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Abstract Genetic variants in CYP/9A1, the gene encoding
aromatase, have been reported to be associated with circulat-
ing estrogen concentrations, a key risk factor for breast cancer.
The mechanism underlying this association is still unclear; it
has been suggested that some of these variants may alter the
expression and/or activity of aromatase. Here we analyzed the
expression of intra-tumoral CYP/9A1 messenger RNA
(mRNA) and the genotypes of rs10046, a well-characterized
single nucleotide polymorphism in CYP/9A1, in 138 breast
cancer patients and 15 breast cancer cell lines. The genotype
TT was detected in 36 patients and six cell lines, genotype CT
in 55 patients and five cell lines, and genotype CC in 28
patients and four cell lines. We found no evidence for a sig-
nificant association of CYPI9AI levels with rs10046 geno-
types, although expression tended to be higher in tumors and
cell lines with the homozygous risk genotype TT. We also
found no evidence for a significant association of rs10046
genotypes with breast cancer prognosis. In contrast, high
CYP19A1 expression was highly significantly associated with
a poor overall, disease-free, and metastasis-free survival in
estrogen receptor-positive but not negative breast cancer pa-
tients. Moreover, CYP19A1 mRNA was significantly elevated
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in postmenopausal patients and in patients older than 50 years,
and a trend towards a positive correlation with ER status and
ESRI mRNA expression was observed. These findings high-
light the key role of aromatase in estrogen receptor-positive
breast cancer biology.

Introduction

CYP19A1, a member of the cytochrome P450 gene superfamily,
encodes the enzyme aromatase, which catalyzes the last, rate-
limiting step in estrogen biosynthesis. By sequential hydroxyl-
ation, removal of the axial C-19 methyl group, and aromatization
of the A-ring, aromatase converts the androgens testosterone and
androstenedione to estradiol and estrone, respectively [1].
Lifetime exposure to elevated concentrations of circulating estro-
gen is an established risk factor for breast cancer, as are aspects of
physiology and lifestyle associated with these elevated levels,
such as early menarche, late menopause, nulliparity, high BMI,
oral contraceptives, and hormone replacement therapy [2-5].
Estrogen biosynthesis takes place primarily in the ovaries of
premenopausal women but switches to extra-gonadal sites such
as adipose tissue, skin, and muscle after menopause, concomitant
with the sites of highest aromatase expression [1]. Aromatase is
frequently overexpressed by breast tumor and adjacent stroma
cells [6, 7].

Aromatase inhibitors such as anastrozole, letrozole, and
exemestane are highly effective endocrine therapies of post-
menopausal, estrogen receptor (ER)-positive breast cancer,
prolonging the disease-free survival (DFS) and overall surviv-
al (OS) [8-10]. Conversely, high expression of aromatase has
been associated with a shortened survival, albeit inconsistent-
ly [11-18]. Unfortunately, only few of these studies have spe-
cifically analyzed ER-positive patients [16, 19].
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Genetic variants of CYPI9A] have been associated with
elevated circulating estrogen levels in pre- and postmenopaus-
al women and also in men [3, 20-23]. Per risk allele, the
estradiol/testosterone ratio was found increased by about
10%, which explains ~ 1.1-1.6% of its variance in postmen-
opausal women [3, 23]. By comparison, the BMI accounts for
~ 16% of the variance of circulating estrogen levels, and the
estimated overall heritability is about 40% [23, 24]. Since
elevated levels of circulating estrogen increase the risk of
breast cancer and other hormone-dependent cancers, it seems
plausible that CYPI9A1 variants associated with elevated es-
trogen levels should also be associated with an increased risk
of these cancers. However, whereas such an association has
been well-established for endometrial cancer [23], most
CYPI9A]I candidate SNP studies did not find an association
with breast cancer risk [25-31]. This may be due to differ-
ences in effect size: the odds ratio associated with a doubling
of circulating estradiol levels has been estimated to be 2.06
(95% CI, 1.47-2.89) for endometrial cancer, but only 1.29
(95% CI, 1.15-1.44) for breast cancer [2, 32].

