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The mortality impacts of greening Italy

Orazio Valerio Giannico 1,2,3 , Rodolfo Sardone1,2, Lucia Bisceglia3,
Francesco Addabbo1,2, Francesco Pirotti 4,5, Sante Minerba2 &
Antonia Mincuzzi1,2

Green spaces have been shown to be beneficial to humans, but quantifying
these benefits is a challenge for epidemiology. In this health impact assess-
ment study, we exploit satellites to estimate for the whole of Italy the number
of deaths that could be prevented in the 49 million adult population by
greening residential areas. The exposure was assessed by calculating the
normalized difference vegetation index at 10-m resolution within a 300-m
distance from homes in 7904 municipalities. In this study we estimate, by
achieving nationwide the level of residential greenness currently reached by
the 25% of the population, a total of 28,433 (95% confidence interval:
21,400–42,350) preventable deaths and 279,324 (210,247–415,980) pre-
ventable years of life lost in Italy in 2022, representing the 5% of the total
mortality burden. More green means fewer deaths, thus strong action is nee-
ded to increase the amount and accessibility of green spaces in all human
settlements.

Green spaces, such as parks, playgrounds, and residential greenery,
have been shown to have beneficial effects on people. They can pro-
mote mental and physical health and reduce morbidity and mortality
among citizens1–12. The normalized difference vegetation index (NDVI)
is a widely used satellite-derived metric that can quantify the vegeta-
tion in human settlements (e.g., street trees or general vegetation in
public and private spaces)11,13. Several studies have highlighted the
inverse relationship between NDVI and mortality2–10. Based on this
evidence, a meta-analysis has estimated that the pooled relative risk
(RR) for all-cause mortality per 0.1 increase in NDVI within a buffer of
500mor less from a participant’s homewas 0.96 (95% CI 0.94–0.97)11.

Several hypotheses have been considered to explain these find-
ings. It has been proposed that physical activity is an important health
determinant associated with green spaces. Green spaces can be places
for recreational physical activity. In addition, green areas may encou-
rage walking and cycling as forms of active transport1,7,11,12,14,15. How-
ever, a mediation analysis of one of the studies4 included in the meta-
analysis showed that physical activity accounted for 2.1% (95% CI
0.2;19.3%) of the association between green space and mortality11.
Greenness can also have a number of beneficial health effects through
ecosystem services, and has been shown to have a protective effect by

reducing air pollution, noise, and the heat island effect11,12,16–18. Air
pollution was included as a covariate in some of the studies2,3,6 inclu-
ded in the meta-analysis, but the resulting RRs are not significantly
different from thoseof studies thatdid not consider air pollution. After
including air pollution in a mediation analysis, James and colleagues4

found that PM2.5 (fine particulate matter) could explain 4.4% (95% CI
2.4;7.7%) of the association between greenness and mortality, while
Vienneu et colleagues6 estimated a mediation of 2.4% (−0.2;5.5%) by
PM10

11.
Other proposed mechanisms to explain the health benefits of

green spaces include stress reduction, enhanced relaxation, and
restoration. One theory that explains the benefits of being in green
spaces is the psychosomatic stress reduction theory. According to this
idea, exposure to natural environments, such as views of them, could
help people who are stressed out by putting them in a more positive
emotional state1,19,20. In another study conducted in Dutch cities, the
relationship betweenurban greenery andperceived general healthwas
shown to be most strongly mediated by stress and social cohesion21.
Finally, there is evidence linking green spaces to immunological
function22. Li and colleagues23,24 found an association between forest
visits and enhanced immune responses, including the expression of
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anti-cancer proteins (such as granzymes A and B, granulysin, and
perforin). It has also been suggested that exposure to a variety of
microbes in their natural habitats may regulate immunity25.

In terms of policy, theWorldHealthOrganization (WHO) suggests
that a minimum of 0.5 hectares of green space should be available
within a 300-m linear distance from homes1. The 3–30–300 rule for
urban greening was proposed by urban forester Cecil Konijnendijk. It
states that every home, school, and workplace should have at least
threewell-established trees in sight; every neighbourhood should have
at least 30% tree cover; and every residence should be no more than
300m from the nearest large public green space26. One way to link
epidemiological evidence to public health policy is through health
impact assessment (HIA), which combines meta-analytic effect mea-
sures with exposure and outcome data to estimate the health impacts
under a counterfactual scenario11,27–43.

Using the exposure-response function from Rojas-Rueda et
colleagues11, two large-scale health impact assessment studies were
conducted in urban areas in the United States and in Europe to esti-
mate the impacts of greenness on mortality27,28. According to the
American HIA study27, an increase of 0.1 NDVI units at the census tract
level in the35most populousmetropolitanareas couldhaveprevented
an estimated 38,187 deaths of people aged 65 and older in 2019.
According to the European HIA study28, which analysed 978 selected
cities and49greater cities using 250-m resolutionNDVI data, achieving
a greenness level estimated to be in line with WHO recommendations1

for access to green space couldhave reduceddeaths by42,968 in 2015.
However, the health benefits of exposure to greenness are likely

to occur in all human settlements, not just selected cities or the more
urbanised areas4,7,11. In addition, the useof different counterfactuals for
each city (0.1 NDVI increase for all cities in the American study27 and
city-specific modelled targets in the European study28) may limit the
comparability of the areas evaluated. Finally, there is uncertainty in the
choice of target exposures due to the lack of specific recommenda-
tions for NDVI values1,27,28.

Therefore, it may be worth exploring different methodological
strategies and benefiting from updated and high-resolution data to
assess the health impacts of greening interventions in all human set-
tlements. To ensure comparability, it may be desirable to conduct
these assessments using a single counterfactual exposure for all areas.
Ideally, this NDVI target exposure should be as realistically achievable
as possible, population-based, and possibly related to the existing
green space recommendations. Finally, it would be desirable for this
assessment to be replicable as far as possible around the world, using
available software and data.

In the present study we want to meet all these needs by capita-
lising on satellite-derived residential exposure data at 10-m resolution
for thewhole of Italy in 2022. The aimof this health impact assessment
is to estimate the total adult mortality burden that could be prevented
in all Italian municipalities by greening residential areas up to the level
of greenness currently achieved by the 25% of the population.

Results
Population and exposure
The total adult population (≥20 years) in all 7,904 Italianmunicipalities
in 2022 is 48,628,328. All exposures to greenest period NDVI (2022)
and to specific land cover classes (2021) at 10m resolution were cal-
culatedwithin 300mof homes (population-buffers). Maps of greenest
period NDVI, population-weighted exposure (PWE) to greenest period
NDVI, and population counts are shown in Figs. 1 and 2 and Supple-
mentary Fig. 1, respectively. Population-weighted percentiles of
exposures to greenest period NDVI, exposures to land cover classes,
and adult population counts are reported in Supplementary Table 1.
The 25th, 50th, 75th and 95th population-weighted percentiles of PWEs to
greenest period NDVI in all the Italian municipalities are 0.30, 0.36,
0.43 and 0.54, respectively. The 25th, 50th, 75th and 95th population-

weighted percentiles of greenest period NDVI in all the Italian 300m
population buffers are 0.27, 0.36, 0.46 and 0.60, respectively. The
unweighted percentiles of these measures and the weighted percen-
tiles of thesemeasures when excluding sparsely populated areas in the
exposure assessment are reported in Supplementary Tables 2 and 3,
respectively.

