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Crohn’s disease (CD) has an increasing incidence and prevalence worldwide. The
etiology of CD remains unclear and there is no gold standard for diagnosis. The
dysregulated immune response and different infiltration status of immune cells are critical
for CD pathogenesis; therefore, it is important to provide an overview of immune-
cell alterations in CD and explore a novel method for auxiliary diagnosis. Here we
analyzed microarray datasets from Gene Expression Omnibus (GEO), and an extended
version of Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts
(CIBERSORTx) was utilized to estimate the fraction of 22 types of immune cells.
Differentially expressed genes (DEGs) and a protein-protein interaction (PPI) network
were identified, and we performed gene set enrichment analysis (GSEA) and gene
set variation analysis (GSVA) to identify differentially regulated pathways in CD. Least
absolute shrinkage and selection operator (LASSO) regression was conducted to
filter features, and a diagnostic nomogram based on logistic regression was built
and validated in an independent validation cohort. In the derivation cohort, we found
a proportion of 17 immune-cell types to be significantly altered between CD and
healthy controls and a total of 150 DEGs were identified, which were mostly related
to the immune response. Among the 15 hub genes based on the PPI network,
C-X-C chemokine ligand 8 (CXCL8) and interleukin-1B (IL-1B) showed the highest
degree of interaction. Additionally, GSEA and GSVA identified five significantly enriched
pathways, among which the nucleotide-binding oligomerization domain (NOD)-like
receptor signaling pathway was critical in the CD development. Furthermore, six
variables comprising of CXCL8, IL-1B, M1 macrophages, regulatory T cells, CD8+ T
cells, and plasma cells were identified by LASSO regression and incorporated into a
logistic regression model. The nomogram displayed a good prediction, with a 0.915
area under the receiver operating curve (AUC) and a C-index of 0.915 [95% confidence
interval (CI): 0.875–0.955]. Similar results were found in the validation cohort, with an
AUC of 0.884 and a 0.884 C-index (95% CI: 0.843–0.924). These results provide novel
in silico insight into cellular and molecular characteristics of CD and potential biomarkers
for diagnosis and targeted therapy.
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INTRODUCTION

Inflammatory bowel diseases (IBDs) are disorders characterized
by chronic inflammation that affects the digestive tract and
includes the following two main components: ulcerative colitis
(UC) and Crohn’s disease (CD). CD can cause segmental and
transmural damage in any section of the entire digestive tract,
especially in the distal ileum and colon (Feuerstein and Cheifetz,
2017). There is currently no single gold standard for CD
diagnosis; therefore a combination of endoscopic examination,
histology, and clinical manifestation are recommended
(Gomollon et al., 2017). However, in most cases, the clinical
significance of CD histological hallmarks is low, and no medical
treatments can cure CD completely (Feakins, 2013). Therefore,
it is important to clarify the cellular and molecular mechanisms
associated with CD pathogenesis and find novel intervention
targets and explore potential biomarkers as diagnostic and
prognostic indicators.

Numerous investigations of CD pathogenesis have focused
on the interplay between environmental factors, genetics, gut
microflora, and immune responses (Torres et al., 2017). As
hallmarks of CD, the roles of immune cells in dysregulated
intestinal immune responses are crucial and remain to be
further elucidated (de Souza and Fiocchi, 2016). For example,
T cells can cause mucosal damage in gut tissues by producing
inflammatory cytokines, a process that can be blocked by
treatment with the anti-α4 integrin antibody natalizumab
(Neurath, 2014, 2017). However, different subpopulations of
T cells can differentially contributes (Smids et al., 2018).
Traditional approaches for assessing tissue composition, such
as immunohistochemistry and flow cytometry, are limited due
to the difficulty in simultaneous identification of multiple
immune-cell types, as well as their low throughput. Therefore, a
comprehensive assessment of the heterogeneity of immune cells
in CD occurrence is important.