The potential association of CYP/9A 1 variants with breast
cancer prognosis has also been investigated in detail. The CC
genotype of rs10046, one of the most extensively studied
CYPI19A] candidate SNPs, was found associated with a longer
disease-free survival of premenopausal, but not postmeno-
pausal breast cancer patients [33]. Likewise, decreased OS
and DFS were found for the minor allele of rs700519, which
is in linkage disequilibrium with rs10046, plus five other
CYPI9A1 SNPs [34]. Another CYP19A1 haplotype was asso-
ciated with a poor OS, DFS, and metastasis-free survival
(MFS) in premenopausal, ER-positive breast cancer patients
[35]. In contrast, two other large studies found no evidence for
an association of rs10046 and OS, DFS, and MFS in unselect-
ed breast cancer patients [36, 37].

The aim of our study was to analyze the association of
CYPI19A1 messenger RNA (mRNA) expression and the com-
mon SNP rs10046 with prognosis specifically in ER-positive
vs. ER-negative breast cancer patients. Moreover, we wanted
to investigate the association of CYP/9A expression with
widely used clinical and histopathological characteristics of
breast cancer, in particular the ER status and the age at onset.
Finally, by determining the association of rs10046 genotypes
with CYP19A1 expression, we addressed a proposed mecha-
nism by which genetic variants in CYP19A1 might affect cir-
culating estrogen levels and (breast) cancer risk.

Patients and Methods
Study Population

This study was approved and is annually reviewed by the
Institutional Review Board (IRB, “Ethikkommission”) of

the Medical University of Vienna, Austria (MUYV; protocol
141/2002). Written informed consent was obtained from pa-
tients recruited after the onset of the study. For those patients
who had undergone surgery before the onset of the study, a
waiver of specific informed consent was approved by the IRB.
One hundred and thirty-eight consecutive breast cancer pa-
tients treated between 1991 and 1994 at the Department of
Obstetrics and Gynecology, MUYV, were enrolled in this study.
Detailed follow-up records and fresh-frozen tumor tissue were
available for each patient. Only women of Western European
descent from the same geographical area were included.
Clinical and histopathological characteristics of the study pop-
ulation are shown in Supplementary Table 1. Molecular sub-
types were defined based on IHC analyses as follows: Triple
negative, ER—, PR—, and HER2—; HER2-enriched, ER—, PR
—, and HER2+; Luminal A, ER+ and/or PR+, HER2—; and
Luminal B, ER+ and/or PR+, HER2+. None of the patients
received any neoadjuvant therapy, or any treatment with aro-
matase inhibitors, or any treatment prior to tumor tissue isola-
tion. Thiry-five patients received adjuvant chemotherapy, 39
received tamoxifen anti-hormonal therapy, 37 received both,
and 21 received no systemic therapy. For six patients, the
records are incomplete. Of the 72 patients with chemotherapy,
the schemes were CMF (n = 36), modified CMF (n = 9), or
other (n = 27). Sixty-one patients were ER positive. Forty-
seven of those were treated with tamoxifen, and 14 were
not. Of the latter, four received chemotherapy, and ten no
systemic therapy.

DNA Isolation and Genotyping

Genomic DNA from 122 patients has been extracted previ-
ously from fresh-frozen primary tumor samples with the High
Pure PCR Template Preparation Kit (Roche, Vienna, Austria)
as described [38]. Genotyping of SNP rs10046 (CYP19 E10
¢.+19C>T) was performed by TagMan PCR with Genotyping
Master mix and allele-specific, fluorescently labeled probes
on a 7500 fast instrument following the manufacturer’s in-
structions (Applied Biosystems, Brunn/Gebirge, Austria;
Assay-ID # C__ 8234731 30). Twenty nanograms of geno-
mic DNA was used per reaction in a reaction volume of 10 pl.

