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Abstract: Stimuli-responsive polymers are of great interest due to their ability to translate changing
environmental conditions into responses in defined materials. One possibility to impart such behavior
is the incorporation of optically active molecules into a polymer host. Here, we describe how
sensor molecules that consist of a π-extended benzothiadiazole emitter and a naphthalene diimide
quencher can be exploited in this context. The two optically active entities were connected via
different spacers and, thanks to attractive intramolecular interactions between them, the new sensor
molecules assembled into cyclic structures in which the fluorescence was quenched by up to 43%
when compared to solutions of the individual dyes. Detailed spectroscopic investigations of the
sensor molecules in solution show that the extent of donor/acceptor interactions is influenced by
various factors, including solvent polarity and ion concentration. The new sensor molecule was
covalently incorporated into a polyurethane; the investigation of the optical characteristics in both the
solid and solvent-swollen states indicates that a stimulus-induced formation of associated dye pairs
is possible in polymeric materials. Indeed, a solvatochromic quenching effect similar to the behavior
in solution was observed for solvent-swollen polymer samples, leading to an effective change of the
green emission color of the dye to a yellow color.

Keywords: stimuli-responsive polymers; chromogenic; fluorescence; luminescence; quenching;
benzothiadiazole; naphthalene diimide

1. Introduction

Chromogenic polymers can change their visible color, fluorescence color, or emission
intensity in response to external stimuli [1]. Such materials are of great interest as sensors
that translate an applied stimulus into a defined optical response. One general approach
toward chromogenic polymers is the incorporation of chromophores that change their
optical properties upon interaction with another chromophore of the same or different
type [2–6]. Indeed, temperature changes, light irradiation, mechanical force, or the changing
polarity of the environment can serve as stimuli that lead to the assembly or disassembly
of the chromophores, which can in turn trigger a defined optical response in the material.
Chromophore systems that have been used in this context include excimer-forming dyes [7,8],
energy-transfer pairs [9], charge-transfer complexes [10], and photo-induced electron transfer
dye pairs [11]. The corresponding polymers featuring these dye systems have been used
to sense, e.g., temperature [12], chemicals [13,14], and mechanical deformation [8,9,11,15–18].
Whereas simple blending of polymers with a suitable dye is often sufficient to create
responsive materials [2–4,7], it can be beneficial to covalently incorporate the chromophores
into a polymer matrix. This allows, for example, the prevention of phase separation and
aggregation of the dyes, and can be helpful in ensuring an efficient translation of mechanical
stimuli into an optical response [19–24]. Indeed, the interacting chromophores can be
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more directly affected when efficient transduction of macroscopically-applied forces to
the molecular-level sensor is ensured. This has, for example, been demonstrated recently
with several rotaxane-based displacement mechanophores [11,15–17], as well as with loop-
forming structures containing two emitters capable of excimer formation [25,26]. The
investigated rotaxane-based motifs combine a macrocycle equipped with a fluorophore and
a dumbbell-shaped axle with a suitable quencher. Such rotaxanes do not fluoresce in the
resting state because the fluorophore is in close proximity to the quencher; thus, emission
is suppressed through the formation of charge-transfer complexes and/or a photoinduced
electron transfer process. Elastic polymers containing such rotaxanes display an instant
and reversible fluorescence turn-on upon deformation as a result of the spatial separation
of the interacting dye pair upon deformation. Unfortunately, the complex synthesis of
such rotaxanes impedes their widespread use. In contrast, loop-forming mechanophores
based on perylene dyes can be straightforwardly prepared in as little as three synthetic
steps [25,26]. The loop-forming motif was incorporated into polyacrylates and different
polyurethanes, which imparts the materials with mechanochromic properties. In the relaxed
state the red excimer emission of the associated dye pairs is observed, while the fluorescence
color changes to the green monomer-centered emission upon mechanical deformation.
Spectroscopic analyses, moreover, show that polymers featuring the mechanophore reliably
translate the applied strain into a defined optical signal.

