies that were sampled six times to assess within-colony variation in colony 
samples. Significance of comparisons based on gamma GLM (A) or negative binomial GLM (B): NS indicated when 
p > 0.05 significant, ** p < 0.01, *** p < 0.001 (full results in Figure 2—source data 1; Figure 2—source data 2).

The online version of this article includes the following figure supplement(s) for figure 2:

Source data 1. Coefficient of variation by sample type Post-hoc comparisons of gamma GLM on coefficient of 
variation by sample type.

Source data 2. Protein number by sample type Post-hoc comparisons of negative binomial GLM on protein 
number explained by sample type.

Figure supplement 1. Protein abundance and commonness.

https://doi.org/10.7554/eLife.74005
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sample volume (Pearson correlation test p < 0.03, r = 0.24 for colony samples and p < 0.01, r = –0.40 
for single-individual samples).

Field-collected samples exhibited more variable proteomes than did lab-collected samples 
(Figure 2b, gamma GLM posthoc p-values < 0.001, Figure 2—source data 1). Further, colonies that 
had been in the lab for more than one year showed less variable proteomes than did colonies that 
had been in the lab for only six months (Figure 2b, gamma GLM z = −4.46, SE = 0.04, p < 0.001). 
The trophallactic proteome variability of young and mature colonies did not differ significantly, nor 
did nurses’ and foragers’ (Figure 2b). Foragers had fewer identified proteins in their trophallactic 
fluid than did nurses (Figure 2a, negative binomial z = 3.72, SE = 0.08, p = 0.005), and there were no 
significant differences among the main full colony samples (Figure 2—source data 2).

When the principal components of the trophallactic fluid proteomes were analyzed, the samples 
tended broadly to align with others of the same type, although clusters were not fully distinct (Figure 3A 

Figure 3. Similarity across trophallactic fluid proteome samples of colonies and single individuals. Principal component analysis for all proteins for (A) 
colony samples and (B) single individual samples from the four colonies. Symbols representing the four colonies represented in (B) can be found in 
maroon in (A). (C) Ranked Self-similarity S for each sample type comparison. Self-similarity is the absolute value of the difference between dissimilarity 
within and across samples divided by the average dissimilarity of all samples (by standardized Euclidean distance of protein abundance). Samples with 
higher S are more similar to samples of the same type, while samples with an S of zero are equidistant to the centroids of the two sample groups.

The online version of this article includes the following source data for figure 3:

Source code 1. Matlab source code to produce self-similarity scores, plots and PCA plots that make up Figure 3, https://github.com/dradri/
variation2021.

Source data 1. Matlab MAT data file based on iBAQ values, gene names, and sample classes to produce self-similarity scores, plots and PCA plots that 
make up Figure 3.

https://doi.org/10.7554/eLife.74005
https://github.com/dradri/variation2021
https://github.com/dradri/variation2021
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and B). We developed a metric, self-similarity (S), to assess the depth of difference within and across 
sample types (Figure 3C). Because field-collected samples had more diverse protein content even 
within sample types (Figures 2 and 3A), the self-similarity in the Young vs. Mature comparison is low 
(Figure 3C). Single individual samples, and especially forager samples were less complex, allowing a 
larger proportion of their dissimilarity to be explained by sample type. Further, because our classifi-
cation of nurse and forager is based on the individuals’ location on brood or out-of-nest, it is possible 
that some nurse-classified individuals were either misclassified, transitioning from nurse to forager, or 
had trophallactic fluid in their crop uncharacteristic of their behavioral caste.

Comparisons of trophallactic fluid across conditions
In addition to characterizing the most abundant and core proteins of the trophallactic fluid (Figure 4, 
Figure 4—figure supplement 1), we wanted to robustly identify proteins that differ significantly in 
our comparisons despite the noise inherently present in this social fluid. To accomplish this, we chose 
to overlay three distinct statistical approaches (Figure 1B): classical frequentist, empirical Bayes and 
machine-learning in the form of random forest classification. In our main comparisons, Young vs. 
Mature colonies from the field, young colonies in the Field vs. Lab, and individual Nurses vs. Foragers 
in the lab, we found significant differences between groups with all three analysis methods (Figure 5, 
Figure  5—figure supplement 1, Figure  5—figure supplement 2, full results for the significantly 
differing proteins in Supplementary file 2 and for all proteins in Supplementary files 3-5).

For the Young vs. Mature comparisons, there were 10, 10, and 30 differentially abundant proteins 
according to frequentist t-test, empirical Bayesian LIMMA and the random forest approach, respec-
tively. Similarly, for the Nurse vs. Forager comparison there were 21, 57, and 26 differentially abundant 
proteins, and when young colonies were brought to the laboratory and resampled after six months, 
17, 31, or 29 proteins had significantly different abundance. The average accuracies of classification for 
comparisons with the random forest approach were: Young vs. Mature, 87 %; Nurse vs. Forager, 93 %; 
and Field vs. Lab, 91 %. This indicates that our trained classifier can predict whether a trophallactic 
fluid sample originates from a nurse or a forager with 93 % accuracy. We found no clear signature of 
spatial structure (East vs. West) in the trophallactic fluid proteomes. The frequentist analysis between 
different sampling areas found no significantly different proteins, and the random forest model did not 
reach high enough accuracy for this dataset to be informative (58 % classification accuracy). Only the 
empirical Bayes approach found eight proteins that significantly differed between the sampling areas 
(Figure 5—figure supplement 1, Supplementary files 2 and 4).