qRT-PCR Analysis

Isolation of total RNA from 111 fresh-frozen tumor samples
with TRIreagent (Sigma), quality control with the Bioanalyser
2100 (Agilent), and Reverse Transcription with the High-
Capacity complementary (cDNA) Archive Kit (Applied
Biosystems, Brunn/Gebirge, Austria) has been described pre-
viously [38, 39]. For 17 patients, CYP/9A1 mRNA levels
were also determined in one lymph node metastasis each in
addition to the primary tumor. In each of our qRT-PCR runs,
which were conducted in 96-well plates, two to four negative
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controls (2.5 pul ddH20 instead of cDNA) were included and
run in parallel. No signal was obtained in any of these reac-
tions. As a positive control, duplicate samples of serial dilu-
tions of a cDNA standard (cultured normal breast epithelial
cells; HMECs) were included in each run. Each sample was
analyzed in duplicate by quantitative reverse transcription
PCR (gRT-PCR) on an Applied Biosystems 7500 fast real-
time PCR instrument, using the following gene-specific
primers and fluorescent probes obtained from Applied
Biosystems: CYP19A1 (aromatase), hs 00903413; ESRI (es-
trogen receptor 1; ERe), hs 00174860; CDH1 (E-cadherin),
hs 00170423; and ACTBI (f3-actin; control), hs 99999903.
The mRNA levels of CYPI9A1, ESRI, and CDHI were nor-
malized to those of ACTB/! in each sample and were further
normalized to controls by setting the mean level of four sam-
ples of normal breast tissue to unity (1) and expressing the
levels of all other samples relative to those. For expression
analyses in breast cancer cell lines, four non-cancer cell lines
were used as normalization controls (HMEC, Hs578Bst,
MCF10A, and MCF10F). Thus determined CDHI mRNA
levels in breast cancer cell lines were assigned to a positive
or negative CDH| status by setting the mean level of the non-
cancer cell lines HMEC, MCF10A, and MCF10F to unity and
defining cell lines with at least one tenth that level as positive
and all others as negative. Of note, we found a large difference
of at least 75-fold between CDHI1-positive and CDH1-
negative cell lines (data not shown). All relative mRNA ex-
pression levels are presented as — AACt values (i.e., as log(2)
values) as described [38].

Cell Lines

Finite lifespan untransformed human mammary epithelial
cells (HMEC) were kindly provided by M. R. Stampfer and
grown in MEGM medium [40]. All other cell lines were pur-
chased from DSMZ (“Deutsche Sammlung von Mikro-
Organismen und Zellkulturen) or ATCC (American Type
Culture Collection) and were grown at 37 °C, 5% CO,, and
100% humidity as described [41]. DSMZ and ATCC authen-
ticate all cell lines by STR profiling and other methods before
distribution. Total RNA and genomic DNA were isolated from
all cell lines within three to eight passages after receipt as
described previously [41, 42].

Statistical Analyses

Statistical analyses were performed with R version 3.2.3
(“Wooden Christmas-Tree”), an open-source language and
environment for statistical computing [43]. Differences be-
tween subgroups of patients or cell lines with respect to rela-
tive CYP19A1 mRNA levels were analyzed by unpaired, two-
sided ¢ tests unless indicated otherwise. All P values shown
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are two-sided. P < 0.05 was considered statistically
significant.