The counterfactual exposure of the health impact assessmentwas
set at 0.46, which is the 75th population-weighted percentile of the
greenest period NDVI in all the 300-m radius population-buffers. This
is the target level of greenness which is currently achieved by the 25%
of the Italian population. In the study area, a PWE to greenest period
NDVI of 0.46 within 300m from the residence approximately corre-
sponds to a PWE to tree cover proportion of 30% within the same
distance.

Health impact assessment
The results of theHIA are reported in Tables 1–3 and in Supplementary
Figs. 2 and 3 for all the 39,803,860 adult inhabitants of the 3720 Italian
municipalities that have a PWE to greenest period NDVI below the
counterfactual exposure of 0.46 in 2022. Considering the whole of
Italy, the PWEs to tree cover proportion, green area proportion and
greenest period NDVI are 21.2%, 32.3% and 0.33, respectively.

A total of 28,433 (95% CI 21,400–42,350) annual preventable
deaths, 71 (95%CI 54–106) annual preventable death rate (per 100,000
inhabitants) and 5.0% (95% CI 3.7–7.4%) annual preventable death rate
fraction were estimated for Italy in 2022. The estimated number of
preventable deaths per year is 12,377 (95% CI 9,317–18,428) in pro-
vincial capitals and 16,056 (95% CI 12,083–23,923) in non provincial
capitals. The higher preventable death rate was estimated for pro-
vincial capitals (86deaths per 100,000) and for provincial capitalswith
a population of 120,000 or more (93 deaths per 100,000). The higher
preventable death rate fraction was estimated for provincial capitals
(5.8% of deaths) and for provincial capitals with a population of
120,000 or more (6.3% of deaths). Considering all municipalities, the
higher preventable death rate was estimated for the population aged
≥80 years (504 deaths per 100,000) and the higher preventable death
rate fraction for the population aged <80 years (5.1–5.2% of deaths).

A total of 279,324 (95% CI 210,247–415,980) annual preventable
years of life lost (YLL), 702 (95% CI 528–1,045) annual preventable YLL
rate (per 100,000 inhabitants) and 5.0% (95% CI 3.8–7.5%) annual
preventable YLL rate fraction were estimated for Italy in 2022. The
estimated number of preventable YLL per year is 118,257 (95% CI
89,030–176,040) in provincial capitals and 161,066 (95% CI
121,217–239,940) in non provincial capitals. The higher preventable
YLL rate was estimated for provincial capitals (826 YLL per 100,000)
and for provincial capitals with a population of 120,000 or more (893
YLL per 100,000). The higher preventable YLL rate fraction was esti-
mated for provincial capitals (5.9% of YLL) and for provincial capitals
with a population of 120,000 or more (6.4% of YLL). Considering all
municipalities, the higher preventable YLL rate was estimated for the
population aged ≥80 years (2575 YLL per 100,000) and the higher
preventable YLL rate fraction for the population aged <80 years
(5.1–5.2% of YLL).

The findings of the uncertainty and sensitivity analyses for theHIA
are reported in the Supplementary Notes 1–2 and in Supplementary
Table 4. There were no relevant changes from using a different
greenest period or satellite, excluding sparsely populated areas,
applying a 20% reduction of the effect in non provincial capitals, or
using an alternative approach to calculating the preventable fractions.
Lower estimates were obtained by using as counterfactual exposures
the 75th population-weighted percentile of themunicipality-level PWEs
to greenest period NDVI or the 50th population-weighted percentiles.
Higher estimates were obtained by using as counterfactual exposures
the 75th unweighted percentiles or the 95th population-weighted per-
centiles, or by using other exposure-response functions.
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Analysis of land cover
The results of Spearman correlations and generalised additive mixed
effect models (GAMM) between the PWEs to relative land cover mea-
sures and the PWE to greenest period NDVI are shown in Table 4
(Spearman correlation, single-predictor models and multiple-
predictor models), Fig. 3 (single-predictor models) and Fig. 4 (multi-
ple-predictormodels). The plots are helpful in observing the estimated
functional forms, while the statistics reported in the table identify the
most influential measures.

The proportionmeasuresmost influential in determining the PWE
to greenest period NDVI appear to be the built-up (ρ −0.87; adjusted R2

0.93; null deviance explained 0.94), the green area (ρ 0.86; adjusted R2

0.91; null deviance explained 0.93) and the tree cover (ρ0.77; adjusted
R2 0.82; null deviance explained 0.84). Themodel with both tree cover
and grassland proportion shows similar results (adjusted R2 0.92; null
deviance explained 0.93). The ratio-to-built-up (odds) measures most
influential in determining the PWE to greenest period NDVI appear to
be the green area (ρ 0.89; adjusted R2 0.94; null deviance explained
0.95) and the tree cover (ρ 0.87; adjusted R2 0.89; null deviance
explained0.91). Themodelwith both tree cover andgrassland ratio-to-
built-up shows similar results (adjusted R2 0.93; null deviance
explained 0.94). The estimated functional forms of these relationships

are shown in Figs. 3 and 4. The shaded areas show confidence bands at
2 standard errors above and below the estimates. Rug plots show the
distribution of the data. Especially in the spaces with denser data dis-
tributions and narrower confidence intervals, the greenest period
NDVI increases with increasing tree cover and green area.

Applying various sensitivity analyses to theGAMMsdidnot lead to
any significant changes in the results. The estimates from excluding
sparsely populated areas, or from changing the smoothing terms are
similar to the estimates from the main analysis. We have reported the
results from the models without random effects and/or population
weights in Supplementary Tables 5–7 and in Supplementary Figs. 4–9.
As in themain analysis, in the spaceswithdenser data distributions and
narrower confidence intervals, the greenest period NDVI increases
with increasing tree cover and green area.

Discussion
In this a nationwide health impact assessment study, we estimate the
number of deaths that could be prevented in Italy by greening resi-
dential areas up to the level of greenness currently achievedby the 25%
of the population. Exposure was assessed within a 300-m distance
from homes capitalising on satellite images at 10-m resolution. The
estimated total mortality burden in the 49 million adult population

Fig. 1 | Greenest period NDVI from Sentinel-2. Mean per pixel. Italy with a 5 km
buffer around the boundaries, including water bodies, April-June 2022. World
Mollweide (ESRI:54009). NDVI: normalized difference vegetation index. Map

createdwithQGIS version 3.28.4.NDVI data fromSentinel-2 are available at: https://
code.earthengine.google.com (European Union. Copernicus Programme. Sentinel-
2 mission. Image collection: ‘COPERNICUS/S2_SR_HARMONIZED’).
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varies from 2.1% in the less populated not provincial capitals to 6.3% in
the more populated provincial capitals. This findings are also con-
sistent with the estimated proportions of tree cover and green area for
eachgroupofmunicipalities. Evaluation of less ambitiousNDVI targets
resulted in lower but still relevant mortality estimates.