To leverage the unique benefits of the different forms of analysis, we focused our further analyses 
on proteins significantly different in two out of the three forms of analysis. Here, young and mature 
colonies differed by 12 proteins, and nurses and foragers differed by 19 proteins (Figure 5). When 
young colonies were brought to the laboratory and resampled six months later, the trophallactic fluid 
proteomes differed significantly by 20 proteins. Additionally, the single individual dataset showed 
that proteomes are affected both by colony of origin and by behavioral role of the individual, with 60 
proteins showing significant interaction between the two factors (Supplementary file 3).

Functions of the proteins in trophallactic fluid
To investigate the functions of the proteins found in trophallactic fluid, we performed functional 
enrichment analysis of gene ontology terms, pathways and protein-protein interaction (PPI) networks 
of the trophallactic fluid proteins’ Drosophila melanogaster orthologs. The 60 most abundant proteins 
in trophallactic fluid (Figure 4, Figure 4—figure supplement 1) are predominantly involved in the 
biological processes of carbohydrate metabolism, lipid and sterol transport (Figure 6, Figure 6—
source data 1, FDR < 0.00038, FDR < 0.0013  and FDR < 0.0087 respectively). The larval serum 
protein complex was represented by three out of four members in both the most abundant proteins 
and in the significantly differing proteins (hexamerins/arylphorins: Lsp1beta, Lsp1gamma, and Lsp2). 
A strong representation of the innate immune system (Reactome pathway FDR < 6.57e-5) was evident 
as were lysosomal processes (KEGG pathway, FDR < 3.21e-9).

Beyond the 60 most abundant proteins in trophallactic fluid, many others are of interest as well. 
A critical protein in insect physiology, vitellogenin is the 93rd most abundant protein in trophallactic 
fluid, present in 77% and 88% of colony and single individual samples, respectively. Three of the 60 
most abundant proteins had no similarity to Drosophila genes, and thus could not be included in the 

https://doi.org/10.7554/eLife.74005
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Figure 4. The sixty most abundant proteins in trophallactic fluid over 73 colony and 40 single individual samples. Ranking of abundance (including 
missing values). From left to right, Drosophila melanogaster orthologs, proportion of samples in which the protein was identified in colony samples and 
single individual samples, average iBAQ abundance across all samples, log2 of the fold change in abundance between types for a given comparison, 
the comparisons for which the protein was significant in two out of three methods are marked with yellow dots, annotation terms. Annotation terms 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.74005
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functional enrichment analysis. One of them is a putative odorant receptor, another a G-protein alpha 
subunit, and the third showed no orthology to characterized proteins. None of these proteins signifi-
cantly differed in more than one analysis for a given comparison.

Many of the trophallactic fluid proteins, abundant or significantly differing, were represented in 
trophallactic fluid by multiple genes from the same protein family, in some cases part of tandem 
repeats in the genome, indicative of relatively recent evolution. Multiple proteins of the same family 
were found in the most abundant trophallactic fluid proteins (Figure 4, Figure 4—figure supplement 
1): a family of cathepsinD-like proteins (six in the top 60; LeBoeuf et  al., 2016; Hamilton et  al., 
2011) and a family of Maltase-B1-like proteins (five in the top 60). In the list of significantly differing 
proteins (Figure 5, Figure 5—figure supplement 2), we observed fewer members of these families 
and instead saw three guanine deaminase proteins, all of which significantly differed in the Young vs. 
Mature comparison. Other families that showed duplications were glucose dehydrogenases, CREG1 
and tobi-like proteins (target-of-brain-insulin).

There was an overlap of 16 proteins between the most abundant proteins and the proteins signifi-
cant in two out of three of our statistical methods in any of the comparisons. The PPI network for our 
differentially abundant protein set (46 proteins, Figure 5) was similar to that of the most abundant 
proteins (Figure 4) but with increased interaction in the networks of the proteins themselves beyond 
what would be expected by chance (PPI enrichment p-value < 2.35e-11 in differentially abundant 
proteins relative to p-value < 1.59e-9 in abundant proteins), with noted enrichment in oxidation-
reduction processes (FDR < 0.0026) and stronger enrichment in carbohydrate metabolic processes 
(FDR < 2.15e-6).

To better understand the functions of the significantly differing proteins in each comparison, we 
analyzed the GO terms and PPI networks of proteins significant in two out of three statistical methods 
separately for each of our three main comparisons (Figure 6, Figure 6—source data 1). The Nurse 
vs. Forager comparison yielded a network of proteins with more interaction than would have been 
predicted by chance (PPI enrichment p-value < 2.57e-4) as well as a higher degree of PPI enrichment 
than the other two comparisons (Young vs. Mature p < 0.002 and Field v Lab p < 0.02). The orthologs 
of differentially abundant proteins found in the behavioral caste comparison involved not only carbo-
hydrate processing (FDR < 1.7e-4), but also oxidation-reduction and malate metabolic processes (FDR 
< 0.023 and FDR < 0.02, respectively). These pathways have been implicated in the determination of 
lifespan (Wiley and Campisi, 2016). Indeed, two of the 46 differentially abundant proteins over all 
comparisons have D. melanogaster orthologs with the gene ontology term ‘determination of adult 
lifespan’ (Men, Sod1). The C. floridanus tetraspanin, significantly more abundant in nurse trophallactic 
fluid, is a one-to-many ortholog to the family of Tsp42E genes, one of which has also been implicated 
in determination of adult lifespan in D. melanogaster.