Survival Analyses

Kaplan-Meier plots were computed with the R survival pack-
age [43]. P values to Kaplan-Meier curves were calculated by
log-rank tests as described [44]. “Events” were defined as
breast-cancer related death in the overall survival, and as af-
firmation of a distant metastasis, a second primary breast tu-
mor, or a recurrent primary tumor in the disease-free survival.
In the analyses of metastasis-free survival, the occurrence of a
distant metastasis was considered as an event, and in the anal-
yses of lung-, liver-, and bone-metastasis-free survival, only
metastases to the respective target organ were considered.
Among the 100 patients for whom expression of CYP19A1
could be determined, 57 events in the overall survival, 62 in
the disease-free survival, and 52 in the metastasis-free survival
were observed. The mean follow-up times were 7.6 + 5.1 years
for the overall survival (median, 6.7 years; range, 0—
14.7 years), 5.5 £ 5.3 years for the disease-free survival (me-
dian, 3.4 years; range, 0—14.7 years), and 6.3 + 5.4 years for
the metastasis-free survival (median, 4.4 years; range, 0—
14.7 years). For those patients who were still event-free at
the end of follow-up, the mean follow-up times were
11.0 £+ 4.8 years (median, 13.1 years; range, 0—14.7 years)
for the overall survival, 10.1 £+ 5.2 years (median, 12.8 years;
range, 0—14.7 years) for the disease-free survival, and
9.9 + 5.2 years for the metastasis-free survival (median,
12.8 years; range, 0-14.7 years). Details for all subgroups
(ER positive and negative; CYP19A1 high and low; and
rs10046 genotypes) and for all survival analyses are provided
in Supplementary Tables 2 and 3.

Results

Association of CYPI19A1 mRNA Expression with rs10046
SNP Genotype and ER Status

Genotypes of SNP rs10046 (CYP19 E10 ¢.+19C>T), located
in the 3'UTR in exon 10 of the CYP19A 1 gene, were success-
fully determined in 119 breast cancer patients. The study pop-
ulation exhibited a frequency of 53.4% for the T-allele and
was in Hardy-Weinberg equilibrium with respect to rs10046
genotypes (P = 0.52). Clinical characteristics and genotypes
of'these patients are shown in Supplementary Table 1. rs10046
was also genotyped in 15 human breast cancer cell lines, and
genotype TT was detected in six (Camal, Hec1937, Hs578T,
MDA-MB-231, MDA-MB-468, and ZR75-1), genotype CT
in five (AU565, Heel143, MDA-MB-435, MDA-MB-453,
and SKBR3), and genotype CC in four cell lines (BT474,
Kpll, MCF7, and T47D). CYP19A 1 mRNA expression levels
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were also determined for these 15 cell lines and 100 tumor
samples. Overall, CYPI9AI levels were not significantly as-
sociated with rs10046 genotypes in breast tumors or breast
cancer cell lines (P = 0.256 and P = 0.061, respectively;
ANOVA; Fig. 1a, b). However, mean CYP/9A1 mRNA levels
in samples with the TT genotype were considerably higher
than those in CC samples both in tumors (1.9-fold; P = 0.11,
t test; Fig. 1a) and in cell lines (9.2-fold; P = 0.01; Fig. 1b).
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Fig. 1 Association of CYPI9A1 mRNA expression with a, b rs10046
SNP genotype, ¢, d ER (estrogen receptor) status, and e, f ESR/ (estrogen
receptor 1) mRNA expression. Analyses are in human primary breast
tumors (a, ¢, ¢) and in human breast cancer cell lines (b, d, f). CC, CT,
and TT are the genotypes of SNP rs10046. The numbers of patients and
cell lines in each group (1) are shown in parentheses. The y-axes in a—f
show normalized relative CYP/9A1 mRNA levels (log(2) values). P
values (P, in parentheses above each panel) were determined by a, b
ANOVA, ¢, d unpaired, two-sided ¢ tests, and e, f Spearman’s rank
correlation. r, Spearman’s rho (rank correlation coefficient)

Next, potential associations of CYPI9AI expression with
estrogen receptor (ER) status were investigated (Fig. 1c, d).
Whereas no significant association was found in breast tumor
samples (P = 0.337, ¢ test; Fig. 1¢), ER-positive breast cancer
cell lines exhibited 5.1-fold lower mean CYP/9A] mRNA
levels than ER-negative ones (P = 0.050; Fig. 1d).
Correlations of CYP19A1 with ESRI (estrogen receptor 1)
mRNA levels were assessed using Spearman’s rank correla-
tion coefficient and visualized by scatterplots (Fig. le, f). No
such correlation was observed in tumors (#=0.157, P=0.121;
Fig. le). In contrast, a significant negative correlation of
CYPI19A1 and ESRI1 levels was found in tumor cell lines
(r=-0.639, P =0.012; Fig. 1f).