With the development of microarray and high-throughput
sequencing technologies, estimation of cell proportions from
bulk tissues can be performed using genomics data via
bioinformatics techniques (Shen-Orr and Gaujoux, 2013). Cell-
type Identification By Estimating Relative Subsets Of RNA
Transcripts (CIBERSORT) is a deconvolution algorithm that
can analyze 22 distinct immune-cell subsets in complex tissues
based on normalized bulk transcriptome profiles (Newman
et al., 2015)and has been successfully used in different
types of cancer (Peng et al., 2019; Yang et al., 2019;
Zhang et al., 2019), as well as non-tumor diseases such as
idiopathic pulmonary fibrosis and systemic lupus erythematosus
(Liu et al., 2018; Panousis et al., 2019). In 2019, the
developer of CIBERSORT introduced an updated version
(CIBERSORTx) that provides more accurate portraits of tissue
composition based on cell-expression signatures via single-cell
experiments (Newman et al., 2019). These significant advances
of the deconvolution algorithm provide the probability to
comprehensively characterize infiltrating immune cells in CD.

In the present study, we performed a comprehensive analysis
by integrating two expression profiling microarray datasets and
exploring the proportion of intestinal immune-cell types for each

individual using CIBERSORTx. After identifying differentially
expressed genes (DEGs), we performed gene set enrichment
analysis (GSEA) and gene set variation analysis (GSVA) to
find signaling pathways involved in CD occurrence. We then
constructed a multivariable logistic regression model based on
the key features of this information and built a nomogram to
provide a novel method for CD auxiliary diagnosis. Furthermore,
an external cohort comprising of four microarray datasets
was used for independent validation of the nomogram. The
results provide in-depth insights into the cellular and molecular
mechanisms related to clinical management of CD.

MATERIALS AND METHODS

Microarrays Datasets Collection
The raw data of microarray datasets [GSE112366 (VanDussen
et al., 2018) and GSE75214 (Vancamelbeke et al., 2017)]
were downloaded from the NCBI Gene Expression Omnibus
(GEO) database (Barrett et al., 2013) and merged as a
derivation cohort. The two datasets were based on the
platforms of GPL13158 [(HT_HG-U133_Plus_PM) Affymetrix
HT HG-U133 + PM Array Plate] and GPL6244 {[HuGene-
1_0-st] Affymetrix Human Gene 1.0 ST Array [transcript
(gene) version]}, respectively. The dataset GSE112366 contains
141 CD samples without any treatment and 26 normal
samples from the ileum. Another dataset (GSE75214) contains
75 CD samples and 22 normal samples obtained from
the ileum or colon.

Data Preprocessing and CIBERSORTx
Estimation
Each expression matrix was extracted from the raw data using
R package “affy” (Gautier et al., 2004) and then normalized
and transformed into a log2-based logarithm by robust multi-
array average algorithm (Irizarry et al., 2003). After matrix
merging, the R package “sva” (Leek et al., 2012) and the
function “combat” were used to remove the batch effects and
other unnecessary variations. CIBERSORTx was employed to
determine the proportion of each immune cell involved in CD
patients and healthy individuals. The gene expression data was
uploaded to the CIBERSORTx web portal1, and the algorithm
was run using the LM22 signature for 100 permutations.
The LM22 signature matrix defined 22 infiltrating immune-
cell components, including subsets of macrophages, T cells,
natural killer (NK) cells, mast cells, B cells, dendritic cells (DC),
monocytes, plasma cells, neutrophils, and eosinophils (Newman
et al., 2015). We used bulk-mode batch correction, and the output
was in absolute mode according to the tutorial on the web site
and reflects the absolute proportion of each cell type in the
mixture. Only cases with a CIBERSORTx output P < 0.05 were
chosen for further analysis. The Wilcoxon test was used to analyze
differences in immune cell fractions between CD patients and
healthy controls.