Green space exposure depends not only on the amount of green
space, but also on its spatial distribution in relation to the population.
Areas that are green but far from homes do not contribute to the
residential exposure. Unlike previous HIA studies27,28,43 which set dif-
ferent targets for each city, we experimented with using a single
population-based target level of greenest period NDVI to ensure
comparability of estimates. In addition, Barboza et colleagues28 stated
that a greater number of deaths couldbe prevented by providingmore
green space than recommended by the WHO1.

Our main exposure target of 0.46 was based on measured data,
namely the 75th population-weighted percentile of the greenest period
NDVI calculated for the whole country within 300-m distance of
homes. This approach is consistent with the WHO and Konijnendijk
recommendations for the 300-m distance1,26. Furthermore, in the

study area, a PWE to greenest period NDVI of 0.46 within 300m from
residence approximately corresponds to a PWE to tree cover propor-
tion of 30% within the same distance. The only element of the
3–30–300 rule that we could not directly assess on a large scale was
thepresenceof three trees visible from thehouse,whichwould require
data with a higher spatial resolution. We also couldn’t assess the
quality or actual accessibility of the green space within the 300-m
distance. Taking these limitations into account, the population-based
counterfactual target of 0.46 on average seems to correspond roughly
to the 30–300 part of the 3–30–300 rule in Italy. In the future, it would
be interesting to assess the population-weighted NDVI exposure in
specific Italian areas or in other countries, and how local NDVI mea-
sures relate to the land cover measures and to the Konijnendijk’s rule.

The analysis of land cover data in the present study suggests the
essential role of trees in residential areas in Italy, followedbygrassland.
The ratio-to-built-up measures are more strongly associated with the
greenest period NDVI, and the ratio-to-built-up of green area and
tree cover explain much of the variability in NDVI. In Italy, on average,
the singlemost influential positiveNDVI determinant appears to be the

2022, April to June
10 m resolution
300 m buffer

≤0.36

0.36 - 0.46

0.46 - 0.60

>0.60

PWE to NDVI

Fig. 2 | Greenest period NDVI from Sentinel-2. PWE per municipality. Italy,
April-June 2022. WGS 84 / UTM zone 32N (EPSG:32632). NDVI: normalized dif-
ference vegetation index. PWE: population-weighted exposure. Map created with
QGIS version 3.28.4. Population data from GHSL are available at: https://ghsl.jrc.ec.
europa.eu/download.php?ds=pop (Global Human Settlement Layer. GHS

population grid (R2023). Product: GHS-POP, epoch: 2020, resolution: 100m,
coordinate system: Mollweide). NDVI data available are at: https://code.
earthengine.google.com (European Union. Copernicus Programme. Sentinel-2
mission. Image collection: ‘COPERNICUS/S2_SR_HARMONIZED’).
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tree cover, while the most influential negative NDVI determinant
appears to be the human built environment. Thus, the ratio-to-built-up
measures seem to be more specific indicators of human exposure to
green spaces than the proportion measures. Therefore, it is of utmost
importance to integrate urban green spaces into urban centres. This
will disassociate the built environment from the absence of greenness
and is likely to reduce mortality.

These findings are consistent with published research on the
beneficial effects of trees on human health12,44–56. In general, trees have
been associated with reducing harms (excessive heat, air pollution,
noise, ultraviolet radiation, crime), restoring capacities (effects on
cognition and attention, mental health, mood, anxiety, psychophy-
siological stress and clinical outcomes), and building capacities
(impacts on birth outcomes, immune system, active living, weight
status, cardiovascular function, social cohesion)12,44,45. Urban trees
have been shown to have specific benefits in the areas of health and
social well‐being (they reduce pollution, improve physical and mental
health, strengthen community bonds, increase physical activity,
decrease aggression and violence, reduce crime), cognitive develop-
ment and education (they improve student performance, reduce
stress, increase concentration, improve attention and self‐discipline),
economy and resources (high return‐on‐investment, support tourism,
increase houses prices and rents, reduce energy use and bills, promote
food sustainability, provide resources and firewood), climate change
mitigation and habitat (they reduce the urban heat island effect, store
and sequester carbon, provide critical habitat), and green infra-
structure (theymanage stormwater and protect aquatic and terrestrial
life)12,45,46.

Natural capital is the term used to describe components of the
environment that provide value to people, either directly or indirectly.
Many countries are currently in the process of identifying the location,
quality, and ecosystem services that make up their natural capital
assets and contribute to human well-being, not only in rural areas but
also in urban areas. Urban trees are an example of this type of natural
capital47. When Kardan and colleagues used high-quality public health
and demographic data to compare neighbourhoods in Toronto with
different densities of street trees, they found a correlation between
higher tree density and lower incidence of heart and metabolic dis-
ease, as well as better health perceptions. According to the authors,

planting just ten or more trees per city block can save a household
from paying over $10,000 in medical costs. This amount far exceeds
the projected costs of planting and maintaining those for ten addi-
tional trees48. Similarly, Beyer et al. examined a range of urban and
rural settings inWisconsin, USA, and found that havingmore trees in a
neighbourhood — measured as a higher percentage of tree canopy —

was associatedwith bettermental health, especially for people aged 55
and older, after adjusting for a wide range of confounders49.

Similarly, in a cross-sectional study conducted in London, UK,
Taylor and colleagues found that street tree density was lower in areas
where smoking and antidepressant prescription rates were higher.
Prescriptions for antidepressants were correlated with smoking levels,
but the relationship between the number of trees and depression
prescriptions persisted even after confounding variables were taken
into account50. Strong evidence for the benefits of trees to human
health can also be found in Donovan and colleagues’ analysis of the
consequences of city tree removal. The study analysed health data
before and after the emerald ash borer infestation that resulted in the
loss of 100 million ash trees in 1296 U.S. counties between 1990 and
2007. They discovered that the loss of trees was linked to statistically
significant increases in mortality from lower respiratory tract and
cardiovascular diseases51. More neighbourhood tree cover was linked
to better overall health, independent of access to green space,
according to a study by Ulmer and colleagues using LIDAR (Light
Detection and Ranging) data in California. This association was pri-
marily mediated by lower overweight/obesity and better social cohe-
sion, and to a lesser extent by lower type 2 diabetes, high blood
pressure, and asthma. According to these results, nature and trees
have a significant impact on improving overall population health in
urban environments52.