Analysis of CYP19A 1 Expression in Human Breast Cancer
and Non-cancer Cell Lines

We quantified CYP/9A1 mRNA expression levels in 15
human breast cancer cell lines and in four untransformed
breast epithelial cell lines (Fig. 2). Breast cancer cell lines
tended to have 4.5-fold lower mean CYP/9A1 expression
levels compared to normal, untransformed breast
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Fig. 2 CYP19A1 mRNA expression in human untransformed breast
epithelial and breast cancer cell lines. The y-axis shows mean relative
CYPI9A1 mRNA levels (log(2) values) of duplicate measurements.
Expression levels of the indicated individual untransformed cells
(Normal, black bars), breast cancer cell lines with an epithelial
morphology (Epithelial, white bars), and breast cancer cell lines with a
fibroblastoid morphology in culture (Fib, hatched bars) are shown. For
normalization, the mean expression level of the four untransformed cell
lines was set to unity (i.e., 2° in graph), and the levels of individual cell
lines are presented relative to those. Boxes underneath the bar graph
indicate a positive (black) or negative (white) status of ER, PR, and
CDH1 (E-cadherin). ER and PR status are based on [45, 46], and
CDHI status is based on determination of mRNA levels by qRT-PCR.
Gray, status not available
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epithelial cell lines (P = 0.06, ¢ test). In an exploratory
analysis, we found that this difference resulted mostly
from cell lines with an epithelial morphology and a pos-
itive E-cadherin status (Fig. 2). Conversely, E-cadherin-
negative tumor cell lines with a fibroblastoid morphology
expressed CYPI9AI at roughly the same level as untrans-
formed cell lines. Accordingly, fibroblastoid breast cancer
cell lines exhibited a 5.9-fold higher mean CYPI9AI ex-
pression compared to cell lines with an epithelial pheno-
type (P = 0.006; Fig. 2). The ER-positive cell lines within
this panel (BT474, Camal, Kpll, MCF7, T47D, and
ZR75-1) all exhibited an epithelial morphology except
Camal. The five ER-positive epithelial cell lines were
among those with the lowest CYPI9A1 expression (Figs.
1d and 2).

Association of CYPI9A 1 Expression with Clinical
and Histopathological Characteristics in Primary Human
Breast Tumor Tissue

Relative CYPI19A1 mRNA expression levels were quantified
in primary tumor tissue samples of 100 breast cancer patients.
Associations of CYPI9A1 expression with well-established
clinical and histopathological characteristics of breast cancer
were visualized with boxplots (Fig. 3). For 17 of these pa-
tients, one lymph node metastasis each was also analyzed,
which exhibited 1.5-fold lower mean CYP19A1 levels than
their matched primary tumors; however, this difference was
not significant (P = 0.113; Fig. 3h). Mean CYP/9A1 expres-
sion levels were found to be significantly elevated in breast
tumor tissue samples of patients with an age at breast cancer
onset > 50 years (1.9-fold; P = 0.007; Fig. 3a) and in post-
menopausal patients (1.7-fold; P =0.047; Fig. 3b). In contrast,
no significant association with CYPI9A1 expression was
found in analyses of the tumor type, size, stage, and grade,
as well as for lymph node status, p53-, PR-, HER2-status, and
the molecular subtype (Fig. 3c—g, i-1), consistent with previ-
ous reports [13, 15, 19, 47-50]. Interestingly, a positive p53
status tended to be associated with both a lower expression of
CYPI9A1I (Fig. 3i) and a higher frequency of the rs10046 CC
genotype (Supplementary Table 1).