1https://cibersortx.stanford.edu/
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FIGURE 1 | Flow chart of the analyses used in this study.

Identification of DEGs and Functional
Enrichment Analyses
The R package “limma” (Ritchie et al., 2015) was used to
perform DEG analysis by comparing CD and healthy control
groups. For DEG identification, the cut-off criteria of | log2FC|
> 1 and adjusted P < 0.05 were regard as statistically
significant. The biological function of DEGs was identified by
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses by using the R
package “clusterProfiler” (Yu et al., 2012). Fisher’s exact test was
employed, and the occurrence of false positives was corrected
by Benjamini-Hochberg (B-H) multiple test correction method.
An adjusted P < 0.05 was set as the cut-off criterion. The
Search Tool for the Retrieval of Interacting Genes (STRING)
online database2 was used to construct the protein-protein
interaction (PPI) networks for the DEGs (Szklarczyk et al., 2019),

2http://string-db.org; version11.0

with an interaction score >0.4 was regarded as statistically
significant. Subsequently, the molecular interaction network was
visualized using Cytoscape software (v 3.7.1) (Shannon et al.,
2003). Furthermore, we used the Cytohubba plugin app within
Cytoscape to calculate degree of interaction between DEGs and
defined the top 15 genes as hub genes (Chin et al., 2014).

GSEA and GSVA Analysis
GSEA is a calculation method to explore whether a priori defined
genomes between two groups show significant differences.
Therefore, we used GSEA software3 to evaluate the differentially
enriched pathways between CD patients and healthy controls
(Subramanian et al., 2005). The previously annotated gene set
c2.cp.kegg.v6.2.symbols.gmt was chosen as the reference gene list.
The results with a cut-off criterion of a nominal P < 0.05 were
considered statistically significant. Furthermore, we performed

3http://software.broadinstitute.org/gsea/index.jsp
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FIGURE 2 | Data preprocessing of the derivation cohort. Box plot and principal component analysis showing the overall profiles of GSE112366 and GSE75214
(A,B) before and (C,D) after normalization. The results confirmed removal of the batch effect PCA.

GSVA to assess the underlying changes in pathway activity.
This method is a non-parametric unsupervised method that
transforms the genes of the sample matrix into predefined
gene sets without a priori knowledge of experiment design
(Hanzelmann et al., 2013). In the present study, we used the
R package “GSVA” to calculate the scores for each patient
based on previously defined gene sets of KEGG pathways.
Subsequently, the R package limma was used to build linear
models for comparing GSVA scores between CD patients and
healthy controls and we defined pathways with a P < 0.05 and
| log2FC| ≥ 0.2 as significantly altered.

Co-expression Analysis and
Construction of Predictive Nomogram
To elucidate interaction between immune cells, hub genes, and
pathways in CD, we indentified co-expression patterns based
on Spearman correlation analysis. To identify the immune cells
critical to CD progression, we established criteria including a

correlation coefficient >0.3 and a P < 0.05 and incorporated the
immune cells and related hub genes and pathways into the least
absolute shrinkage and selection operator (LASSO) regression
model in order to select the optimal predictive features.

A multivariable logistic regression model and a nomogram
were constructed by integrating the features with non-zero
coefficients in LASSO regressionin in order to prevent model
overfitting. Model sensitivity and specificity were evaluated by
receiver operating characteristic (ROC) analyses. The calibration
of the nomogram was assessed by comparing the observed actual
diagnosis with the predicted probability by plotting a calibration
curve. The C-index was measured to quantify the discriminative
performance of the nomogram. The Pearson residuals plot was
used to assess whether the model is fitted properly (Zhang, 2016).