According to Astell-Burt and Feng, people with ≥30% tree cover
have a decreased risk of heart disease, hypertension, and diabetes than
those with 0–9% tree canopy. In addition, research revealed that areas
with ≥30% tree canopy has decreased prevalence of diabetes, hyper-
tension, and heart disease than areas with 0–9% tree cover53. Schwaab
et al. show that urban trees in most European cities have lower tem-
peratures than the urban fabric during summer and heat waves. When
compared to continuous urban fabric, land surface temperatures
recorded for urban trees are, on average, 0–4K lower in Southern

Table 1 | Population and exposure to greenness in the municipalities included in the HIA when using as counterfactual
exposure (k) the 75th population-weighted percentile of greenest period NDVI in all the 300m population-buffers. Italy, 2021
(land cover) and 2022 (NDVI and population)

N = 3720municipalities with a PWE to greenest
period NDVI < 75th percentile (k =0.46)

Population Exposure to greenness

Number PWE

≥20 years Three cover propor-
tion [%]

Green area propor-
tion [%]

Greenest per-
iod NDVI

Difference between k and the
greenest period NDVI

Italy (n = 3720) 39,803,860 21.2 32.3 0.33 0.13

Provincial capitals (n = 105) 14,315,146 22.5 29.1 0.31 0.15

<45,000 inhabitants (n = 27) 900,421 28.5 38.3 0.38 0.08

45–75,000 inhabitants (n = 25) 1,425,795 24.3 33.8 0.33 0.13

75–120,000 inhabitants (n = 26) 2,356,217 20.6 29.7 0.33 0.13

≥120,000 inhabitants (n = 27) 9,632,713 22.1 27.5 0.30 0.16

Non provincial capitals (n = 3615) 25,488,714 20.5 34.1 0.35 0.11

<1000 inhabitants (n = 454) 286,150 25.6 45.0 0.41 0.05

1–2000 inhabitants (n = 592) 869,361 24.4 42.9 0.40 0.06

2–5000 inhabitants (n = 1049) 3,469,672 22.0 39.4 0.38 0.08

≥5000 inhabitants (n = 1520) 20,863,531 20.0 32.7 0.34 0.12

Population data fromGHSL are available at: https://ghsl.jrc.ec.europa.eu/download.php?ds=pop (Global Human Settlement Layer. GHS population grid (R2023). Product: GHS-POP, epoch: 2020,
resolution: 100m, coordinate system: Mollweide). NDVI data from Sentinel-2 are available at: https://code.earthengine.google.com (European Union. Copernicus Programme. Sentinel-2 mission.
Image collection: ‘COPERNICUS/S2_SR_HARMONIZED’). Land cover data from WorldCover are available at: https://code.earthengine.google.com (European Space Agency. WorldCover Project.
2021. Image collection: ‘ESA/WorldCover/v200’).
HIA health impact assessment, NDVI normalized difference vegetation index, PWE population-weighted exposure.
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European regions and 8–12 K lower in Central European regions. The
overall effectiveness of treeless urban green spaces in reducing tem-
peratures is lower, and their cooling impact is roughly 2–4 times less
than that of urban trees54. Trees not only block the sun’s rays from
reaching people by providing shade, but they also limit the amount of
heat that impermeable materials with high heat capacity and thermal
conductivity, such as concrete, can absorb from the sun. Vegetation
can increase urban albedo relative to black asphalt surfaces, and when
compared to impermeable surfaces of the same albedo, vegetated
surfaces have lower radiative temperatures45,55–57.

Examples of greening interventions include the regeneration of
urban areas (turning former industrial areas into urban parks), the
increase of nature-based solutions in existing buildings (green roofs
and vertical gardens), the reorganisation of traffic and the reallocation
of road and parking space to green and natural areas (green belt and
corridors), and the general greening of the city with more street trees,
green corridors, and pocket parks28.

Our results show discrepancies between classes of municipalities,
with higher impacts in provincial capitals with 120,000 inhabitants or
more (6.3% of mortality). The groups of municipalities showing lower
(<3.5% of mortality) health impacts were non provincial capitals with
less than 5000 inhabitants and provincial capitals with less than
45,000 inhabitants. It is important to carry out assessments for all
municipalities and inhabitants, not only for selected or larger cities. In
this work, we have carried out a national assessment by using large-
scale data and setting a statistical, nationwide population-based target.
This also ensures comparability of the estimates. However, these
aspects, which are the main strengths of the study, could also be a
source of concern as we lack local information and data on the prac-
tical applicability of the NDVI target in each municipality in terms of
interventions and characteristics of greenness. The counterfactual
exposure to greenness is statistically determined at the national level
and represents a generic target that may be too high for some muni-
cipalities and too low for others. Therefore, it may be desirable in the
future to also carry out assessments that aremore adapted to the local
context. These specific studies and targeted interventions are neces-
sary to achieve the highest possible level of greenery in each area,
compatible with the local geographical, climatic, floristic, urban,
architectural, and cultural characteristics.

Adaptation to climate change and urban green spaces are closely
linked. Heat-related morbidity in cities is a major public health con-
cern. The urban heat island effect can pose serious health risks during
heat waves and extreme heat events. Urban green spaces, such as
parks, street trees, and green roofs, can mitigate these effects with an
estimated cooling effect of 1°. Trees can provide shade in warmer
weather and reduce the need for air conditioning. Inwarmer countries,
they can also provide comfortable outdoor spaces and help people
avoid heat-related stress. Mitigating the urban heat island may partly
explain the benefits of green spaces on mortality. Therefore, future
avoidable deaths from the implementation of urban greening could
potentially be even greater if we take into account future, increased
baseline temperature-related deaths1,11,28,58–60. It would therefore be
interesting to extend this research study in the futurewith scenarios of
attributable deaths due to climate change58,59.

Strengths of the present study are the inclusion of all munici-
palities and population of a country, the use of ultra-fine resolution
satellite data for exposure, the use of the WHO and Konijnendijk
criteria of 300m for assessing the presence of residential greenness,
the implementation of the population-weighted approach to account
for the differences in the spatial distribution of the population in
different areas, the use of recent exposure, population andmortality
data, the use of city-specific and age-specific mortality data, the
stratified analysis by municipality groups and age groups, the use of
the same counterfactual exposure based on real data in all munici-
palities for comparability purposes, the approximate compliance of
this counterfactual with the 30–300 part of the 3–30–300 rule, the
analyses of land cover, and the application of several sensitivity
analyses for populations, targets, functions, formulas and statistical
models.

In addition, our method is easily replicable without the need for
georeferencing the local population. The PWE approach allows expo-
sure to be estimated at the municipal level using public exposure and
population data, which are freely available worldwide at high resolu-
tion. The required information on mortality and population are
aggregated at the municipal level. Using the most recent statistical
data, the HIA can be replicated worldwide. Furthermore, the imple-
mentation of various sensitivity analyses allows the comparison of
impacts assessed using different methods and scenarios.