Association of CYPI9A 1 Expression with Breast Cancer
Prognosis

Patients were divided into two subgroups based on CYPI9A1
expression by applying maximally selected log rank statistics
to define a cutoff in unselected patients as described [44].
Subsequently, Kaplan-Meier analyses of the overall survival
(OS), disease-free survival (DFS), and metastasis-free surviv-
al (MFS) were performed in unselected patients (Fig. 4a—c), in
ER-positive patients (Fig. 4d—f), and in ER-negative patients
(Fig. 4g—i). Unselected patients with a high CYPI9AI1
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expression exhibited a significantly decreased MFS
(P = 0.026; Fig. 4c), as well as a trend towards a decreased
OS (P = 0.115; Fig. 4a) and DFS (P = 0.082; Fig. 4b) com-
pared to patients with a low CYP19A1 expression.

In ER-positive patients, highly significant differences between
patients with high vs. low CYPI9A1 expression were observed
with respect to OS (P = 3.1 x 1073; Fig. 4d), DFS
(P =2.1 x 107% Fig. 4e), and MFS (P = 1.5 x 10", Fig. 4f).
In each of these analyses, patients with a high CYP19A1 expres-
sion exhibited a very poor survival. All ER-positive patients with
a high CYPI9A1 expression (n = 11) progressed to metastasis
and/or recurrent disease within less than 8 years after diagnosis
(Fig. 4e, f). In contrast, ER-negative patients exhibited no differ-
ence in OS, DFS, or MFS between high and low CYPI9A1
expressers (Fig. 4g—i), indicating that the shorter OS, DFS, and
MEFS of unselected patients with high CYP/9A1 expression re-
sults exclusively from the ER-positive subgroup. Adjuvant ta-
moxifen therapy affected the association of CYP/9A1 expression
with the survival of these patients more modestly than ER status
(Supplementary Fig. 6).

In a hypothesis-generating analysis, metastases to the
major target organs lung, liver, and bone were further ex-
amined (Supplementary Fig. 1; Supplementary Table 3).
Unselected patients with high CYPI9A1 expression
showed a trend towards decreased lung-MFS (P = 0.068)
and bone-MFS (P = 0.072) compared to patients with low
CYPI19A1 expression, whereas no association was found in
the analysis of liver-MFS (P = 0.605; Supplementary Fig.
1). ER-positive patients with high CYP/9AI expression
exhibited a very poor survival free of lung metastases
(P =63 x 1077 and bone metastases (P = 1.7 x 10°%)
and a significant difference in liver-MFS (P = 0.003;
Supplementary Fig. 1). Specifically, all uncensored ER-
positive patients with a high CYPI9A1 expression
(n = 11) had developed both lung and bone metastases
within 10 years after diagnosis (Supplementary Fig. 1).
CYPI19A1 expression was not associated with lung- and
bone-MFS in ER-negative patients. In contrast to all other
results of our survival analyses, high CYP/9A expression
was associated with a good prognosis with respect to liver-
MFS; no liver metastases were observed in this subgroup
of 14 patients up to 14 years postdiagnosis (P = 0.043;
Supplementary Fig. 1). However, it should be noted that
these analyses are limited by the smaller number of events
compared to the analyses of OS, DFS, and MFS
(Supplementary Tables 2 and 3).

Association of rs10046 SNP Genotypes with Breast
Cancer Prognosis

The overall survival (OS), disease-free survival (DFS), and
metastasis-free survival (MFS) associated with the three
rs10046 genotypes CC, CT, and TT were compared in
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Kaplan-Meier analyses of unselected patients, ER-positive pa-
tients, ER-negative patients, premenopausal patients, and post-
menopausal patients (Supplementary Figs. 2 and 4;
Supplementary Table 2). No significant differences in any of
these analyses were observed. Metastasis to the major target
organs lung, liver, and bone was further examined
(Supplementary Fig. 3; Supplementary Table 3). The survival
analyses in Supplementary Figs. 2 and 3 revealed that patients
with the TT genotype tended to have a better prognosis than CC
patients if they were ER positive, but a poorer prognosis if they
were ER negative. This was most pronounced in the
metastases-free survival of ER-negative patients, where the
TT genotype was associated with a considerably higher fre-
quency of events than the CC genotype, and the CT genotype
was intermediate (Supplementary Figs. 2 and 3; Supplementary
Table 2). However, none of these trends was significant.
Likewise, patients with the TT genotype tended to have a better
prognosis than CC patients if they had received adjuvant

tamoxifen therapy, but a poorer prognosis if they were not
treated with tamoxifen (Supplementary Fig. 5).