In an alternative approach to the use of perylene dyes, we surmised that the chro-
mogenic response enabled by the weak, non-covalent association of the fluorophore and
quencher pairs employed in the previously-reported rotaxanes could be exploited in loop-
type structures that are much easier to access. Accordingly, we set out to explore new
types of linear molecules in which dye pairs are covalently connected by a short linker
(Figure 1). The intramolecular association of the chromophores, which can be influenced
via the interaction strength of the two motifs [7,21] as well as by auxiliary groups that
provide directional non-covalent interactions [9,18], might lead to the formation of dynamic
cyclic structures with quenched or altered fluorescence emission. Such motifs could display
straightforward stimulus-induced assembly or disassembly, and appear to be attractive
candidates for the development of a wide range of novel stimuli-responsive sensor motifs,
notably, mechanochromic mechanophores [8–10,18,25–27].
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linker of C12 or longer and ethylene oxide linkers with six or more repeating units are 
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Figure 1. Schematic representation of a covalently connected dye pair that may form an intramolec-
ular cyclic structure as a sensor element. In the idle state, the two dyes are in proximity and the
fluorescence emission is quenched. Upon exposure to a suitable stimulus, the fluorophore and
quencher are separated and the emission of the former is switched.

2. Results and Discussion

A π-extended benzothiadiazole (emitter) and a naphthalene diimide (quencher) were
selected to test the concept of supramolecular rings as responsive motif, because the combi-
nation of these dyes in a rotaxane has recently been demonstrated to afford a mechanophore
with interesting fluorescence switch-on capabilities [11]. Molecular modelling and simple
universal force field (UFF) energy optimization suggests that both a hydrocarbon linker
of C12 or longer and ethylene oxide linkers with six or more repeating units are suitable
to allow for an unconstrained interaction between the two chromophores (Figure S1).
The molecules must be designed to feature either peripheral double bonds or hydroxy
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groups to allow for incorporation into polymers via thiol-ene click chemistry or their use as
co-monomers in the preparation of polyurethanes.

The synthetic pathway by which these new sensor molecules were accessed is shown
in Schemes 1 and 2. Microwave-assisted syntheses were carried out in order to access three
different asymmetrically-substituted naphthalene diimide derivatives (1–3) in one-step
reactions between naphthalenetetracarboxylic dianhydride and different amines [28,29].
In order to synthesize the naphthalene diimide derivative 1, substituted with a terminal
double bond and a C12-spacer with a terminal carboxylic acid, the reaction was carried out
with a combination of 3-buten-1-amine and 12-aminododecanoic acid (Scheme 1a).
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Scheme 1. (a) Synthesis of the naphthalene diimide building blocks 1, 2, and 3 from naphthalenete-
tracarboxylic dianhydride via condensation with different amines in microwave-assisted reactions.
(b) Synthesis of the asymmetrically functionalized benzothiadiazole emitter derivatives 5 and 6 via
Sonogashira coupling.

Alternatively, amino-EO6-carboxylic acid was used in combination with 3-buten-1-
amine to obtain access to 2 and with tert-butyldimethylsilyl (t-BDMS) ether of ethanolamine
to furnish 3. The π-extended benzothiadiazole 4 was prepared by Sonogashira coupling
of 4,7-dibromo-2,1,3-benzothiadiazole and 4-ethynylbenzyl alcohol [30,31], and subjected
to esterification with pent-4-enoyl chloride and a second Sonogashira coupling with 4-
ethynylbenzyl alcohol to afford the emitter 5 (Scheme 1b). Moreover, a second benzothiadi-
azole derivative, 6, was prepared via protection of the hydroxy functional group of 4 as a
t-BDMS ether.
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Scheme 2. (a) Synthesis of the new sensor molecules featuring a benzothiadiazole emitter and a
naphthalene diimide quencher connected by a hydrocarbon linker (D-C12-A) or an oligo(ethylene
oxide) linker (D-EO6-A). (b) Synthesis of a hydroxy-functionalized fluorophore–quencher pair (HO-
D-EO6-A-OH).