As trophallactic fluid samples of young and mature colonies were distinguishable by principal 
component analysis and our random forest classifier, we wanted to see if our trained classifier could 
assess a change in maturity of our young colonies after they had spent six months in the labora-
tory. Our random forest classifier assigned an average out-of-box maturity score to our 16 laboratory 
samples of 42 % mature, reflecting the intermediate position of the laboratory colony samples in 
Figure 3.

Discussion
When an ant colony matures, the protein composition of trophallactic fluid changes in biomarker-
like manner, suggesting that these proteins circulating amongst individuals play a role in age-related 
colony metabolism and physiology. At the individual level, certain trophallactic fluid proteins correlate 
with behavioral caste within the colony, a trait known to encompass both individual task requirements 
and age (Korb et al., 2021; Mersch et al., 2013; Wild et al., 2021). Trophallactic fluid complexity 

are bolded for the 25 out of 27 core trophallactic fluid proteins that are amongst the 60 most abundant proteins. The additional but less abundant core 
proteins are a cathepsin (26–29 p) and a myosin heavy chain (Mhc). For protein accession numbers, see Figure 4—figure supplement 1.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Most abundant proteins with accession numbers.

Figure 4 continued

https://doi.org/10.7554/eLife.74005
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declines over time when colonies are brought from the field to the laboratory. This may reflect dietary, 
microbiome or environmental complexity – typical of traits that have evolved to deal with environ-
mental cues and stressors (e.g. immunity, Lazzaro and Little, 2008).

Figure 5. All proteins that significantly differ in two out of three of the analysis methods (frequentist, empirical Bayes, and random forest classification 
with SHAP values). From left to right, Venn diagrams of significance overlap between methods, Drosophila melanogaster orthologs, proportion of 
samples in which the protein was identified in colony samples and single individual samples, average iBAQ abundance across all samples calculated 
without missing values, log2 of the fold change in abundance between types for a given comparison, the comparisons for which the protein was 
significant in two out of three methods are marked with yellow dots, annotation terms. Annotation terms are in bold for the core trophallactic fluid 
proteins present in all samples. For visualization of each analysis method, see Figure 5—figure supplement 1. For protein accession numbers, see 
Figure 5—figure supplement 2. For all the 135 proteins significantly differing in any analysis, see Supplementary file 2. For full model results, see 
Supplementary files 3-5.

The online version of this article includes the following source code and figure supplement(s) for figure 5:

Source code 1. Jupyter notebook to run random forest analyses, https://github.com/dradri/variation2021.

Figure supplement 1. Visualization of all results.

Figure supplement 2. Significantly differing proteins in two out of three analyses with accession numbers.

https://doi.org/10.7554/eLife.74005
https://github.com/dradri/variation2021
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Overall, our data reveal a rich network of trophallactic fluid proteins connected to the principal 
metabolic functions of ant colonies and their life cycle. Pinpointing contexts that induce changes in 
trophallactic fluid, along with the exact targets and functions of the proteins, are important subjects 
for future work. Our establishment of biomarkers transmitted over the social circulatory system that 
correlate with social life will allow researchers to formulate and test hypotheses on these proteins’ 
functional roles.

Metabolism changes with maturity
We found that trophallactic fluid includes many enzymes involved in metabolism and protein products 
of metabolism. Many are core trophallactic fluid proteins present in all samples, but many also differ 
significantly among the colony and individual life stages. Some proteins abundant in mature colonies 
(Lsps, apolpp Burmester and Scheller, 1999; Burmester, 2002; Burmester, 1999) are major insect 
nutrient storage proteins (Burmester, 1999) that may be required to consolidate resources into large 
workers and sexuals, potentially acting as superorganismal hormones. Proteins abundant in foragers 
and young colonies (Gld, tobi, Amy, Mal, Buch et al., 2008; White et al., 2021) are well-conserved 
enzymes for fast sugar processing. This suggests a functional role of trophallactic fluid in the social 
physiology of ant colonies.

Figure 6. Gene set enrichment analysis of trophallactic fluid. Significant terms for Drosophila melanogaster orthologs of (A) the 60 most abundant 
trophallactic fluid proteins, trophallactic fluid proteins significantly differing between (B) Young vs. Mature, (C) Nurse vs. Forager, and (D) Field vs. Lab, 
with -log10(FDR) indicated on y-axes. Deep purple indicates GO biological process; blue, GO molecular function; turquoise, GO cellular compartment; 
lime green, Reactome pathway; orange, KEGG pathway. Circle size indicates strength, log10(observed proteins / expected proteins in a random network 
of this size). Full results can be found in Figure 6—source data 1.

The online version of this article includes the following source data for figure 6:

Source data 1. Gene set enrichment analyses of trophallactic fluid proteins. 

https://doi.org/10.7554/eLife.74005
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Similar shifts in protein composition or gene expression can be seen in different tissues of multi-
cellular organisms as life-stage priorities change, for example in the midgut of drosophila females 
after mating, where changes in expression are observed in many genes orthologous to the proteins 
we found here (White et al., 2021). Additionally, Drosophila larval hemolymph proteome changes 
as development unfolds (Handke et al., 2013), and many of these same proteins also appear in our 
comparisons of worker trophallactic fluid. We suggest that regulation of larval development may at 
least in part occur over the social network of ants, in line with previous experimental results (LeBoeuf 
et al., 2018).