Discussion

Breast tumor cells and/or their surrounding stroma frequently
express elevated levels of aromatase, producing sufficient lo-
cal estrogen concentrations to sustain tumor cell proliferation
and progression [6, 7]. Moreover, aromatase inhibitors are a
current first line endocrine therapy for postmenopausal, hor-
mone receptor-positive breast cancer [9, 10]. Accordingly, the
potential impact of aromatase expression and genetic variants
in CYPI9AI on levels of circulating estrogen, breast cancer
risk and prognosis, and response to endocrine therapy has
been extensively studied [7, 30, 51, 52]. Among other
CYP19A1 variants, the rs10046 SNP has been associated with
increased levels of circulating estrogen [3, 20-23] and an
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Fig. 4 Association of CYPI9AI overall survival
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increased breast cancer risk in some studies [25, 28].
However, most studies, including the larger ones and meta-
analyses, did not find an association of rs10046 with breast
cancer risk [26, 27, 29-31].

We observed a very poor overall, disease-free, and
metastasis-free survival of ER-positive breast cancer patients
with a high CYPI9A1 expression. Whereas high levels of
significance were obtained in ER-positive patients, aromatase
expression was not significantly associated with survival in
ER-negative patients. Since aromatase functions in the bio-
synthesis of estrogen, which exerts its breast cancer-
promoting effects primarily via the estrogen receptor, these
findings appear biologically plausible [5, 52, 53]. Moreover,
since aromatase inhibitors prolong the disease-free and overall
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survival of ER-positive breast cancer, it seems reasonable that
high aromatase expression has the opposite effect [8, 9]. A
shortened disease-free survival of unselected breast cancer
patients with a high CYP/9A1 mRNA expression has been
reported previously [15]. Moreover, higher CYPI9A1
mRNA levels were significantly associated with the incidence
of metastasis and local recurrence as well as breast cancer-
related death [15]. Consistent with our results, aromatase
IHC positivity was associated with a shortened overall surviv-
al in ER-positive but not ER-negative breast cancer [16].
However, other studies found no evidence for a signif-
icant association of aromatase mRNA, protein, or activity
with prognosis in unselected [11-14, 17] or in ER-positive
patients [19]. Intriguingly, low intra-tumoral CYPI9A1
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mRNA expression was significantly associated with an in-
creased locoregional recurrence rate in premenopausal pa-
tients younger than 40 years [18]. These authors suggested
that, since estrogen represses the CYP/9AI promoter,
CYP19A1 mRNA levels might be inversely correlated with
the high circulating estrogen levels in premenopausal pa-
tients, consistent with the findings by us and others that
CYPI19A1 levels are lower in premenopausal patients and
in patients younger than 50 years [14, 54]. Accordingly,
high estrogen levels might be causal to both low
CYPI9A1 expression and a high recurrence rate in these
premenopausal patients [18]. Three studies have shown
that in contrast to low expression, the complete absence
of CYP19A1 protein or mRNA expression was associated
with a poor prognosis [17, 50, 54]. These seemingly para-
doxical results have been suggested to possibly be due to
prior adjuvant or neoadjuvant treatment with aromatase
inhibitors and/or tamoxifen or to reflect ongoing progres-
sion of the disease to a hormone-independent state [17, 50,
54]. We found that a low CYPI/9AI expression as well as
the TT genotype of rs10046 tended to be associated with a
favorable prognosis in patients with, but not those without
adjuvant tamoxifen therapy (Supplementary Figs. 5 and 6).
However, the number of ER-positive, untreated patients
was too small to discern the potential effects of ER status
and tamoxifen therapy.