Table4 | Relationshipbetween thePWEs to relative landcovermeasures and thePWE togreenest periodNDVI. Spearman rank
correlations and GAMMs. Italy, 2021 (land cover) and 2022 (NDVI)

N = 7904 municipalities Spearman rank correlations GAMMs with cubic regression splines, province random effects, and population
weights

Exposures [log of PWE] ρ 95% CI EDF Adj. R2 Deviance explained P-value

Tree cover, proportion 0.77 0.76; 0.78 7.85 0.82 0.84 <0.001

Shrubland, proportion −0.02 −0.04; 0.00 – – – –

Grassland, proportion 0.15 0.13; 0.17 6.02 0.63 0.66 <0.001

Green area, proportion 0.86 0.85; 0.87 7.20 0.91 0.93 <0.001

Tree cover, proportion;
Grassland, proportion

– – 8.50; 6.32 0.92 0.93 <0.001; <0.001

Built-up, proportion −0.87 −0.88; −0.87 7.94 0.93 0.94 <0.001

Tree cover, ratio to built-up 0.87 0.86; 0.87 7.83 0.89 0.91 <0.001

Shrubland, ratio to built-up 0.07 0.05; 0.09 – – – –

Grassland, ratio to built-up 0.57 0.56; 0.59 5.46 0.76 0.79 <0.001

Green area, ratio to built-up 0.89 0.89; 0.90 7.63 0.94 0.95 <0.001

Tree cover, ratio to built-up;
Grassland, ratio to built-up

– – 7.57; 7.20 0.93 0.94 <0.001; <0.001

Population data fromGHSL are available at: https://ghsl.jrc.ec.europa.eu/download.php?ds=pop (Global Human Settlement Layer. GHS population grid (R2023). Product: GHS-POP, epoch: 2020,
resolution: 100m, coordinate system: Mollweide). NDVI data from Sentinel-2 are available at: https://code.earthengine.google.com (European Union. Copernicus Programme. Sentinel-2 mission.
Image collection: ‘COPERNICUS/S2_SR_HARMONIZED’). Land cover data from WorldCover are available at: https://code.earthengine.google.com (European Space Agency. WorldCover Project.
2021. Image collection: ‘ESA/WorldCover/v200’).
Adj. R2 adjusted R2, CI confidence interval, EDF estimated degrees of freedom, GAMMs generalised additive mixed effects models, Log natural logarithm, NDVI normalized difference vegetation
index, PWE population-weighted exposure.
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On the flip side, there are also limitations that are essentially
shared with the other published studies on NDVI and mortality2–11,27,28.
The first is the limitation, common to most of environmental epide-
miology studies, of using residential exposure as a proxy for overall
individual exposure, even though people spend only part of their time
at home. However, the 300-m approach employed in the present HIA
can somewhat extend the exposure observation to areas around the
house within a radius of 300m. Therefore, the PWE method using
these buffers could also consider the average exposure to greenness
near homes1,11,26,28.

A second limitation is that the assessment does not take into
account the quality or use of green spaces, nor the specific char-
acteristics of the areas analysed. Basically, it is assumed that all green
spaces measured by the NDVI are qualitatively homogeneous and
equally accessible to all residents in the buffer centroid. Instead, urban
green spaces have different components that influence their quality
and shape the patterns of use, time spent, and interactions with these
spaces among different population subgroups28. Key attributes of
green spaces, such as safety, aesthetics, amenities and maintenance
are crucial in promoting outdoor physical activity. Negative aspects

Fig. 3 | Relationship between the PWEs to relative land covermeasures and the
PWE to greenest period NDVI. The plots show the smooth functions as esti-
mated by the single-predictor GAMMs. The shaded areas show confidence
bands at 2 standard errors above and below the estimates. Rug plots show the
distribution of the data. Italy, 2021 (land cover) and 2022 (NDVI). a, c and e: one
model for each proportionmeasure.b,d and f: onemodel for each ratio-to-built-up
(odds) measure. GAMMs: generalised additive mixed effects models. Log: natural
logarithm. NDVI: normalized difference vegetation index. PWE: population-
weighted exposure. Plot created with R version 4.2.3. Population data from GHSL

are available at: https://ghsl.jrc.ec.europa.eu/download.php?ds=pop (Global
Human Settlement Layer. GHS population grid (R2023). Product: GHS-POP, epoch:
2020, resolution: 100m, coordinate system:Mollweide). NDVI data fromSentinel-2
are available at: https://code.earthengine.google.com (European Union. Coperni-
cus Programme. Sentinel-2 mission. Image collection: ‘COPERNICUS/S2_SR_HAR-
MONIZED’). Land cover data from WorldCover are available at: https://code.
earthengine.google.com (European Space Agency. WorldCover Project. 2021.
Image collection: ‘ESA/WorldCover/v200’).
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such as safety concerns, graffiti, vandalism, litter, noise, pollution, and
dog fouling discourage park use and physical activity. Studies suggest
that access to attractive, large public open spaces is associated with
higher levels of walking61–65. The quality of green spaces, characterised
by accessibility, maintenance, absence of litter, and safety, is positively
associated with general health. The ability of green spaces to provide
relaxation and recreation has been identified as crucial to mental well-
being. Eight sensory dimensions of urban parks have been identified:
serene, space, nature, rich in species, refuge, culture, prospect, and
social. Refuge and nature are strongly linked to reduced stress. Refuge
is a safe, enclosed area for play and observation, while nature provides
a sense of being in the wild. Access to serene spaces significantly
reduce the risk of mental illness. In addition, views of trees and grass
from homes prevent aggression and mental fatigue compared with
barren views66–74. In general, the methodology of this health impact
assessment is focused on the quantitative analysis of the greenest
periodNDVI rather than on the qualitative assessment of green spaces.
However, conducting studies on entire nations has these challenging
limitations. To go into more detail and consider the quality of green
spaces, it may be necessary to restrict the study to a limited number of
municipalities and include additional local-level variables. Further-
more, translating these analyses into health impacts requires specific
exposure-response functions that are not currently available. Future
research could benefit from incorporating methods that explicitly
categorise and qualify different types of green space to better under-
stand their unique roles and impacts in different settings.

A third limitation is the assumption of homogeneity in the effect of
urban greenery on mortality across different age groups, sexes, socio-
economic indicators, and types of human settlements according to the
degree of urbanisation. In fact, we assume that the relative risk for given
NDVI increments is the same in all these categories. However, we donot
have solid evidence that the exposure-response function betweenNDVI
and mortality is not homogeneous to use this information in a reliable
assessment.With regard to age, one of the studies included in themeta-
analysis reported a lower RR in older people compared with the pooled
estimate fromthemeta-analysis in all agegroups7,11. Conversely, another
study in the meta-analysis seemed to show a more protective effect in
younger age groups2. Therefore, we have reported two different sen-
sitivity analyses for the two scenarios. We have also performed a sen-
sitivity analysis for possible differences according to the degree of
urbanisation. Further research is therefore needed to investigate the
possible heterogeneity of the effect in more detail.

A fourth limitation is the assumption that the exposure-response
function is linear. This is consistent with the assumption of linearity of
the exposure-response function reported in the meta-analysis11.
Although all cohort studies included in the meta-analysis2–10 reported
RRs for continuous green space exposure, we are not sure that the
exposure-response function is strictly linear11. However, most of the
studies included in themeta-analysis had also examined the functional
forms and reported an essentially linear relationship2,4–6,10. Some of
these studies also showed the plotted functional forms of the esti-
mated relationship between greenest period NDVI and mortality2,6.