Ageing and division of metabolic labor
Viewing the colony as a superorganism, the division of reproductive labor between different types 
of workers (soma) and queens (germline) should result in different individuals requiring differing 
resources and sustaining differing metabolic costs. Our results support this hypothesis. We show 
that trophallactic fluid transmits numerous factors linked to ageing and coping with oxidative stress, 
including two of the three most well-known antioxidant enzymes: superoxide dismutase and gluta-
thione peroxidase (Monaghan et al., 2009). These and other ageing-related proteins, such as those 
in redox pathways and malate metabolism (Wiley and Campisi, 2016; Koch et al., 2021), are espe-
cially elevated in nurses, the individuals that are physically the closest to the brood and queen in the 
trophallactic network.

These results link trophallactic fluid to one of the main topics of evolutionary ecology: the longevity-
fecundity tradeoff between reproduction and coping with oxidative stress (Monaghan et al., 2009; 
Flatt, 2011; Edward and Chapman, 2011). Social insect individuals seemingly escape this tradeoff 
with long-lived and highly reproductive queens and short-lived, non-reproductive workers (Monaghan 
et  al., 2009; Edward and Chapman, 2011; Heinze and Schrempf, 2008). We reveal a possible 
distributed metabolism which could explain why social insects seem to subvert this tradeoff. If mole-
cules dealing with oxidative stress, or beneficial products of metabolism (nutrient storage proteins) 
can be spread over the circulatory system, as our results show, certain individuals may bear the costs 
that others in the network incur. This could account for some of the puzzling results on the plasticity 
of senescence in social insects (Kramer et al., 2021; Heinze and Giehr, 2021; Lucas et al., 2019), 
and provides a new perspective to analyze the regulatory changes of social insect reproductive castes 
with regard to ageing (Korb et al., 2021; Negroni et al., 2019; Elsner et al., 2018; Corona et al., 
2005; Gstöttl et al., 2020; Corona et al., 2016; von Wyschetzki et al., 2015). While most previous 
work has focused almost exclusively on gene expression, we show that for species that engage in 
trophallaxis, expression studies are necessary but insufficient to understand where in the colony the 
relevant genes act.

Our gene-set enrichment analysis showed significant enrichment in immunity-related proteins char-
acteristic of phagocytic hemocytes (Shokal and Eleftherianos, 2017) in trophallactic fluid (‘innate 
immune system’, ‘complement cascade’, ‘neutrophil degranulation’). These results indicate that 
hemocytes may themselves be transmitted mouth-to-mouth, and generally shows the involvement of 
the social circulatory system in colony-level immune responses with implications for social immunity. 
Our results do not show clear caste differentiation in the abundance of immune-related proteins, as 
did a study in honey bees in glands that produce trophallactic fluid proteins (Vannette et al., 2015), 
though we do see similar regulation of sugar processing enzymes and glutathione-S-transferases.

Evolution of trophallactic fluid
Trophallactic fluid is one of many social fluids in biology – milk and seminal fluid are similar examples 
of direct transfers of biological material between individuals. Such socially exchanged materials often 
contain molecules that target receivers’ physiology beyond the fundamental reason for the transfer 
(Bromfield et al., 2014; Savino et al., 2013), and allow social effects to directly influence the evolu-
tionary process as indirect genetic effects (Linksvayer, 2015; McGlothlin et al., 2010; Wolf et al., 
1998). Some of the proteins we find to be significantly differing in our comparisons have previously 
been implicated in these other social transfers. For example, one of our protein hits is orthologous to 
Drosophila’s CG10433, a seminal fluid protein (Findlay et al., 2008) that impacts juvenile-hormone-
associated hatch-rate post-mating (Liu et al., 2014). In another parallel to a phylogenetically distant 
social fluid, trophallactic fluid’s most abundant protein is CREG1, a secreted growth-associated 

https://doi.org/10.7554/eLife.74005
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glycoprotein also abundant in mammalian milk (Zhang et al., 2015). Finding molecular parallels in 
distinct behavioral processes hints at the fundamental role of these exchanges in the evolution of 
social physiology, and possibly common adaptive requirements for bioactive social fluids.

Lysosomal pathways are enriched in our most abundant trophallactic fluid proteins and in our set of 
significantly varying trophallactic fluid proteins between nurses and foragers, according to the KEGG 
analysis. Lysosomes are acidic and can be major players in secretion, autophagic flux and exocytosis 
(Tancini et al., 2020; Csizmadia et al., 2018; Maruzs et al., 2019) – processes that may be important 
for nurses that feed larvae by trophallaxis. These significant lysosomal signatures we see in trophal-
lactic fluid may indicate the mechanism of secretion (Martínez et al., 2020), or may give us cues of 
how this fluid has evolved. As trophallactic fluid has become acidified in formicine ants (Tragust et al., 
2020), lysosomal genes could have been duplicated and neofunctionalized to a new role in this acidic 
fluid, similarly to juvenile-hormone-esterase-like proteins in trophallactic fluid (LeBoeuf et al., 2018). 
The fact that many abundant trophallactic fluid proteins represent clusters of related proteins from a 
few families (cathepsins, guanine deaminases, maltases) suggests there has been adaptive evolution 
in the proteins arriving in this fluid.