Esterification reactions between the various alcohol and acid-terminated building
blocks were carried out to prepare the target molecules, in which the emitter and quencher
dye motifs are linked by a spacer. Benzothiadiazoles are known as electronically deficient
emitters [30,31], which act as donors (D) with respect to the quenching naphthalene di-
imde acceptor (A) in the present system. A carbodiimide-mediated reaction between the
naphthalene diimides 1 or 2 and the benzothiadiazole 5 was carried out to access D-C12-A
and D-EO6-A, which feature an aliphatic and an oligo(ethylene oxide) linker, respectively
(Scheme 2a). The successful formation of the target compounds was confirmed by 1H and
13C NMR spectroscopy and mass spectrometry (Figures 2 and S2). Compared to the 1H
NMR spectrum of 5, the splitting pattern of the aromatic protons at ca. 7.3 ppm changes
from a triplet to a doublet and the R–CH2–OH methylene signal undergoes an up-field
shift after esterification with 1 or 2 from around 5 ppm (Figure 2). The carbodiimide-
mediated esterification of 3 and 6 was followed by cleavage of the t-BDMS protecting
groups via reaction with silver fluoride and hydrochloric acid, providing access to the
hydroxy-terminated derivative HO-D-OE6-A-OH (Scheme 2b). The successful preparation
of HO-D-OE6-A-OH was confirmed by NMR spectroscopy (Figure S3).
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line). The comparison of the signals highlighted by the boxes indicates the successful formation of
the covalently connected fluorophore–quencher pair. The splitting pattern of the aromatic region of 5
(around 7.3 ppm) and the down-field shift of the signals associated with the –CH2-OH methylene
group after esterification (around 5 ppm) are diagnostic for the successful formation of D-EO6-A.

In order to explore the association of the π-extended benzothiadiazole (emitter) and
the naphthalene diimide (quencher), dilute solutions of D-C12-A and D-EO6-A in a mix-
ture of CHCl3 and MeOH (99.5:0.5 v/v%) were characterized by UV-vis absorption and
fluorescence spectroscopy and the data compared with the corresponding spectra of the
naphthalene diimides 1 or 2, the π-extended benzothiadiazole 5, and equimolar mixtures
of 1 or 2 and 5 (the concentration of all compounds was adjusted to c = 10 µmol L−1). A
comparison of the UV-vis absorption spectra of the solutions shows that the spectra of
D-C12-A and D-EO6-A mirror each other (Figure 3a,b). Moreover, the absorption spectra of
the covalently connected quencher–emitter pairs appear to be superpositions of the spectra
of the individual dye motifs 1 or 2 and 5 (Figure 3a,b). In order to record the fluorescence
spectra of these solutions, excitation wavelengths (λex) of 417, 405, 400, and 385 nm were
screened. Based on the recorded spectra for the different solutions (Figures S4 and S5), all
emission spectra were subsequently recorded with an excitation wavelength of 417 nm. At
this wavelength, only the emitter moieties absorb light and are electronically excited, which
enables direct assessment of any quenching effects by comparing the emission intensities
of the various solutions. The recorded spectra show that the emission intensity at 505 nm
shows only minor changes when quenchers 1 or 2 are added to emitter 5, i.e., in solutions
containing separated emitter–quencher pairs, whereas a considerable reduction of the
emission intensity to ca. 43% of that of 5 is seen in D-C12-A and D-EO6-A (Figure 3c,d).
We note that the quenching effect is less pronounced than in the corresponding rotax-
anes comprising the same quencher–emitter pair, in which the quenching effect is almost
quantitative [11].
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To exclude the possibility that the observed quenching effect was caused by intermolec-
ular interactions, aliquots of either 1 or 2 were added to solutions of 5 and the emission
intensity was monitored (Figure S6). No reduction in fluorescence intensity was observed,
even after addition of an excess of 40 equivalents of the different naphthalene diimide
derivatives to solutions of 5. Moreover, further reference experiments showed that the re-
duced emission intensity of solutions of D-C12-A and D-EO6-A is independent of changes
in temperature (Figures S7–S9) and concentration (Figure S10) within the experimentally
explored conditions. Thus, the data show unequivocally that the quenching of the emission
of the benzothiadiazole moiety in the investigated solutions of D-C12-A and D-EO6-A is
due to an intramolecular effect that originates from the close proximity of the emissive
benzothiadiazole and the quenching naphthalene diimide, which indicates the formation
of dynamic cycles (Figure 1). This interpretation appears to be further supported by the
observed shift in the positions of the 1H NMR signals of D-EO6-A compared to the signals
observed for the quencher 2 (Figure 2).