Validation of the Nomogram
The diagnostic nomogram was applied to an independent
cohort comprising microarray datasets from the GEO [GSE3365

Frontiers in Genetics | www.frontiersin.org 4 April 2020 | Volume 11 | Article 423

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00423 April 27, 2020 Time: 19:27 # 5

Chen et al. Immune Cells of Crohn’s Disease

FIGURE 3 | Distribution of immune cells between CD patients and healthy controls using CIBERSORTx for all eligible samples in the derivation cohort. (A) Heatmap
of the normalized absolute abundance for each cell type in individual samples. (B) Barplot of different the fractions of immune cells in individual samples.

(Burczynski et al., 2006), GSE10616 (Kugathasan et al., 2008),
GSE16879 (Arijs et al., 2009), and GSE102133 (Verstockt et al.,
2019)] to evaluate the efficacy of model validation and prediction.
These four datasets were based on the platforms GPL96 [(HG-
U133A) Affymetrix Human Genome U133A Array], GPL5760
(Affymetrix GeneChip Human Genome U133 Plus 2.0 Array),
GPL570 [(HG-U133_Plus_2) Affymetrix Human Genome U133
Plus 2.0 Array], GPL6244 [(HuGene-1_0-st) Affymetrix Human
Gene 1.0 ST Array], respectively, and the features applied for
validation were derived from the same method used in the
derivation cohort (DEGs and CIBERSORTx).

RESULTS

Composition of Immune Cells in CD and
Normal Tissues
An overview of the workflow is shown in Figure 1 and the R
code is available in Supplementary Data Sheet S1. The derivation
cohort contained 216 CD tissue samples and 48 normal bowel
tissue samples. Data before and after normalization were
visualized in a boxplot and examined by principal component

analysis (PCA), and suggested that the batch effect of merged
data was successfully removed (Figure 2). After algorithm
execution, all samples were enrolled with a CIBERSORTx output
with a P < 0.05 according to a previously defined threshold
(Supplementary Tables S1, S2). The distribution of immune cells
is shown in a heatmap (Figure 3A) and barplot (Figure 3B),
indicating that many were significantly altered among groups.
The Wilcoxon test revealed that the innate immune system
showed a higher fraction of resting DCs, macrophages (M0 and
M1), activated mast cells, and neutrophils in CD and a lower
fraction of M2 macrophages, resting mast cells, and γδT cells
in CD patients (P < 0.05), whereas in the adaptive immune
system, resting NK cells, plasma cells, and CD4 memory T cells
(activated and resting) were more prominent in CD, whereas a
decreased proportion of activated NK cells, memory B cells, CD8
T cells, follicular helper T cells, and regulatory T cells (Tregs)
were observed (P < 0.05) (Figure 4).

Functional Enrichment Analysis of DEGs
and Identification of Hub Genes
Based on predefined cut-off criteria, we obtained 150 DEGs,
including 70 upregulated genes and 80 downregulated genes,
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FIGURE 4 | Boxplot of comparisons of immune-cell proportion between CD patients and healthy controls in the derivation cohort. The red boxplot represents CD
patients, and the blue boxplot represents healthy controls. The fraction of resting DCs, macrophages (M0 and M1), activated mast cells, and neutrophils were higher
in CD patients, whereas the fraction of M2 macrophages, resting mast cells, and γδT cells were lower in CD patients. The number of resting NK cells, plasma cells,
CD4 memory T cells (activated and resting) were elevated in CD, whereas that of activated NK cells, memory B cells, CD8 T cells, follicular helper T cells, and Tregs
was lower. *p < 0.05, **p < 0.01, ***p < 0.001.