Conclusions
We show that the protein composition of ant trophallactic fluid varies across different external 
contexts and internal conditions both at the colony and at the individual level, suggesting that the 
dynamic trophallactic fluid proteome has key functions in social physiology and life cycle of colo-
nies. By describing the natural variation of trophallactic fluid we have laid the groundwork for future 
studies on the possible functions of these proteins in controlling the colony life cycle, senescence, and 
behavior.

Materials and methods

 Continued on next page

Key resources table 

Reagent type (species) or 
resource Designation Source or reference Identifiers

Additional 
information

Other

 � UniProt Reference proteome 
(Camponotus floridanus); accessed 
February 2020  � UniProt  � UP000000311  �

Other
 � NCBI RefSeq Reference proteome 

(Camponotus floridanus), v7.5  � NCBI RefSeq  � GCF_003227725.1  �

Biological sample 
(Camponotus floridanus)

 � Trophallactic fluid (see details in 
Supplementary file 1)  � This paper  � Supplementary file 1

 � Supplementary 
file 1

Software, algorithm  � MaxQuant v1.6.2.10  � MaxQuant  � RRID:SCR_014485  �

Software, algorithm  � Perseus v1.6.15.0  � Perseus  � RRID:SCR_015753  �

Software, algorithm  � R 3.6.1  � R  � RRID:SCR_001905  �

Software, algorithm  � Matlab 2020b  � Mathworks  � RRID:SCR_001622  �

Software, algorithm  � R-package MASS 7.3–53  � R Project  � RRID:SCR_019125  �

Software, algorithm  � R-package LME4  � R Project  � RRID:SCR_015654  �

Software, algorithm  � R-package multcomp 1.4–15  � R Project  � RRID:SCR_018255  �

Software, algorithm
 � LIMMA-pipeline-proteomics pipeline 

3.0.0  � GitHub  � 10.5281/zenodo.4050581  �

Software, algorithm  � sklearn v0.22.1  � Scikit-learn  � RRID:SCR_019053  �

Software, algorithm  � Python 3.7.6  � Python  � RRID:SCR_008394  �

Software, algorithm
 � SHapley Additive ExPlanations 

package v0.37.0  � GitHub  � RRID:SCR_021362  �

Software, algorithm
 � OMA Browser 

 � OMA Browser 
(Martínez et al., 2020 
release)  � RRID:SCR_011978  �

https://doi.org/10.7554/eLife.74005
https://identifiers.org/RRID/RRID:SCR_014485
https://identifiers.org/RRID/RRID:SCR_015753
https://identifiers.org/RRID/RRID:SCR_001905
https://identifiers.org/RRID/RRID:SCR_001622
https://identifiers.org/RRID/RRID:SCR_019125
https://identifiers.org/RRID/RRID:SCR_015654
https://identifiers.org/RRID/RRID:SCR_018255
https://doi.org/10.5281/zenodo.4050581
https://identifiers.org/RRID/RRID:SCR_019053
https://identifiers.org/RRID/RRID:SCR_008394
https://identifiers.org/RRID/RRID:SCR_021362
https://identifiers.org/RRID/RRID:SCR_011978


 Research article﻿﻿﻿﻿﻿﻿ Developmental Biology | Evolutionary Biology

Hakala et al. eLife 2021;10:e74005. DOI: https://​doi.​org/​10.​7554/​eLife.​74005 � 14 of 23

Reagent type (species) or 
resource Designation Source or reference Identifiers

Additional 
information

Software, algorithm  � Flybase  � Flybase  � RRID:SCR_006549  �

Software, algorithm  � STRING v11  � STRING  � RRID:SCR_005223  �

 Continued

Study species
Camponotus floridanus is a common species of carpenter ant in the south-eastern USA, and has 
already been the focus of previous trophallactic fluid analyses (LeBoeuf et al., 2016; LeBoeuf et al., 
2018). They live in dead wood or in man-made structures, often in urban habitats, and forage for 
honeydew, floral nectar, extra-floral nectar, and arthropod prey. Each colony has a single, singly mated 
queen (Gadau et  al., 1996), and polydomous nest-structures where queenless satellite nests are 
common. Colonies grow to tens of thousands of workers and produce sexual brood only after multiple 
years of initial growth. Large established colonies have two morphologically differentiated worker 
castes, with variably sized small-headed minors focusing on brood care when young and foraging 
when old, and big-headed majors that engage in nest defense, foraging and food storage (Deyrup, 
2017).

Colony and sample identification
The species was identified based on worker and queen morphology (Deyrup, 2017; Deyrup, 2003; 
Moreau et al., 2014). In line with previous studies, we use the name C. floridanus with the knowledge 
that the taxonomy and nomenclature of the C. atriceps complex (to which it belongs) is not fully 
resolved (Deyrup, 2017).

We collected full young colonies (0–80 workers) and mature colony extracts (30–200 workers) on 
several Florida Keys islands (Figure 1 and Supplementary file 1) in winter 2019 and 2020. A colony 
was deemed ‘young’ if the worker population was <100, primarily minors, and the queen was found 
(meaning both that the species could be clearly identified and that the nest was not a queenless 
satellite of an established colony), and ‘mature‘ if the colony was larger ( > 1000 individuals visible) 
and the opened nest contained many large aggressive majors. Young colonies lack majors (Gibson, 
1989) and individuals are generally less aggressive. We only collected mature colony samples when 
we also found larval brood in the opened nest. In our study area, we observed that young colonies 
are typically found nesting in different material than are mature colonies. Young colonies are often 
found under stones or in lumps of clay-like mud associated with crab burrows a short distance from 
the water, whereas the mature colonies were found nesting in large pieces of damp rotting wood.