With these findings in hand, the influence of the solvent polarity and the effect of
inorganic salts on the emission characteristics of D-C12-A and D-EO6-A were investigated.
Solutions of D-C12-A, the individual compounds 1 and 5, and the mixture 1/5 in different
mixtures of methanol and chloroform were thus investigated; the MeOH/CHCl3 ratio was
varied from 0.5:99.5 to 50:50 to 99.5:0.5 v/v% (Figure S11). Compared to solutions of 5 and
the mixture 1/5, spectra of solutions of D-C12-A display a pronounced decrease in the fluo-
rescence intensity of the band at 505 nm and a concomitant bathochromic shift to 530 nm
with increasing solvent polarity (Figure S11). These changes are reflected in photographs of
the cuvettes taken under UV-light illumination (λex = 365 nm, Figure S11). In solutions with
a mixture of 99.5:0.5 v/v% MeOH/CHCl3 the emission is completely quenched; however,
the changes observed in the absorption spectra in the various solvent mixtures suggest
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that the reason for this behavior is an aggregation of D-C12-A on account of decreased
solubility in the polar solvent mixture (Figure S11). Notably, however, the recorded fluo-
rescence spectra of solutions of D-EO6-A, which exhibits an increased solubility in polar
solvents, suggest similarly pronounced emission quenching with increasing solvent polar-
ity (Figure 4). Indeed, the corresponding UV-vis absorption spectra in solutions of varying
polarity mirror each other, suggesting that D-EO6-A remains molecularly dissolved in these
solutions. Thus, at least in solutions of D-EO6-A in polar solvent mixtures, the attractive in-
tramolecular interactions among the benzothiadiazole and naphthalene diimide motifs lead
to the formation of supramolecular cycles, in which the emission of the benzothiadiazole
emitters is efficiently quenched.
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Figure 4. Emission spectra (top) and UV-vis absorption spectra (bottom) of D-EO6-A and reference
compounds 2 and 5 as well as of equimolar mixtures of 2/5 in MeOH/CHCl3 solutions of (a) 0.5:99.5,
(b) 50:50, and (c) 99.5:0.5 v/v%. The insets show photographs of the solutions that were illuminated by
UV light (365 nm). The concentration of all solutions was 10 µmol L−1, and an excitation wavelength
(λex) of 417 nm was used.

Since oligo(ethylene oxide)s are known chelators of cationic alkaline or alkaline earth
metal ions [32], effects caused by the addition of the triflate salts of lithium, sodium,
potassium, barium, magnesium, and calcium on the fluorescence emission of D-EO6-A
were explored. The same experiments were carried out for reference purposes with D-
C12-A, as its short alkyl spacer between the quencher-emitter pair should not promote
binding to these metal ions. Emission spectra were recorded in MeOH/CHCl3 (50:50 v/v%)
solutions of D-EO6-A (Figure 5 and Figure S12) and D-C12-A (Figure S13) before and after
addition of 5 mg of the different metal salts.
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This solvent mixture was selected because the formation of cyclic structures is (vide
supra) incomplete in the absence of any metal salt. As expected, the addition of the various
metal salts had no impact on the emission intensity of D-C12-A (Figure S12). In contrast, the
benzothiadiazole emission was slightly reduced upon addition of sodium and potassium
salts to solutions of D-EO6-A (Figure 5), which is consistent with the coordination of
the cations by the oligo(ethylene oxide) linker and a concomitantly increased proximity
between the donor and acceptor moieties [33], as previously reported for charge-transfer
complexes [34,35].