from a total of 17,689 genes in derivation cohort (Figure 5A and
Supplementary Figure S1). GO enrichment analysis revealed
that DEGs were primarily related to the immune response
(e.g., leukocyte migration, response to molecules of bacterial
origin, organic anion transport, response to lipopolysaccharide,
neutrophil migration, and cytokine activity) (Figure 5B). KEGG
enrichment analysis demonstrated that DEGs were mainly
enriched in pathways related to immunity, such as interleukin
(IL)-17 signaling, nucleotide-binding oligomerization domain
(NOD)-like receptor signaling, tumor necrosis factor (TNF)
signaling, chemokine signaling (Figure 5C). The interactions
among 150 DEGs were visualized in the PPI network, which
was constructed using an online database (version: 11.0). We
identified 145 nodes and 536 edges among the DEGs and used
Cytoscape for visualization (Figure 5D). Genes with the top
15 scores based on Cytohubba analysis were identified as hub
genes (Figure 5E and Table 1) and the expression distribution
of the hub genes is shown as a heatmap (Figure 5F). Among the
identified genes, both C-X-C chemokine ligand 8 (CXCL8) and
IL-1B showed the highest degrees of interaction; therefore, we
considered these as potentially crucial genes in CD pathogenesis.

Identification of CD-Associated
Pathways via GSEA and GSVA
GSEA results showed that genes in the disease group were
significant highly enriched in 12 pathways, with only one
pathway enriched in the healthy group (P < 0.05) (Figure 6A
and Supplementary Figure S2). Similarly, 10 pathways were
significantly activated in CD, whereas two were inhibited

TABLE 1 | The expression analysis of the top 15 hub genes with the highest
interaction degree.

Gene symbol LogFC P. Value Adj. P. Value Degree

CXCL8 1.573168 6.38E-10 4.41E-08 34

IL1B 2.037914 1.02E-11 1.60E-09 34

CCL2 1.189715 4.87E-08 1.49E-06 29

CXCL11 1.216482 1.01E-06 1.70E-05 28

PTGS2 1.105027 1.64E-06 2.57E-05 25

CXCL10 1.185171 3.02E-06 4.20E-05 22

APOB −1.95788 9.08E-06 0.000103 20

TIMP1 1.178994 1.82E-08 6.87E-07 19

LCN2 2.422802 4.46E-16 5.63E-13 19

DPP4 −1.02179 2.30E-06 3.37E-05 19

CXCL9 1.274086 1.43E-06 2.28E-05 18

SLC2A2 −1.27104 1.10E-05 0.00012 17

CXCL5 1.115601 3.04E-06 4.22E-05 17

APOA4 −1.45209 1.03E-05 0.000114 17

IL1RN 1.191117 1.32E-08 5.18E-07 17

according to GSVA results (Figure 6B). Five pathways
(“Proteasome,” “Pathogenic Escherichia coli infection,” “NOD-
like receptor signaling pathway,” “Drug metabolism cytochrome
p450,” and “Systemic lupus erythematosus”) overlapped in
both GSEA and GSVA results and were chosen for further
correlation analysis (Table 2). However, only the NOD-like
receptor signaling pathway was identified in the former KEGG
pathway enrichment results for the DEGs.
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FIGURE 5 | DEGs identified in the derivation cohort. (A) Volcano plot of DEGs. Red dots represent relatively upregulated genes and green dots represent
downregulated genes. Black dots represent genes showing no significant alteration. There were 150 DEGs, including 70 upregulated and 80 downregulated genes
among 17,689 genes. Bubble plot of (B) Gene Ontology and (C) KEGG enrichment analyses. (D) Cytoscape software was used for the analysis. (E) Hub genes with
the top 15 degrees of interaction were identified using Cytohubba plugin. (F) Heatmap of the hub genes. BP, biological process; CC, cellular component; MF,
molecular function.

TABLE 2 | The pathways overlapped in results of GSEA and GSVA.