Fig. 4 | Relationship between the PWEs to relative land covermeasures and the
PWE to greenest period NDVI. The plots show the smooth functions as esti-
mated by the multiple-predictor GAMMs. The shaded areas show confidence
bands at 2 standard errors above and below the estimates. Rug plots show the
distribution of the data. Italy, 2021 (land cover) and 2022 (NDVI). a and c: one
model for multiple proportion measures. b and d: one model for multiple ratio-to-
built-up (odds)measures. GAMMs: generalised additivemixed effectsmodels. Log:
natural logarithm. NDVI: normalized difference vegetation index. PWE: population-
weighted exposure. Plot created with R version 4.2.3. Population data from GHSL

are available at: https://ghsl.jrc.ec.europa.eu/download.php?ds=pop (Global
Human Settlement Layer. GHS population grid (R2023). Product: GHS-POP, epoch:
2020, resolution: 100m, coordinate system:Mollweide). NDVI data fromSentinel-2
are available at: https://code.earthengine.google.com (European Union. Coperni-
cus Programme. Sentinel-2 mission. Image collection: ‘COPERNICUS/S2_SR_HAR-
MONIZED’). Land cover data from WorldCover are available at: https://code.
earthengine.google.com (European Space Agency. WorldCover Project. 2021.
Image collection: ‘ESA/WorldCover/v200’).
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Our study examined the health impacts of positive greenest period
NDVI values up to a counterfactual of 0.46, a relatively limited range in
which the linearity assumption appears to hold according to the plots.
Finally, other studies have also reported a linear relationship between
green space and human health75–77. However, we hope that future
research can further investigate possible non-linear relationships
between greenness and mortality.

The assumptions about homogeneity and linearity are also con-
sistent with the approach used in this HIA, which is based on the gui-
dance provided in various scientific papers and official
documents28,33–43,78–86. For example, the same framework (use of
metanalytic RRs to estimate health impacts) and assumptions (linearity
of the exposure-response function and homogeneity of the effect)
were reported by the WHO also in the officially provided tools for air
quality HIA (AirQ+)85. TheWHOHRAPIE (Health risks of air pollution in
Europe) document on exposure-response functions for air pollutants86

recommended the same approach and basically provided a list of
available metanalytic RRs to be used in HIA, based on the same
assumptionsmentioned above. Therefore, this methodological part of
the work (HIA design and assumptions in the use of the exposure-
response function) is basically a standard and well referenced
approach in HIA28,33–43,78–86. However, further research is essential and
recommended for the future to explore these associations in more
detail and to provide more accurate and tailored risk functions to
enable more accurate assessments. With these perspectives in mind,
the exposure-response function used in the present study11 is currently
the most recent and robust estimate available in the literature for
conducting a reliable health impact assessment.

In conclusion, we estimate in this study that 5% of all deaths and
years of life lost in Italy could be prevented by greening residential
areas up to the level of greenness currently achieved by the 25% of the
population. More green means fewer deaths, thus strong action is
needed to increase the amount and accessibility of green spaces in all
human settlements.

Methods
Design, analysis, and study area
This is a quantitative health impact assessment study. Data analysis
and visualisationwere carried out usingGoogle Earth Engine, R version
4.2.3 and QGIS version 3.28.4. The study area corresponds to all the
Italian municipalities, regardless of size or population, as reported by
the Italian National Institute for Statistics (ISTAT). Municipalities can
be classified as provincial capitals or not, and according to their
population. For the year 2022, the ISTAT list includes 7,904 munici-
palities, 109 provincial capitals and 7,795 non provincial capitals. On 31
December 2022, the total resident adult population (aged ≥20 years)
was 48,628,328: 14,530,259 in provincial capitals and 34,098,069 in
non provincial capitals87–89.

Internal review board approval
This study is neither analytical nor individual. It is a municipality-level
health impact assessment that attempts to estimate the impact of a
hypothetical greening intervention using public data and functions.
This is a commonly used methodology in public health and generally
does not require ethical approval. However, we submitted a request to
the scientific secretariat of the local ethics committee asking if their
opinion was required for the study. After evaluating the manuscript,
they replied that an internal review board approval is not required for
this type of study, because it does not involve human subjects and
relies on public mortality counts at the municipal level to assess the
impact of an environmental intervention.

Population and baseline outcome data
The total number of inhabitants per grid cell was obtained from the
Global Human Settlement (GHS) population grid for 2020 with a

resolution of 100m. This spatial raster product (‘GHS-POP_GLO-
BE_R2023’) depicts the distribution of residential population, expres-
sed as the number of people per cell90–93. Pixels with no population
were treated as no-data and excluded from the analysis. The popula-
tion raster was converted into a vector layer of points and the infor-
mation on the Italian administrative units were spatially joined from
the vector of polygons of the ISTAT municipalities87. Non-Italian
population points (i.e., points with no joined attributes) were exclu-
ded. This vector of population-points was used for the exposure
assessment.

The GHS population was used to calculate the weighted percen-
tiles andmeans of the buffer-level exposures (see the section ‘Baseline
exposure’). The adult (≥20 years) and age-specific (5-year age groups,
20–24, 25–29,…,95–99,≥100)municipal ISTATpopulationwasused to
calculate the age-specific rates, to classify the municipalities by num-
ber of inhabitants, and to calculate the weighted percentiles and
means of the municipal level exposures and populations88,89. The
Spearman rank correlation between the GHS and ISTAT populations at
the municipal level was > 0.99.

The number of all-cause baseline deaths (BD) for each age group
of the adult population in 2022 by municipality was obtained from a
public ISTAT dataset94. The number of all-cause baseline years of life
lost (BYLL) for each age group of the adult population in 2022 by
municipality was estimated by multiplying the number of base-
line deaths in the age group by the central age (3rd year of the age
group) province-specific life expectancy reported by ISTAT95.

Baseline exposure
The baseline exposure is the actual level of greenness as measured by
the greenest period NDVI. We calculated the NDVI at a resolution of
10musing images from the Sentinel-2mission of the EuropeanUnion’s
Copernicus Programme via Google Earth Engine (image collection:
‘COPERNICUS/S2_SR_HARMONIZED’). Sentinel-2 is a constellation of
two satellites with a minimum combined revisit time of 5 days96.

All images collected for Italy87 between 1 April and 30 June 2022
were included to ensure the greenest period of the year. The NDVI is
not an exposure itself, but rather an index proxy of the real exposure,
which is the green space. For simplicity, we have referred to it in the
text as ‘PWE togreenest periodNDVI’, but the full expression should be
‘PWE to greenness throughout the year, assessed using the greenest
period NDVI’28. A more detailed description of this approach is
reported in the Supplementary Note 2. A 5 km buffer was added to the
entire study area to avoid loss of exposure information at the
boundaries. Images with a granule-specific cloudy pixel percentage of
20% or more were removed (images of lower quality). The selected
images were also masked using the ‘QA60’ bitmask band information
to remove pixels with opaque clouds and cirrus clouds.