To incorporate the new motifs into polymers in which their self-assembly would lead
to the formation of intramolecular loops, we initially explored the suitability of the terminal
double bonds in D-C12-A and D-EO6-A for thiol-ene click reactions with thiol-terminated
PLA, however, this approach was unsuccessful (Figures S14 and S15). No conversion of
the double bonds could be observed, as indicated by a comparison of the 1H NMR spectra
of D-C12-A recorded before and after the reaction (Figures S14 and S15). To overcome this
issue, the incorporation of the hydroxy-terminated HO-D-EO6-A-OH into polyurethanes
(PUs) was pursued (Scheme 3). Thus, a small amount (7 mg, 0.18 wt%) of HO-D-EO6-A-
OH was employed as a co-monomer in the polyaddition reaction of poly(tetrahydrofuran)
(p(THF)), methylene diphenyl diisocyanate (MDI), and butanediol (BDO; Scheme 3) [11,20].
The resulting polymer (PU-D/A) was characterized via size exclusion chromatography
(SEC), 1H NMR spectroscopy, thermogravimetric analysis (TGA), and differential scanning
calorimetry (DSC; Figure S16). SEC traces indicate a number-average molecular weight
of Mn = 46 kg mol−1 and a dispersity of Ð = 1.9. The 1H NMR spectrum shows the
characteristic PU signals, although due to the low concentration no signals of the HO-
D-EO6-A-OH residues were observed. The recorded TGA traces indicate an onset of
degradation at ca. 240 ◦C. The first DSC heating trace of samples of the as-prepared
polymer, moreover, feature an endothermic transition at ca. 8 ◦C that is absent in all
subsequent heating traces; the latter can be tentatively assigned to the melting transition of
the semicrystalline p(THF) domains that form in solvent-cast samples.

Thin films of PU-D/A were prepared by solvent casting from THF solutions. Similar
PU-based materials that feature other dye systems have recently been reported, and the
mechanical properties of such polymer films have been extensively described in several
studies [8,11,15–17]. In order to determine whether the influence of solvent polarity on
the self-assembly and emission characteristics observed in solution could be observed for
PU-D/A films, solvent-cast films of the physically cross-linked PU were swollen in solvent
mixtures of varying polarity, i.e., in CHCl3, CHCl3 (with fast addition of an excess of MeOH),
MeOH/CHCl3 (50:50 v/v%), and CHCl3 (with slow addition of MeOH). Photographs of
the different samples were taken under UV light illumination (365 nm) in both the swollen
state of the physically cross-linked materials and after drying (Figure 6a).
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Scheme 3. Synthesis of a polyurethane containing the loop-forming sensor moiety. In a pre-
polymerization step, HO-D-EO6-A-OH and 2000 g mol−1 poly(tetrahydrofuran) (p(THF)) were
reacted, with an excess of methylene diphenyl diisocyanate (MDI) using dibutyltin laureate (DBTL)
as catalyst. After 3 h, 1,4-butanediol (BDO) was added as a chain extender and the polymerization
reaction was allowed to continue for 48 h at room temperature, yielding PU-D/A.
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of MeOH, an MeOH/CHCl3 (50:50 v/v%) mixture, and CHCl3 followed by the slow addition of
MeOH. The bottom row shows the same samples after drying by solvent evaporation at room
temperature. (b) Emission spectra (λex = 305 nm) of a dry (black line), CHCl3-swollen (turquoise
line), and MeOH-swollen (green line) film of PU-D/A. (c) MeOH and CHCl3 uptake of PU-D/A films
determined gravimetrically after swelling of the samples for 5 h. Values represent averages of three
individual measurements ± standard error of mean. (d) Photographs of a solvent-cast PU-D/A film
that was swollen in CHCl3 (left) and images taken during dropwise addition of methanol. All images
were recorded under UV light illumination (365 nm).

The images show clearly that the solvatochromic effect is retained for PU-D/A films.
Upon increasing the solvent polarity, the fluorescence intensity is reduced and the emission
color is red-shifted (Figure 6b), as indicated by the green emission color of the CHCl3-
swollen samples changing to yellow upon the slow addition of methanol. After drying,
the light blue fluorescence of the solvent-cast films is restored, which indicates that the
effect is neither driven by the extent of swelling (CHCl3 > MeOH > dry film) (Figure 6c)
or by aggregation-induced quenching effects. To further demonstrate the solvatochromic
change in the emission, a solvent-cast PU-D/A film was swollen in CHCl3 and the emission
was monitored during the dropwise addition of methanol (Figure 6d). The still images
from the recorded video show that the addition of methanol results in an immediate shift
in fluorescence color with a concomitant decrease in emission intensity, corroborating
the conclusion that increased polarity leads to an association of the donor and acceptor
moieties in these physically cross-linked polymer films, presumably under the formation
of intramolecular loops.