Pathway GSEA GSVA

NES P. Val logFC Adj. P. Val

KEGG_PROTEASOME 1.84 0.010 0.3942 6.21E-08

KEGG_PATHOGENIC_ESCHE

RICHIA_COLI_INFECTION 1.43 0.049 0.236553 1.22E-05

KEGG_NOD_LIKE_RECEPTOR_

SIGNALING_PATHWAY 1.62 0.004 0.217978 1.76E-05

KEGG_DRUG_METABOLISM_

CYTOCHROME_P450 −1.41 0.044 −0.23917 0.000208

KEGG_SYSTEMIC_LUPUS_

ERYTHEMATOSUS 1.60 0.013 0.206671 0.001946

Co-expression Analysis and Variable
Selection
To identify co-expression patterns among significantly altered
immune cells, hub genes, and signaling pathways, we performed

Spearman correlation analysis to evaluate possible relationships
(Figure 7A and Supplementary Tables S3, S4). The results
showed that γδT cells, plasma cells, neutrophils, activated CD4
memory T cells, macrophages (M0 and M1) and activated
mast cells showed a positive correlation with most of the
genes and signaling pathways, whereas Tregs and CD8 T
cells showed a negative correlation with the same. To explore
potential regulatory networks, we identified the immune cells
with a | correlation coefficient| > 0.3 for CXCL8 and IL-
1B levels that showing the highest degrees of interaction in
hub genes (Figure 7B). Theses included plasma cells, CD8
T cells, activated CD4 memory T cells, Tregs, macrophages
(M0 and M1), activated master cell, and neutrophils, and
interestingly, these cells were also correlated with the NOD-
like receptor signaling pathway (Figure 7C). These 11 features,
including levels of CXCL8 and IL-1B, the NOD-like receptor
signaling pathway, and their associated immune cells, were
integrated into the LASSO regression model, resulting in six
features with non-zero coefficients used for further nomogram
construction (Figures 7D,E).
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FIGURE 6 | GSEA and GSVA results from the derivation cohort. (A) GSEA revealed that most of the enriched pathways (P < 0.05) correlated with CD. (B) GSVA
showed that most of the significantly altered pathways were activated in CD.

Construction of the Diagnostic
Prediction Model
CXCL8 and IL-1B levels, M1 macrophages, Tregs, CD8 T
cells, and plasma cells were incorporated into a multivariable
logistic regression model to build a diagnostic prediction
model for CD and presented as a nomogram (Figure 8A).
The area under the ROC analysis for this model is 0.915
(Figure 8B), and the calibration curve showed that the
model agreed well between the actual and predicted
probability of CD occurrence (Figure 8B). The C-index
of the nomogram for predicting CD occurrence was 0.915
[95% confidence interval (CI): 0.875–0.955]. Moreover, the
Pearson residuals plot showed that the relationship between
residuals and predictors was nearly linear without curvature
(Supplementary Figure S6A).

Validation of the Diagnostic Model
The validation cohort contained a total of 193 CD
tissue samples and 83 normal bowel tissue samples.
The batch effect of the merged data was successfully

removed and visualized using the same method used for
the derivation cohort (Supplementary Figure S3), and
DEG and CIBERSORTx results were similar to those of
the derivation cohort (Supplementary Figures S4, S5).
The area under the ROC analysis for this model was
0.884 (Figure 8D), and the calibration curve showed
that the model in the validation cohort also agreed well
between the probabilities of actual and predicted CD
occurrence (Figure 8E). The C-index of the validation
model predicting CD occurrence was 0.884 (95% confidence
interval: 0.843–0.924). Furthermore, the trend of Pearson
residuals plot was similar to that from derivation cohort
(Supplementary Figure S6B).

DISCUSSION

CD is one of the major types of IBDs and a chronic relapsing
inflammatory process that mainly affects the gastrointestinal tract
(Baumgart and Carding, 2007), with dysregulated immune-cell
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FIGURE 7 | Co-expression patterns and LASSO regression of the derivation cohort. (A) Correlation heatmap showing gene co-expression patterns among
significantly altered immune cells, hub genes, and pathways. (B,C) Circos plot showing the relationships between immune cells, CXCL8 and IL1-B levels, and the
NOD-like signaling pathway (| correlation coefficient| > 0.3). (D,E) LASSO regression analysis identified six factors with cross-validation performed to prevent
overfitting.

trafficking in the intestine representing the predominant event
in CD pathogenesis (Zundler et al., 2019). Although previous
studies have attempted to elucidate the precise pathological
process, few reports have provided an overview of immune-
cell alterations in CD. Therefore, we employed bioinformatics
analyses as a viable strategy to investigate the profile of
immune cells to offer insight into the collective regulatory
mechanism of CD.

