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Alkylating agents (AAs), are a group of chemo drugs generally divided into six classes; triazenes,
nitrogen mustards, nitrosoureas, ethylenimine and methylenamine derivatives, alkyl sulfonates, and
platinum-containing antineoplastic agents, which are commonly used, alone or in combination, in
high-dose chemotherapy regimens to treat certain types of cancer (Ralhan and Kaur, 2007). These
drugs undergo intramolecular cyclization reactions giving rise to highly reactive electrophilic cations,
which alkylate nucleophilic sites adding an alkyl group at either oxygen, nitrogen, phosphorous or
sulphur atoms on biological molecules (Soll et al., 2017). Consequently, AAs act mainly by inter- and
intra-strand cross-linking DNA and RNA and hence inhibiting all cellular reactions using nucleic
acid templates such as DNA replication, transcription and translation. Due to its effects on
replication, the cytotoxicity induced by AAs is particularly acute in cancer cells or in certain
fast-growing normal cells (hematopoietic, reproductive, and endothelial) (Fu et al., 2012). Besides
DNA damage, AAs promote molecular changes that can also contribute to cell death such as
oxidative stress induction (through glutathione depletion, lipid peroxidation and an overall increase
in reactive oxygen and nitrogen species) (Zhang et al., 2021); or the depletion of NAD+ pools upon
activation of the DNA repair enzyme Poly (ADP-ribose) polymerase (PARP-1) by AAs (Megnin-
Chanet et al., 2010). In addition, events such as inflammation, calcium overload, mitochondrial
disruption (Sahu et al., 2021), matrix metalloproteinase-9 (MMP-9) activation (Escalona et al., 2021)
and alteration in NF-kB/p53/p38 MAPKs signaling pathways (Tian et al., 2019), among others, can
also contribute to the overall toxicity of AAs. On the basis of this complex scenario, it is essential to
find a homeostatic balance that allows for the targeted treatment of cancer cells while protecting the
normal cells by reducing the side effects of AAs.

In recent years, the ubiquitous methoxyindole melatonin, has received increased attention as an
adjuvant supportive treatment in patients of several cancers types (Li et al., 2017). Melatonin is a well
characterized antioxidant, anti-inflammatory and free radical scavenger (Reiter et al., 2017). Because
of these actions, we have previously hypothesized that melatonin would protect healthy cells from the
anticancer chemotherapeutic drug mechlorethamine, by preventing the formation of the guanidine-
nitrogen mechlorethamine adducts (Romero et al., 2021) and, therefore, the DNA damage. In
addition, pleiotropic melatonin has been shown to protect genome integrity through the modulation
of epigenetic mechanisms and recent data seems to indicate that this capacity may represent an
interesting opportunity to be explored in the context of genotoxic chemotherapy of oncologic
patients (Capote-Moreno et al., 2019). Furthermore, melatonin displays a large number of actions in
cancer cells, either through melatonin receptors type-1 (MT1) and receptor type-2 (MT2) which
mediate its antiproliferative actions, as well as by reaching intracellular organelles due its high
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lipophilic nature and eventually activating nuclear receptor-
signaling and binding specifically to the ligand-inducible and
transcriptionally active Retinoid Z receptor (RZR) or Retinoid
Orphan Receptor (ROR) (Liu et al., 2016).

There is strong clinical evidence that germ cells are especially
sensitive after administration of AAs, which leading to DNA
damage and consequent induction of cell death (Meistrich, 2020).
In this context, ovarian protection has been shown with
melatonin mitigating cisplatin-induced follicle loss (Jang et al.,
2016) and reducing nitro-oxidative stress and apoptosis (Moradi
et al., 2021). Likewise, the use of amifostine, a radioprotective
agent, in combination with melatonin, may be the “two better
than one” against the production of reactive oxygen and nitrogen
species (RONS) and DNA damage triggered by cisplatin in
germinal epithelium cells (Eren et al., 2020). Therefore, the
strategy of synergistic effect based on two antioxidants,
amifostine and melatonin, could be attractive to ameliorate the
AAs-induced side-effects.

Nutritional interventions may play an important role both in
the growth and development of tumor cells and in the treatments
with established chemotherapy regimens to maximize the drug
efficacy and tolerability. Thus, it has recently been reported that
metabolic changes associated with fasting has led to a reduction
the toxic effects of chemotherapy while enhancing therapeutic
efficacy (De Groot et al., 2020). The involvement of melatonin in
this scenario is promising, since it has been well documented that
melatonin regulates glucose homeostasis in peripheral tissues,
from cytosolic glycolysis to mitochondrial oxidative
phosphorylation (Bazwinsky-Wutschke et al., 2014; Hevia
et al., 2015). It is widely known that glucose levels are
fundamental for the survival and growth of many types of
cancer. In this sense, has been recently documented the ability
of melatonin to reduce the glucose uptake in tumor cells
(Rodriguez et al., 2021). Nevertheless, the molecular and
cellular mechanisms underlying melatonin´s actions need to
be further exploration.

Important questions still need to be addressed regarding the
combined use of chemotherapies andmelatonin.Whenwould it be
reasonable to use melatonin as a supplement with a chemotherapy?

