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RhoA, a novel tumor suppressor or oncogene
as a therapeutic target?*
*
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Ras homolog gene family, member A (RhoA) is a small
GTPase that plays critical roles in several essential cell
functions, such as migration, adhesion, proliferation, and
gene expression.1 RhoA switches between a GTP-bound
active form and a GDP-bound inactive form. The acti-
vated RhoA directly interacts with its downstream effec-
tors, such as Rho kinase (ROCK) to regulate actomyosin
dynamics, or mDia1 to control stress fiber and filopodia
formation. The activity of RhoA is primarily regulated by
guanine nucleotide exchange factors (GEFs), GTPase-
activating protein (GAP), and guanine nucleotide-
dissociation inhibitors (GDIs).

RhoA was initially postulated as an oncogene in 1989.2

Even though the amplification of RhoA was capable of
transforming mouse fibroblasts, point mutations at codon
14 and 64 were not tumorigenic in the same model.2 Pre-
vious cancer genome sequencing analysis also failed to
identify RhoA mutations in most common human cancers,
and consequently, it was not thought to be altered by so-
matic mutation in human cancers. In February of 2014, a
recurrent mutation of RhoA (G17V) was reported to be
present in 67% of angioimmunoblastic T cell lymphoma
(AITL) and 18% of peripheral T cell lymphoma (PTCL), but
not otherwise specified (PTCL-NOS) samples.3 This finding
was quickly validated by two other groups.4,5 In addition,
RhoA mutations were found in pediatric Burkitt lymphoma
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treated according to the NHL-BFM protocols.6 However,
RhoA mutation is not limited to a subset of lymphoma, as
three large studies published this year have indicated that
RhoA is mutated in 14% of diffuse-type gastric carcinoma
samples but not in intestinal type tumors.7e9 Therefore,
RhoA is quickly emerging as a somatic mutational target in
these tumor types.

The first interesting aspect of this emerging story is that
RhoA mutations are limited to these specific tumor types,
which suggests that the function of RhoA may be cell type-
specific. It is known that the expression of many RhoA
regulators is tissue or cell type-specific, and recent mouse
model studies have indicated that the regulation of these
downstream signaling pathways by RhoA is also cell type-
specific.10 Consequently, the biological significance of RhoA
activity will vary among different cell types, and it will be
important to determine in the future the biological effect
of RhoA depletion in these cell types in mouse models.

The type of recurrent RhoA mutations observed in these
tumors is another topic of interest. In AITL and PTCL, the
dominant mutation observed is G17V, which resides in the
GTP/GDP binding site. G17V-mutant RhoA does not interact
with its effector molecule rhotekin and suppresses F-actin
stress fiber formation.3 In addition, G17V-mutant RhoA
appears to act in a dominant-negative capacity to promote
cell proliferation and invasion.4 The mutational hotspots of
RhoA in diffuse-type gastric carcinoma are Y42C, R5Q/W,
L57V and G17E. Y42C resides at the C-terminal edge of the
core effector binding region of RhoA, and a previous study
suggested that this mutation only attenuates the activation
of protein kinase N but does not abrogate the activation of
mDia or ROCK1.8 A Rho binding domain assay also suggested
that Y42C and L57V mutants have attenuated abilities to
associate with GTP.9 Together, these studies suggest that
wild-type RhoA has tumor suppressor functions, while
mutated RhoA inhibits wild-type function through a domi-
nant negative mechanism. However, if RhoA is truly a
tumor suppressor, one would expect this gene to be
frequently inactivated by other gene inactivation
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mechanisms, such as nonsense or frame-shift mutations in
these tumor types. The recurrent nature of RhoA mutations
in AITL, PTCL and diffuse-type gastric carcinoma strongly
suggests that these hotspot mutations result in a gain-of-
function alteration in an unidentified signaling pathway;
nevertheless, in the absence of any supporting data, the
question still remains whether RhoA is an oncogene or
tumor suppressor gene.

From the cancer treatment perspective, the recurrent
mutational hotspots of this protein represent ideal targets
for small molecule inhibitors as therapeutic reagents. If the
RhoA mutants act in a dominant negative fashion, such
molecules could disrupt their interaction with the wild-type
protein to restore RhoA function. On the other hand, if
RhoA mutants are oncogenes, the suppression of their ac-
tivities by these molecules should inhibit tumorigenesis. In
either case, the future development of these therapeutic
reagents holds promise for cancer patients with RhoA
mutations.
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