Then, for each image time t in a pixel space s, the NDVI ðNDVIts Þ is
estimated according to Eq. (1):

NDVIts =
NIRts

� Redts

NIRts
+Redts

ð1Þ

whereNIRts
and Redts

refer to the spectral reflectances of the pixel at a
specific time t in a specific space s measured in the near infrared
(833–835 nm) and red (665 nm) wavebands respectively. The calcula-
tion of the NDVI always results in a number that ranges from −1 to 1,
with positive and higher values indicatingmore greenness11,13. For each
pixel space s in the study region, a reduction of theNDVImeasures was
obtainedby calculating the temporal arithmeticmean (NDVIs) of all the
NDVI values of the corresponding pixels across the images in the
temporal line ðNDVIts Þ. To account for the possible beneficial effects of
the blue areas on human health, the pixels corresponding to perma-
nent water bodies (see the section ‘Analysis of land cover’) were
excluded (masked out) from the exposure assessment28.
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In line with the WHO’s and Konijnendijk’s recommendations1,26,
the exposure to NDVI value was estimated by adding a circular buffer
of 300m radius around each population-point to indicate the proxi-
mity to greenness (i.e., about 5min walk along walkable pathways)28.
For each population-buffer p, the spatial arithmetic mean (NDVIp) of
the temporally averaged NDVI values of all the pixels within the
population-buffer ðNDVIsp Þ was calculated. Basically, a population-
buffer was created for each inhabited point, with the point-derived
(central population-point) information of population count and
administrative division (municipality and province), and the circle-
area-derived (surrounding population-buffer) information of tempo-
rally and spatially averaged NDVI.

For each municipality-area a, the PWE to greenest period NDVI
(PWEa) was calculated as a weighted mean of the temporally and
spatially averaged NDVI values ðNDVIpa

Þ of the population-buffers pa
whose centroid is included in the municipality-area a. For each inclu-
ded population-buffer pa, the weight was the GHS population ðPOPpa

Þ
of the centroid, as shown in Eq. (2)31,33,97.

PWEa =
X

pa

ðNDVIpa
× POPpa

Þ=
X

pa
ðPOPpa

Þ ð2Þ

This approach allows exposure to be weighted by population and
has been used in other studies on air pollution33,35,36,39–41,97. To take in
consideration the influence of sparsely populated areas28, sensitivity
analyses were performed including only the population-buffers with a
population count greater than 2. We also reported an uncertainty
analysis for the baseline exposure assessment and sensitivity analyses
for the choice of the greenest period and satellite. Further details are
provided in the Supplementary Notes 1 and 2, respectively.

Counterfactual exposure
The counterfactual exposure is the level of greenness that needs to be
achieved to prevent the deaths estimated in the health impact
assessment, i.e. a target level of exposure to greenness. There are no
specific recommendations for NDVI values when setting the counter-
factual exposure. It may be desirable to conduct these assessments
using the same counterfactual exposure for all areas to assure com-
parability. This target exposure should be population-based, realisti-
cally achievable in some way, and possibly linked to the current green
space recommendations.

We proposed a population-weighted approach. Using a metho-
dology consistent with that chosen for baseline exposure, the coun-
terfactual level of exposure to green space was set as the 75th

population-weighted percentile of the population-buffers’ greenest
period NDVI. We used the 75th population-weighted percentile as a
conservativemeasure to try tomake the target realistically achievable.
This means that 75% of the Italian population was exposed to a buffer-
level mean NDVI in the period April-June 2022 that was lower than the
counterfactual level. Or, to say in other words, that 25% of the Italian
population was exposed to a buffer-level greenest period NDVI that
was higher than the counterfactual level, thus achieving the target. In
the study area, this counterfactual greenest period NDVI value is 0.46
and corresponds to anaverage of 30% tree coverwithin a 300-mradius
buffer around the residence. Specifically, selecting only those muni-
cipalities with a PWE to greenest period NDVI in the range 0.46 ±0.01,
we found an overall PWE to tree cover proportion of 30% (see the
section ‘Analysis of land cover’)1,26.

This approach has several advantages. First, it could evaluate
green targets that are statistically based on real exposures and popu-
lations. Second, it ensures comparability across all municipalities.
Third, it is likely to be quite robust to errors in exposure assessment, as
hypothetical shifts in baseline exposure measures could be propa-
gated to the percentile-based target, making the expected difference

similar. Finally, the target in the study area approximately complies
with the 30–300 part of the 3–30–300 rule26.

Weused sensitivity analyses to explorepossible changes in impact
estimates by setting alternative counterfactual exposures. Specifically,
we used as alternative counterfactual exposures the 75th population-
weighted percentile of the municipality-level PWEs to greenest period
NDVI and the 75th unweighted percentiles of both municipality-level
PWEs to greenest period NDVI and buffer-level greenest period NDVI.
The first target implies that 75% of the Italian population was exposed
to a municipality-level (PWE) mean NDVI in the period April-June 2022
that was lower than the counterfactual level. The interpretation of the
unweighted percentiles counterfactuals is analogue to the weighted
percentiles ones: it means that in the period April-June 2022 the
population of 75% of the Italian municipalities or population-buffers
was exposed to a municipality-level (PWE) or buffer-level mean NDVI
value that was lower than the counterfactual level, respectively. We
performed further sensitivity analyses using the 50th and the 95th

population-weighted percentiles as counterfactual exposures. We also
reported an uncertainty analysis for the counterfactual exposure
assessment and sensitivity analyses for the choice of the greenest
period and satellite. Further details are provided in the Supplementary
Notes 1 and 2, respectively.

Exposure-response function
We used the exposure-response function from the systematic review
and meta-analysis by Rojas-Rueda et al.11. The review included only
cohort studies and estimated that the RR for all-causemortality per 0.1
NDVI increase within a buffer of 500m or less from homes was 0.96
(95% CI 0.94–0.97).

Although this exposure-response function is the most recent and
reliable estimate to date, sensitivity analyses were performed to assess
how the results might vary with alternative functions. Specifically, the
relative risks from the twostudieswith the higher7 and lower4 weight in
the meta-analysis11 were used as alternative exposure-response func-
tions. In addition, to account for the possible heterogeneity of the
effects between different age groups2,7,11, two sensitivity analyses were
performed, one using a different exposure-response function for the
population aged ≥80 years (greater protective effect compared with
the meta-analytic estimate)7,11 and the other testing a + 50% of pro-
tective effect in the population aged <80 years. Finally, to take into
account the possible heterogeneity of the effect between different
types of municipalities4,6,7,11, we performed a sensitivity analysis con-
sidering a 20% reduction in the protective effect in non provincial
capital municipalities. This value was calculated as a weighted average
of the estimated effect reduction in rural areas, using information from
some of the studies in the meta-analysis4,6,7,11. The weights were the
same as those used in the meta-analysis11. To be conservative, we have
applied this 20% reduction to all non provincial capital, although not
all of them can be considered rural87–89.