We used CIBERSORTx to estimate the fraction of 22 immune
cells from the innate and adaptive immune systems in CD
patients and healthy controls, and established regulatory
co-expression regulatory patterns based on correlation
analyses between immune cells, genes, and signaling pathways.
Moreover, we generated a predictive diagnostic nomogram
revealing good performance using both derivation and
validation cohort.
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FIGURE 8 | Logistic regression analyses of both the derivation and validation cohorts. (A) Nomogram predicting CD probability. (B) ROC curve and (C) calibration
curve of the model from derivation cohort. (D) ROC curve and (E) the calibration curve of the model from validation cohort.
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Our diagnostic model showed that CXCL8 and IL-1B
represented hub genes with the highest degree of interaction,
suggesting their important role in CD pathogenesis. A well-
known function of CXCL8 is neutrophils activation and
attraction, based on their recruitment to inflamed intestinal
mucosa during the early stage of the inflammatory response
(Kolaczkowska and Kubes, 2013; Russo et al., 2014). Our
analysis identified a higher fraction of neutrophils in CD relative
to that in normal tissue along with the highest correlation
with CXCL8 levels. These results suggested that neutrophils
are essential for CD progression; however, whether its role is
pathological or beneficial remains controversial. Recently, single-
cell analysis revealed that neutrophils recruitment and activation
was correlated with clinical disease severity in CD (Therrien
et al., 2019). However, Zhou et al. (2018) demonstrated that the
CD177+ neutrophils showed a protective effect in IBD through
increased anti-bacterial activity and IL-22 production. Therefore,
this discrepancy might be due to difference in neutrophils subsets
and the phases in which they appear during inflammation.

IL-1β is an important pro-inflammatory cytokine that
promotes the inflammatory process and coordinates
autoimmune responses (Ligumsky et al., 1990). IL-1β

is correlated with disease severity, implying essential in
pathogenesis of IBD (McAlindon et al., 1998; Young et al.,
2017). Stimulated by microbe-associated molecular patterns
(MAMPs), IL-1β from macrophages, DCs, and epithelial cells
induces the development of CD4+ T cells (de Souza and Fiocchi,
2016). Moreover, both M1 (pro-inflammatory phenotype)
and M2 (pro-resolving phenotype) macrophages are essential
for intestinal immune homeostasis (Murray et al., 2014) with
M1 macrophages essential for the antibacterial response that
involves proinflammatory cytokines production (i.e., IL-1β)
mediate acute inflammation (Wynn et al., 2013). Therefore,
intestinal macrophages dysregulation possibly underlies chronic
inflammation associated with IBD due to a lower tolerance of
bacteria and food antigens (de Souza and Fiocchi, 2016). The
present study demonstrated an increased proportion of M1
macrophages in CD patients, whereas that of M2 macrophages
was lowered. Moreover, we found an increased fraction of CD4+
memory T cells in CD patients that was positively correlated
with IL-1B levels; however, due to limitations with CIBERSORTx
analysis, we were unable to investigate subsets of CD4+ T cell
(e.g., CD-specific changes in proportions of T-helper cell).