Laboratory rearing
Young colonies were brought to the lab and maintained in fluon-coated plastic boxes with a mesh-
ventilated lid, at 25  °C with 60 % relative humidity and a 12 hr light/dark cycle. Each colony was 
provided with one or more glass tube for nesting, 10 % sugar water, and a Bhatkar & Whitcomb diet 
(Bhatkar and Whitcomb, 1970) and some Drosophila melanogaster. One week prior to proteomic 
sampling, we substituted the honey-based food with maple syrup-based food to avoid contamination 
with honeybee proteins (as in LeBoeuf et al., 2016).

Trophallactic fluid collection
Field samples of trophallactic fluid were collected within eight hours of ant collection. Of the 20 
young colonies and 23 mature colonies, workers collected from two of the mature colonies (L and N) 
were subdivided into six fragments to assess variation within a single colony (two samples from major 
workers, two samples from brood-associated workers, and two samples from the remaining minor 
workers). For all other analyses, only one of these for each colony (referred to as minors1) was used to 
avoid pseudo-replication. In the laboratory, the trophallactic fluid samples underlying the Field vs. Lab 
comparison were sampled after six months in the lab. The four colonies used for the single individual 
analyses had been in the lab for 18 months at the time of trophallactic fluid collection.

Trophallactic fluid was obtained from CO2- or cold-anesthetized workers whose abdomens were 
gently squeezed to force them to regurgitate the contents of their crops. This method of collection 

https://doi.org/10.7554/eLife.74005
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was shown previously to correspond to the fluid shared during the act of adult-adult stomodeal 
trophallaxis (LeBoeuf et al., 2016). For each colony, at least 30 individuals were sampled to obtain 
at least 10 µl of raw trophallactic fluid. For many young colonies only smaller samples were possible, 
because of the low number of workers (Supplementary file 1). Young colony samples were only used 
for further analysis if at least 2.5 µl of trophallactic fluid were collected. For single individual samples, 
workers with visibly full abdomens were chosen and the obtained sample volumes ranged from 0.7 µl 
to 2.2 µl. An individual was classified as forager, when it was seen outside the nest tube in the feeding 
area of an undisturbed laboratory nest box, and a nurse, when it remained in the nest tube even 
after the tube was removed from the original laboratory nest and placed into a new one. For colo-
nies from which individual samples were collected, a pooled sample was also taken from individuals 
that remained after individual sampling. Samples were collected with glass capillaries into 5 µl of 1 x 
Sigmafast Protease Inhibitor Cocktail (Sigma-Aldrich) with 50 mM Tris pH nine in LoBind eppendorf 
tubes and were stored –80 C until further analysis. The total proteomics sample number is 73 colony 
samples of following types: 23 mature colonies with two of them sampled six times, 20 young colonies 
in the field, 16 young colonies in the laboratory, four laboratory colonies used for single individual 
sampling; and 40 individual samples: 20 nurses and 20 foragers.

Protein mass spectrometry sample preparation and analysis
Samples were mixed with Laemmli sample buffer and pH was adjusted with 1 M Tris-Cl, pH 7. After 
reduction with 1 mM DTT for 10 min at 75 °C and alkylation using 5.5 mM iodoacetamide for 10 min at 
room temperature protein samples were separated on 4–12% gradient gels (ExpressPlus, GeneScript). 
Each gel lane was cut into small pieces, proteins were in-gel digested with trypsin (Promega) and the 
resulting peptide mixtures were processed on STAGE tips (Rappsilber et  al., 2007; Shevchenko 
et al., 2006).

LC-MS/MS measurements were performed on a QExactive plus mass spectrometer (Thermo Scien-
tific) coupled to an EasyLC 1000 nanoflow-HPLC. HPLC-column tips (fused silica) with 75 µm inner 
diameter were self-packed with Reprosil-Pur 120 C18-AQ, 1.9 µm (Dr. Maisch GmbH) to a length of 
20 cm. A gradient of A (0.1 % formic acid in water) and B (0.1 % formic acid in 80 % acetonitrile in 
water) with increasing organic proportion was used for peptide separation (loading of sample with 
0 % B; separation ramp: from 5 to 30% B within 85 min). The flow rate was 250 nl/min and for sample 
application 650  nl/min. The mass spectrometer was operated in the data-dependent mode and 
switched automatically between MS (max. of 1 × 106 ions) and MS/MS. Each MS scan was followed by 
a maximum of ten MS/MS scans using normalized collision energy of 25 % and a target value of 1,000. 
Parent ions with a charge state form z = 1 and unassigned charge states were excluded from fragmen-
tation. The mass range for MS was m/z = 370–1750. The resolution for MS was set to 70,000 and for 
MS/MS to 17,500. MS parameters were as follows: spray voltage 2.3 kV; no sheath and auxiliary gas 
flow; ion-transfer tube temperature 250 °C.