3. Conclusions

In summary, we report a facile method to synthetically access covalently connected
dye pairs that combine acceptor and donor motifs into a linked structure along with an
investigation into their spectroscopic properties. The two motifs, D-C12-A and D-EO6-A,
combine a naphthalene diimide quencher with a benzothiadiazole emitter, and can be
prepared in six steps from commercially available starting materials. Our detailed spectro-
scopic investigation shows that the covalent connection of emitting and quenching moieties
via a spacer of appropriate length affords molecules than can self-assemble into (dynamic)
cyclic structures via intramolecular association of the donor and acceptor moieties. The
extent of ring formation, and thus of quenching of the benzothiadiazole emission, depends
on solvent polarity and can be controlled by other factors that affect the association of the
dyes. The new sensor molecules were incorporated into the backbone of a polyurethane,
and a similar solvatochromic quenching effect was observed for swollen polymer films
to which polar solvents were added. Based on these results as well as on very promising
studies with structurally related covalently-linked dye pairs [10,25–27], we speculate that
future variants of such sensor molecules with increased interactions among the quencher
and emitter moieties might afford polymer systems in which the donor–acceptor pairs are
fully assembled in the idle state; the resulting molecular loops should serve as efficient
sensors for mechanical deformation.

4. Materials and Methods
4.1. Materials

Unless stated otherwise, all chemicals and solvents were purchased at a purity of
95% or higher and used without further purification. Reactions were carried out us-
ing dried Schlenk glassware under nitrogen atmosphere. Deuterated solvents were pur-
chased from Cambridge Isotope Laboratories, Inc. or Sigma Aldrich. Naphthalene-1,4,5,8-
tetracarboxylic dianhydride, 12-aminolauric acid, and 4,7-dibromo-2,1,3-benzothiadiazole
were purchased from TCI. (Triethyl)amine, hydrochloric acid (conc.), copper (I) iodide,
(diisopropyl)amine, 4-ethynylbenzyl alcohol, dry (diethyl)amine, dry (triethyl)amine, 4-
pentenoyl chloride, imidazole, tert-butyldimethylsilyl chloride, 1-ethyl-3-(3-dimethylamino
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propyl)carbodiimid hydrochloride, poly(tetrahydrofuran), 4,4′-methylenebis(phenylisocyanate),
dibutyltin dilaurate, 1,4-butanediol, and the cross-coupling catalyst PdCl2(PPh3)2, 2-((tert-
butyldimethylsilyl)oxy)ethanamine were purchased from Sigma Aldrich. The solvents
N,N′-dimethylformamide, acetone, methanol, tetrahydrofuran, chloroform, and ethyl
acetate for reactions and for solution-phase spectroscopy were purchased from Fisher
Scientific. 3-Buten-1-amine was purchased from ABCR. For column chromatography, chlo-
roform and hexane were purchased from CARLO ERBA reagents and dichloromethane,
ethyl acetate, and ethanol were purchased from Reactolab. 21-Amino-4,7,10,13,16,19-
hexaoxahenicosanoic acid was purchased from Iris Biotech. Dry N,N′-dimethylformamide,
dry tetrahydrofuran, dry inhibitor free tetrahydrofuran, dry chloroform, dry acetonitrile,
and silver fluoride were purchased from Acros Organics. Sodium bicarbonate, sodium
chloride, sodium sulfate, and magnesium sulfate were purchased from Carl Roth. 4-
(Dimethylamino)pyridinium-p-toluenesulfonate was prepared from 4-(dimethylamino)
pyridin and p-toluenesulfonic acid as previously reported [36].

4.2. Nuclear Magnetic Resonance (NMR)

NMR spectroscopy was carried out on a Bruker Avance DPX 400 spectrometer at a
temperature of 297.2 K with frequencies of 400.19 MHz for 1H nuclei and 100.63 MHz for
13C nuclei. The recorded spectra were calibrated to the residual solvent peak of DMSO-d6,
CDCl3, or THF-d8. Data were analyzed with the MestReNova software suite (ver. 12.0)
and chemical shifts δ are reported in parts per million (ppm) with coupling constant in
Hz (multiplicity: s = singlet, d = doublet, dd = double doublet, t = triplet, m = multiplet,
br = broad signal).