Melatonin production declines with age in humans which may is
thought to contribute to numerous dysfunctions and make organs
more vulnerable to the development of pathologies, including
cancer (Hill et al., 2013). Among others, the decline in the
biosynthesis of melatonin with age has been suggested as one of
themajor contributors to immunosenescence and the development
of neoplastic diseases (Schernhammer and Schulmeister, 2004).
Whenmelatonin is exogenously administered, all subcellular pools
of melatonin are increased, with lipid-rich membranes possibly
being a major reservoir for this protective molecule. As a result of
its ability to enter healthy cells, it can act as a protective agent
against toxic chemotherapies. The therapeutic use of this
indoleamine as an adjuvant with conventional chemotherapeutic
regimen could be a strategy for reducing the molecular damage to
non-tumor cells resulting from conventional radio/
chemotherapeutics, and enhancing the efficacy of the treatments
designed to kill cancer cells.

Protecting normal cells from the side effects of chemotherapy
has gained significant interest. In this regard, we recently
proposed a strategy based on a combined treatment of
chemotherapeutic drugs plus melatonin (Gil-Martin et al.,
2019). In this context, protective profile of melatonin versus
AAs has been achieved in different models (see Table 1). The
hypothesis is that melatonin might limit the toxic-side effects of
the chemotherapy in normal cells thereby allowing higher doses
of the drugs. Importantly, a large number of studies in both
animals and humans have uncovered no acute or chronic
toxicities of melatonin; and the drug is widely considered to
be safe even at high doses (Andersen et al., 2016; Menczel Schrire
et al., 2021). This information is crucial for the clinical
management of cancer patients. The optimal melatonin dosing
regimens in chemotherapy-treated patients is currently under
investigation, and it is possible be that the doses required may be
substantially higher than those found at physiological levels,
i.e., exceed those used to mitigate sleep disturbances. In this
context, it is possible than an oral dose of 1 mg/kg b.w would be
required.

Chemoresistance and tumor relapse represent two important
challenges for increasing the quality and life expectancy of cancer

TABLE 1 | Summary of in vivo studies including melatonin as an adjuvant against AAs-induced toxicity.

References Model Treatment Results

Kim et al. (2019) C57BL/6N mice Melatonin plus cisplatin Melatonin ameliorates cisplatin-induced acute renal failure
Zakria et al. (2021) Adult male white albino mice Melatonin reduces cisplatin-induced oxidative stress and significantly

improved the cognitive functions
Huang et al. (2021) BALB/c nude tumor-bearing female mice and

C57BL/6 female mice
Melatonin enhanced the anti-cancer effect of cisplatin as well as
reduced ovarian toxicity

De Araujo et al.
(2019)

Female Wistar rats Melatonin decreases cisplatin-induced ototoxicity

Macit et al. (2013) Male Sprague-Dawley rats Melatonin plus
mechlorethamine

Melatonin exerted protection against mechlorethamine-induced lung
injury

Kunak et al. (2012) Male Sprague-Dawley rats Melatonin reduced mechlorethamine-induced kidney injury
Ilbey et al. (2009) Male Wistar rats Melatonin plus

cyclophosphamide
Melatonin prevents cyclophosphamide -induced testicular damage

Ferreira et al.
(2013)

Male Wistar rats Melatonin plus
cyclophosphamide

Melatonin blocks cyclophosphamide-induced chromosome
aberrations

Cui et al. (2017) ICR male mice Melatonin plus busulfan Melatonin prevents busulfan-induced testicular injury

Frontiers in Pharmacology | www.frontiersin.org March 2022 | Volume 13 | Article 8731972

Egea et al. Melatonin Treatment for Alkylating Agents

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


patients. Tumor cells often develop resistance to several
chemotherapeutic drugs through various mechanisms such as
dampened apoptosis, drug efflux through ATP-binding
cassette (ABC) transporters, alterations in pro-survival
signaling pathways or improved DNA repair mechanism
(Mollaei et al., 2021). Thus, for therapeutic scheduling
several chemotherapeutic drugs may have to be used
concurrently to reduce chemoresistance, increasing side
effects. In this regard, certain evidences suggest that
melatonin may not only reinforce the therapeutic effect of
chemotherapy modalities but also reduce chemoresistance. For
instance, in malignant glioma cells melatonin downregulates
the overexpressed ABC transporter (Martin et al., 2013). In
addition, activation of the nuclear factor erythroid 2-related
factor 2 (NRF2) signaling is involved in the development of
chemoresistance and melatonin upregulates NRF2 through its
specific receptors MT1 and MT2, SIRT1 and PI3K/Akt
pathways in non-tumor cells. In contrast, melatonin has
been shown to inhibit glucocorticoid-induced kinase 1
(SGK1)-mediated NRF2 upregulation in tumor cells (Wang
et al., 2019). Finally, melatonin was shown overcome cisplatin
chemoresistance by inhibiting expression of Wnt/β-catenin
response genes and enhancing the efficacy of this alkylant
agent (Zhang et al., 2020).

A current focus of our group is to develop high dose
melatonin formulations that will be beneficial for its use in
cancer patients by mitigating its side-effects on normal cells
and enabling a higher dosing of the chemotherapy. We are
currently working on the pharmacokinetics characteristics,

that should help us direct the adjuvant use of orally and/or
parenterally administered melatonin in cancer patients
undertreatment with AAs. Ultimately, our purpose is to
help deciphering the potential of melatonin to maximize the
drug efficacies while mitigating chemotherapeutic drug-
induced toxicity and side effects in cancer patients.
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