The MS raw data files were uploaded into MaxQuant software (Tyanova et al., 2016a), version 
1.6.2.10, for peak detection, generation of peak lists of mass error corrected peptides, and for data-
base searches. MaxQuant was set up to search both the UniProt (RRID:SCR_002380, https://www.​
uniprot.​org/) and NCBI (RRID:SCR_003496, https://www.​ncbi.​nlm.​nih.​gov/) databases restricted to C. 
floridanus (UniProt, February 2020 version; NCBI RefSeq, version 7.5), along with common contam-
inants, such as keratins and enzymes used for digestion. Carbamidomethylcysteine was set as fixed 
modification and protein amino-terminal acetylation and oxidation of methionine were set as variable 
modifications. Three missed cleavages were allowed, enzyme specificity was trypsin/P, and the MS/
MS tolerance was set to 20 ppm. The average mass precision of identified peptides was in general 
less than one ppm after recalibration. Peptide lists were further used by MaxQuant to identify and 
relatively quantify proteins using the following parameters: peptide and protein false discovery 
rates, based on a forward-reverse database, were set to 0.01, minimum peptide length was set to 7, 
minimum number of peptides for identification and quantitation of proteins was set to one which must 
be unique. The ‘match-between-run’ option (0.7 min) was used, which helps improve the protein iden-
tifications especially for our single-individual samples. All proteins labelled as contaminants, reverse 
or only identified by site were excluded and proteins with scores less than 70 were removed. After the 
filtering, the dataset contained 519 proteins. Quantitative analysis was performed using iBAQ values. 

https://doi.org/10.7554/eLife.74005
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Intensity-based absolute quantification (iBAQ) is the quotient of sum of all identified peptides and the 
number of theoretically observable peptides of a protein (Schwanhäusser et al., 2011).

Statistical analyses
Analyses of dataset characteristics were performed in Perseus v1.6.15.0 (Tyanova et  al., 2016b), 
R 3.6.1 (R Development Core Team, 2013) and Matlab R2020b (Figures 2 and 3). Differences in 
protein numbers among the sample types were analyzed with a negative binomial model, using the 
function ​nb.​glm from the R-package MASS 7.3–53 (Venables and Ripley, 2002). Proteome variability 
per sample type, as measured by the coefficient of variation of the iBAQ abundance of each protein 
when present, was analysed with a generalized linear model with gamma distribution and log-link 
with the R-package LME4 (1.1–26) (Bates et al., 2015). The package multcomp 1.4–15 was used for 
post-hoc testing for both models. Pearson correlation tests were used to check whether obtained 
protein number correlates with the sample volume. Because significant correlation was found, all 
further analyses were done separately for the individual samples that have small volume, and colony 
samples that have larger volume. Principal component analysis was run in Matlab on raw iBAQ values, 
for both the individual and the colony datasets.

Metric for self-similarity (S) within and across samples was calculated in Matlab2020b (https://​
github.​com/​dradri/​variation2021; LeBoeuf, 2021; copy archived at swh:1:rev:4a620922992272317f-
3cedad3dae6e60871cb282) as follows: pairwise standardized Euclidean distances (dissimilarities, 
D) were calculated between each pair of samples based on square-root transformed and median 
subtracted protein abundances; these dissimilarities were averaged for each sample with the other 
samples within type ‍̄Dwith∈‍ and with the samples of the other type ‍̄Dacross‍ and divided by the average 
dissimilarity to all other samples. Thus, self-similarity was calculated as:

	﻿‍
S =

∣∣∣Dwithin−Dacross
Dall

∣∣∣
‍�

To establish the proteins whose abundance differs significantly between sample types, samples 
were subdivided according to three main comparisons (Figure 1): Young vs. Mature colonies from the 
field, young colonies in the Field vs. Lab six months later, and individual Nurses vs. Foragers in the lab. 
In addition, the extent of spatial effects was analyzed for the field-collected Young vs. Mature dataset 
by dividing the sampling locations to two areas (East vs. West). For the colony data, the differing 
sample volumes may account for a small proportion of the significant differences in the Young vs. 
Mature comparison, and to lesser extent in the Field vs. Lab comparison, where sample volume is 
collinear with the sample type. Our analyses may miss some of the proteins more abundant in the 
young field collected colonies which have the smallest sample volumes.

Quantitative proteomic comparisons between sample types were performed independently with 
three different approaches to robustly identify significantly differing proteins: (Szathmáry, 2015) clas-
sical frequentist t-tests, (Queller, 1992) linear models with empirical Bayes variance correction, and 
(Hamilton, 1963) machine-learning paired with modified Shapley values. Our approach is designed 
to be at the same time conservative and to find most of the differing proteins among our compari-
sons of the trophallactic fluid. The frequentist t-tests are the most conservative, and they miss some 
interesting proteins due to their strict model expectations that allow only to use the most common 
proteins. The empirical Bayes approach to cope with sample variance is a more flexible method that 
allows use of the entire dataset, finding important hits also among the rarer proteins, although the 
high amount of missing values, where iBAQ equals zero, makes the model less powerful for these 
proteins (Kammers et  al., 2015). The machine learning approach paired with modified Shapley 
values, although less well explored in the current proteomics literature, is promising for its ability to 
find multivariate patterns that the other methods miss, and results in interpretable classification. For 
each comparison, we report the full results of all three analyses in Supplementary file 2 (significantly 
differing proteins only) and Supplementary files 3-5 (all results). Our results and discussion sections 
focus on the proteins that appear significantly different based on two out of three analysis methods 
(Figure 5).

https://doi.org/10.7554/eLife.74005
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Classical frequentist analysis
Within each dataset only proteins present in over 70 % of the samples were analyzed. Out of an 
original 519 proteins, the final datasets for each comparison contained the following number of 
proteins: Young vs. Mature, 172; Field vs. Lab, 137; and Nurse vs. Forager, 136. All data were log2 
transformed and median-centered, and missing data were imputed by random sampling from normal 
distribution with 2SD downward shift and 0.3 width for each sample. For colony datasets, we used the 
permutation-based FDR of 0.05, and for the single individual dataset that contained more borderline-
significant proteins, we used a more stable Benjamini-Hochberg FDR with a stricter threshold of 0.01. 
S0 parameter (similar to fold-change) was set to two for all analyses. All comparisons were run as two-
sample t-tests, with the Field vs. Lab as paired.