In contrast to CYPI9A1 expression, we found no signifi-
cant association of rs10046 genotypes with breast cancer
prognosis in our analyses of the overall survival, disease-free
survival, and metastasis-free survival in unselected, ER-posi-
tive, and ER-negative patients (Supplementary Figs. 2 and 3).
Previous studies have also found either no association or an
association in specific subgroups, specifically of the DFS in
premenopausal patients [33—37]. In contrast, we did not find a
significant association in premenopausal patients. This may in
part be due to small numbers, since there were only 33 pre-
menopausal patients with confirmed rs10046 genotypes in our
study population (Supplementary Fig. 4).

Like other CYP19A1 variants, the rs10046 SNP has been
associated with circulating estrogen levels and the estradiol/
testosterone ratio [3, 20-23]. Per T-allele of rs10046, the
estradiol/testosterone ratio was found increased by ~ 10% [3,
23]. rs10046 is located in the 3’ UTR of CYPI9A1 and might
regulate mRNA stability by miRNA binding and/or other
mechanisms. Alternatively, rs10046 could be in strong linkage
disequilibrium with one or more causal promoter SNPs rather
than having a direct causal effect itself. In a recent systematic
analysis, one of several CYP19A1 SNPs other than rs10046,
but in linkage disequilibrium with it, was demonstrated to
indeed be causal to the elevated estrogen levels [23]. One
study has reported that the T-allele of rs10046 is associated
with elevated levels of CYP/9A] mRNA in breast tumors
[25]. However, that study used a now out-dated method of

RNA quantification and did not report actual mRNA levels.
Instead, the samples were grouped according to CYP/9A1
levels above and below median and subjected to chi-square
tests [25]. We are not aware of any additional, more recent
analyses of the association of rs10046 genotype with aroma-
tase expression in breast cancer. Here, we found no evidence
for a significant association of CYPI9A1 levels with rs10046
genotypes in breast tumors or breast cancer cell lines (Fig. 1).
However, CYP19A1 levels were clearly elevated in tumors
and cell lines with the TT genotype compared to CC samples,
in line with the increased circulating estrogen levels associated
with the T-allele.

A trend towards a positive correlation between aromatase
and ER expression has been reported [14, 15, 49, 50, 55, 56],
whereas others found no evidence for a correlation [18, 54,
57-59] or even a non-significant inverse correlation [60]. We
also found non-significant positive correlations of CYPI19A1
mRNA expression with ER status and with ESR/ mRNA
expression in breast tumors. In contrast, we found significant
inverse correlations in breast cancer cell lines (Fig. 1).
However, this in vitro result may be confounded by the fact
that five out of six ER-positive cell lines were of epithelial
morphology, which was associated with a much lower
CYPI9A1 expression than the fibroblastoid morphology
(Fig. 2). Moreover, it may be explained by culture conditions
and by the absence of stromal cells from in vitro culture,
which are engaged in extensive gene-regulatory signaling
crosstalk with tumor cells in situ and are also a substantial
source of intra-tumoral aromatase expression [1, 7].

A possible limitation of the present study relates to the size
of our study population. In particular, the number of patients
in which both CYPI9A1 expression and rs10046 genotype
were successfully determined was only 81, which may explain
why we were unable to replicate the significantly elevated
CYPI19A1 mRNA levels in TT patients in a previous study
of 99 patients [25]. On the other hand, survival analyses rep-
resent the main part of our study, in which the statistical power
is determined by the number of events, ameliorating the lim-
itations of our study population. Since other CYP/9A1 poly-
morphisms which are even located within promoter elements
were found either not significantly associated [61], or only
nominally associated with aromatase expression in non-
malignant tissue [23], we believe that the next urgent issue is
to convincingly demonstrate the mechanism by which
CYP19A1 variants cause the elevated levels of circulating es-
trogen, be it by altering the expression or the activity of
aromatase.

In summary, we report that CYP/9A1 mRNA expression is
a powerful prognostic marker in ER-positive but not ER-
negative breast cancer, is significantly elevated in postmeno-
pausal patients and in patients older than 50 years, and tends to
positively correlate with rs10046 risk allele, ER status, and
ESRI mRNA expression.
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