4.3. Mass Spectrometry (MS)

Mass spectrometry was carried out as service measurements by the Molecular and
Biomolecular Analysis Service (MoBIAS) of ETH Zürich. High-resolution matrix-assisted
laser desorption ionization (MALDI) mass spectrometry was carried out on a Bruker 9.4 T
FT-ICR solariX using trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malononitrile
(DCTB) as the matrix.

4.4. UV-Vis Absorption Spectroscopy

UV-vis absorption spectroscopy was carried out with a Shimazu UV-2401PC spec-
trophotometer. Quartz cuvettes (1 cm) were used.

4.5. Fluorescence Spectroscopy

Fluorescence spectroscopy measurements in solution and with solid samples were
recorded with a Horiba Fluorolog 3 spectrometer with right angle illumination, which was
equipped with a 450 W Xenon light source for excitation and a FL-1030-UP photomultiplier
as the detector.

4.6. Differential Scanning Calorimetry (DSC)

DSC measurements were carried out on a Mettler Toledo DSC 2 STAR system under a
nitrogen atmosphere with heating and cooling rates of 10 ◦C min−1 in a temperature range
from −80 to 200 ◦C.

4.7. Thermogravimetric Analysis (TGA)

TGA measurements were conducted on a Mettler Toledo TGA/DSC 1 STAR system
under ambient atmosphere in a temperature range from 25 to 600 ◦C and with a heating
rate of 10 ◦C min−1.

4.8. Photographs

Photographs were recorded using a Nikon D7100 digital camera with an AF-S DX
Zoom-NIKKOR 18–135 mm lens (f/3.5–5.6 G IF-ED).
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4.9. Flash Column Chromatography

Column chromatography was performed with an Isolera One column chromatography
system with a UV-vis detector.

4.10. Microwave Reactor

An Initiator8 microwave system equipped with an autosampler robot by Biotage was
used for all microwave reactions.

4.11. Size-Exclusion Chromatography (SEC)

SEC measurements were carried out on an Agilent 1200-series HPLC system equipped
with an Agilent PLgel mixed guard column (particle size = 5 µm) and two Agilent PLgel
mixed-D columns (ID = 7.5 mm, L = 300 mm, particle size = 5 µm). Signal collection was
performed with a miniDawn TREOS light scattering detector (Wyatt Technology Corp.), a
UV detector (Agilent 1200 series), and an Optilab REX interferometric refractometer. THF
was used as the eluent at a temperature of 30 ◦C with a flow rate of 1.0 mL min−1. The Astra
software suite (Wyatt Technology Corp.) was used for data treatment; number-average
molecular weights are provided in comparison with PS standards.

4.12. Protocol for the Preparation of PU-D/A Films

A sample of the polymer (0.2 g) was dissolved in THF (6.5 mL) over the course of
1 h and the solution was cast into a PTFE dish with a diameter of 6.5 cm. The film was
placed under an inverse funnel for controlled evaporation and allowed to dry for 18 h
under ambient conditions (23 ◦C) in a well-ventilated hood. The average film thickness of
solvent-cast samples was determined as ca. 0.06 mm.

4.13. Emission Spectra of Polymer Films

Emission spectra of solid films of PU-D/A samples were recorded with an Ocean
Optics USB 4000 spectrometer equipped with an Ocean Optics LS-450 LED light source and
an Ocean Optics QR230-7-XSR SMA 905 optical fibre. Measurements were carried out with
an excitation wavelength (λex) of 305 nm and an integration time of 5 s for each spectrum.
Spectra of swollen samples of PU-D/A were recorded after immersion in the solvent for
4 h and placement of samples on a glass slide substrate immediately prior to recording
the spectra.

4.14. Swelling Experiments

PU-D/A films (ca. 13–20 mg per sample) were immersed in either CHCl3 or MeOH
for 5 h and solvent uptake was measured gravimetrically immediately after removal of the
sample from the solvent-filled vial. For each solvent, three samples were prepared and the
average solvent uptake was determined. The following equations were used to calculate
the solvent uptake [37]:

mSolvent uptake = mSwollen polymer −mDry polymer

VSolvent uptake = mSolvent uptake/ρSolvent

Solvent uptake = VSolvent uptake/mDry polymer

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/gels8060350/s1, and includes Figures S1–S16, further experimental
details [28,36], and the detailed chemical characterization data for all compounds.
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