Health impact assessment
A quantitative health impact assessment at the municipal level was
conducted to estimate the impact on all-cause mortality of increasing
the exposure to greenness up to the counterfactual value11,27–43. For
each municipality-area a, the exposure difference (Δa) between the
counterfactual (k) and the baseline (PWEa) greenest period NDVI
exposure level was calculated. For each municipality-area a, the rela-
tive risk for the exposure difference (RRa) and the preventable fraction
(PFa) were estimated using the exposure-response function (RR0.1)
with its confidence interval11, as shown in Eqs. (3) and (4)29,34,35:

RRa = expðlnðRR0:1Þ× 10×ΔaÞ ð3Þ

PFa = 1� RRa ð4Þ
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For eachmunicipality-areaa andfive-year age group j, the number
of preventable deaths (PDa,j) and preventable years of life lost (PYLLa,j)
was estimated, using the municipality and age-specific baseline deaths
(BDa,j) and years of life lost (BYLLa,j), as shown in Eqs. (5) and
(6)27,29–35,37,38:

PDa, j = PFa ×BDa, j ð5Þ

PYLLa, j = PFa ×BYLLa, j ð6Þ

Sensitivity analyseswereperformedusing analternative approach
in calculating the preventable fractions. The full explanation of the
formulas used in the two approaches is given in the Supplemen-
tary Note 3.

Presentation of the assessments’ results
Municipalities were classified according to whether they were pro-
vincial capitals or not and according to their population size. The
population categories were chosen according to their rounded,
unweighted quartiles specific to provincial capitals and non provincial
capitals. The five-year age groups were combined into four main age
groups (20–39, 40–59, 60–79, and ≥80 years). Results were reported
for all the municipalities with a preventable fraction > 0, correspond-
ing to a PWE to greenest period NDVI below the counterfactual
exposure. The estimated impact measures were summed by munici-
pality group and age group and reported as preventable numbers (PD
or PYLL), preventable rates (the ratio of the preventable numbers to
the ISTAT population, per 100,000) and preventable rate fractions
(the ratio of the preventable rates to the baseline rates). These pre-
ventable (rate) fractions were calculated for each group using the
health impact estimates and can be interpreted as the fractions of the
baseline deaths or YLL that could be avoided by achieving the coun-
terfactual exposure level29. The PWEs to greenest period NDVI, dif-
ference between counterfactual exposure and greenest period NDVI,
tree cover proportion and green area proportion (see the section
‘Analysis of land cover’) were calculated for each group of munici-
palities as a weighted mean of the respective PWEs of the munici-
palities included. For each municipality, the weight was the ISTAT
population.

Analysis of land cover
We retrieved via Google Earth Engine the latest available land cover
information for Italy87 from the European Space Agency (ESA)
WorldCover 10m 2021 product (image collection: ‘ESA/World-
Cover/v200’), which provides a global map for 2021 at 10m reso-
lution based on Sentinel-2 and Sentinel-1 data. The product includes
11 land cover classes and has been generated in the framework of
the ESA WorldCover Project, part of the 5th Earth Observation
Envelope Programme of the ESA98. As with the NDVI assessment, a
5 kmbuffer around the national boundaries was added, and the land
cover pixels classified as permanent water bodies were excluded
from the analysis.

The classes analysed were tree cover, shrubland, grassland, green
area (sum of the first three) and built-up. For each 300-m buffer, the
proportion of a classwas calculated as the ratio of the sumof the pixels
in that class to the sum of all pixels. The PWEs to these proportion
measures were calculated using the same methods described for the
NDVI. Specifically, the PWE to the proportion of each green class was
calculated for each municipality as the weighted mean of the pro-
portion measure of the specific green class of the population-buffers
whose centroid was included in the municipality itself. For each
included population-buffer, the weight was the GHS population of the
centroid. To quantify the presence of specific green classes in relation

to the human built environment, the PWE to the ratio of each green
class to built-up class (odds)was estimated for eachmunicipality as the
ratio of the PWE to the specific green class proportion and the PWE to
the built-up proportion. To summarise, the calculated proportion
measures (PWE) were the proportion of tree cover, shrubland, grass-
land, green area and built-up. The calculated ratio-to-built-up mea-
sures (PWE) were the ratio-to-built-up of tree cover, shrubland,
grassland and green area.

Spearman ρ correlation coefficients were calculated at the
municipal level between the natural logarithm of the PWE to each of
the relative land cover measures (proportion and ratio-to-built-up
of the analysed classes) and the PWE to the greenest period NDVI.
Generalised additive mixed effect models were fitted at municipal
level using the PWE to greenest period NDVI as the dependent
variable and the natural logarithm of the PWEs to each of the rela-
tive land covermeasures as the fixed effects predictors one at a time
(single-predictor models: one model for each proportion measure
and one model for each ratio-to-built-up measure) or in combina-
tion (multiple-predictormodels: onemodel formultiple proportion
measures and one model for multiple ratio-to-built-up measures). A
cubic regression spline penalised by the conventional integrated
square second derivative cubic spline penalty was chosen as smooth
term for the relative land cover measures. In all models, the pro-
vince was included as a random effect to account for the differences
between the provinces, specifically as a parametric term penalised
by a ridge penalty, which is equivalent to assuming that the coeffi-
cients are independent and identically distributed normal random
effects. The GHS population was used as weight in the models.
Restricted maximum likelihood was used as the smoothness selec-
tion method99.

The effect of the relative land cover measure (smooth function)
on the greenest period NDVI was plotted for each model. The plotted
values of greenest period NDVI represent only the estimated effect of
the relative land cover measure, and not the absolute values of the
NDVI. In our models, this value depends on the intercept, the random
effect of province, and the land cover measures. The shaded areas
show confidence bands at 2 standard errors above and below the
estimates. Rug plots show the distribution of the data. Sensitivity
analyses were performed by choosing different smoothing terms (thin
plate regression spline, cubic or thin plate regression spline with
shrinkage, cubic b-spline or p-spline) or by fitting models without
random effects and/or population weights99.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data used in this study are available in the following repositories.
ISTAT administrative boundaries are available here: https://www.istat.
it/it/archivio/222527. ISTAT Codes of administrative units are available
here: https://www.istat.it/storage/codici-unita-amministrative/Elenco-
comuni-italiani.xls. ISTAT population data are available here: https://
demo.istat.it/app/?i=POS&l=it. GHS population data are available here:
https://ghsl.jrc.ec.europa.eu/download.php?ds=pop. ISTAT deaths
data are available here: https://www.istat.it/storage/dati_mortalita/
Decessi-comunali-giornalieri-4-13122023.zip. ISTAT life expectancy
data are available here: https://demo.istat.it/app/?i=TVM&l=it.
Sentinel-2 data (image collection: ‘COPERNICUS/S2_SR_HARMO-
NIZED’) and WorldCover data (image collection: ‘ESA/WorldCover/
v200’) are available on Google Earth Engine: https://code.earthengine.
google.com/. The data generated in this study have been deposited in
the OSF database with the accession code GOV@v8.o3@hia: https://
osf.io/wzsv7/?view_only=96c8c62ca3744794bbabb90ac77814c4.
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Code availability
The codes used in this study have been deposited in the OSF database
with the accession code GOV@v8.o3@hia: https://osf.io/wzsv7/?view_
only=96c8c62ca3744794bbabb90ac77814c4.
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