For the individual dataset, the combined effects of colony identity and behavioral role (Nurse 
vs. Forager) and their interaction were analyzed with two-way ANOVA, with Benjamini-Hochberg 
FDR corrections performed in R with the base R 3.6.1 command ‘p.adjust’. Both factors were also 
analyzed separately with multiple- and two-sample t-tests (for colony identity and behavioral role, 
respectively). To allow comparison to the other statistical methods, only the simple Nurse vs. Forager 
analysis without the interaction was used for combining the lists of significantly different protein abun-
dances. Our balanced sampling guarantees the results of this simpler model are robust enough to find 
the most descriptive proteins for nurse and forager trophallactic fluid, even when the more complex 
interactive patterns are lost.

Empirical Bayesian analysis
We implemented LIMMA (Linear Models for Microarray Data), a method for two-group comparison 
using empirical Bayes methods to moderate the standard errors across proteins (Kammers et al., 
2015), on our score-filtered iBAQ proteomic datasets with the LIMMA-pipeline-proteomics pipeline 
3.0.0 (http://​doi.​org/​10.​5281/​zenodo.​4050581) developed for R 4.0.2. Data were median-normalized 
before comparison and all comparisons were run with a log2 fold change cutoff of 2.

Random forest and shap analysis
We used random forest models (sklearn.ensemble.RandomForestClassifier version 0.22.1 Pedregosa 
et al., 2011) to classify samples into one of two groups for each comparison. These analyses were 
performed in Python 3.7.6 in a Jupyter notebook (https://​github.​com/​dradri/​variation2021). For each 
comparison, 10 analyses were performed, each with a different seed. For each seed, the dataset was 
split into 80 % training set and 20 % test set, and a model was fit, tested and accuracy computed. If 
accuracy was below 85%, hyper-parameter tuning was performed with GridSearchCV (sklearn 0.22.1), 
and the model re-fit. A seed and its corresponding model were not retained for further analysis if 
accuracy could not be improved above 75 %. Accuracies for East vs. West ranged from 33 to 89% and 
over 20 seeds, only one could be improved above 75 %. The typical parameters: max_depth, 3 or 
5; max_features, 'auto'; min_samples_leaf, 3; min_samples_split, 8 or 12; n_estimators, 100 or 500. 
Samples were classified with out-of-box scores (Supplementary file 4). The average accuracies of 
classification for comparisons were: Young vs. Mature, 87 %; Nurse vs. Forager, 93 %; Field vs. Lab, 
91 %; East vs. West, 58 %.

To understand which proteins contributed to the classification, we used SHAP (SHapley Additive 
exPlanations, shap package v0.37.0 for Python 3), a game theory tool that explains the output of 
machine learning models (Lundberg and Lee, 2017). To analyze the importance of each protein in 
a given comparison (feature importance), we averaged the absolute value of the Shapley values per 
protein across the data to derive the feature importance. Then for each protein, we averaged the 
feature importances over each of the 10 seeded models. Proteins that have no impact on the model 
classification receive a feature importance value of 0. When ranked according to average feature 
importance, the data had an approximate Pareto distribution with an inflection point typically at 
feature importance of ~0.15. Thus, because there is no established cutoff for significance in this form 
of analysis, we chose to include as ‘significant’ in further analyses all proteins with a feature impor-
tance of >0.15 (Supplementary file 5).

For random forest predictions, models trained on the classification between young and mature 
colonies were used to classify the same young colonies after 6 months in the laboratory. Out-of-box 
scores were averaged over five seeded models.

https://doi.org/10.7554/eLife.74005
http://doi.org/10.5281/zenodo.4050581
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Orthology, gene ontology, and protein network analyses
Because little functional work has been done in ants, we analyzed gene ontology terms for the 
Drosophila orthologs to our genes of interest. Orthologs to C. floridanus trophallactic fluid proteins 
were determined with OMA (‘Orthologous MAtrix’ Martínez et al., 2020 release Altenhoff et al., 
2021). If no ortholog was found within OMA for a given gene, the protein sequence was protein 
BLASTed against Drosophila melanogaster. In some cases, no ortholog could be found. Annotations 
were compiled from NCBI RefSeq and UniProt annotations.

GO analysis was performed using both Flybase (Larkin et al., 2021) and STRING v11 (Szklarczyk 
et al., 2019). STRING was also used for protein-protein interaction and pathway analyses, including 
KEGG and Reactome (SI Supplementary files 4 and 5). The protein-protein interaction enrichment 
analysis in STRING used a hypergeometric test with Benjamini-Hochberg corrected FDR. Only 43 
out of the 60 most abundant proteins had sufficient annotation for use by STRING while 44 of the 46 
differentially abundant proteins had sufficient annotation.
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