However, CIBERSORTx analysis offered an overview of Treg
and follicular help T cells (Tfh) status as subsets of CD4 + T
cells. The results showed that the fraction of theses cells decreased
in CD patients, and that Treg level was an important predictor
in the diagnostic model. However, a previous study reported an
increased percentage of Tregs as part of CD diagnosis, as well as
during the active phase of the disease (Smids et al., 2018). Tregs
generally suppress IL-1B production and inhibit effector T cell
proliferation, whereas some studies reported that these function
are impaired in CD (Maloy and Powrie, 2011; Cook et al., 2019).
This suggests that Treg status in CD remains controversial and
might depend on inflammatory stage. Another important type of
T cell in our diagnostic model was the CD8+ T cell, which showed
a decreased proportion in CD patients. Similar to our results,

a previous study reported a decreased response to commensal
microbiota by CD8+ T cells in IBD (Noble et al., 2019). Because
the antigen-presenting function of DCs is critical for the CD8+ T
cell response, the higher percentage of inactivated DCs identified
in our analysis might provide a possible explanation. Moreover,
another study indicated that polymorphisms of NOD2, which has
been widely studied for its strong association with CD, contribute
to dysregulated cross-presentation of DCs from CD, ultimately
leading to impaired CD8+ T cell response (Corridoni et al.,
2019). Surprisingly, our results also revealed that the activated
NOD-like receptor signaling pathway plays a key role in CD
occurrence and is negatively correlated with the CD8+ T cell
levels. Although the NOD-like receptors (NLRs) are essential for
the anti-microbial response, defective autophagy due to NOD2
polymorphisms accounts for attenuated bacterial clearance and
activation of the downstream nuclear factor kappaB (NF-κB)
pathway activation (Travassos et al., 2010; Plantinga et al., 2011).

Notably, reduced CD8 + T cell levels might lead to a skewing
toward a humoral immune response, where antibodies are
produced by activated B cells (Noble et al., 2019). Despite the lack
of studies targeting the role of B cells in CD, one study identified
B cell disruption in CD, including increased levels of plasma
cells in lamina propria and altered production of a subclass
of antibodies (Brandtzaeg et al., 2006). Consistent with these
findings, our results showed a higher percentage of plasma cells
in CD patients relative to healthy controls, with this contributing
to the predictions in the nomogram. Additionally, unlike plasma
cells, the fraction of naïve and memory B cells was reduced;
however, the exact pathogenic role of B cell distribution remains
unclear. A previous study reported that an antibody targeting
tumor necrosis factor- α normalized levels of traditional B cells,
suggesting the tumor necrosis factor- α as a potential biomarker
for treatment monitoring (Timmermans et al., 2016). Moreover,
we found that the reduced levels of γδ-T cells in CD tissue
comprised only a small proportion of resident lymphocytes.
Although previous studies observed similar decreases in the
intestinal mucosa, the plasticity of γδ T cells make it difficult to
elucidate the exact pathogenic role (Catalan-Serra et al., 2017);
therefore, further research is necessary to elucidate the function
of γδ T cells in CD.

Our study has some limitations. First, due to the lack
of clinical information, including disease phenotype, disease
activity status, and CD Activity Index score, associations between
immune cells and disease severity could not be well estimated.
Second, the score of each factor in the nomogram was derived
from gene expression data and an absolute value produced
by CIBERSORTx; therefore, our model emphasized the factor
itself rather than the value, and a normalization method should
be developed for further application of the nomogram. Third,
our control included normal intestine tissue. Some diseases
that show confusing similarities with CD, including intestinal
tuberculosis or Behcet’s disease, need to be used for comparison;
however, to the best of our knowledge, this was the first study
using the CIBERSORTx algorithm to identify the proportion of
immune cells in CD and provide novel biomarkers for diagnostic
prediction. In future work, molecular biological experiments
and/or flow cytometry analyses need to be performed to validate
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these findings, and another external validation based on a larger
sample should be conducted.

CONCLUSION

These data offer insight into the landscape of immune cells
associated with CD and provide information for a auxiliary
diagnosis based on co-expression patterns within an immune-
cell cohort specific to CD. The findings demonstrated the cellular
and molecular heterogeneity in the disease, and are consistent
with previous studies. These results provide novel insight into the
cellular and molecular mechanisms underlying CD and facilitate
accurate diagnosis of the likelihood of CD.
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