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Simple Summary: This paper attempts to analyze the impact of organic livestock farming in dehesas
through the analysis and review of the carbon footprint of seven extensive organic farming systems
in various dehesas in the southwest of Spain. The method used was life cycle assessment, taking into
account both greenhouse emissions and carbon sequestration. Greenhouse emissions estimated are
those derived from livestock digestion, manure management, soil management, and off-farm inputs
(feeding, fuels, and electricity). Carbon sequestration calculations consider carbon fixation due to
pasture and crop waste and carbon fixation in soil due to manure fertilization. The farms under study
represent all the species bred in the farms and all the habitual farming systems existing in dehesas,
with the following types being under analysis: beef cattle, sheep for meat, Iberian pigs, and dairy
goats. The emissions identified in the farms under study have been found to be lower than those
from conventional farms, with values of 16.27 and 10.43 kg CO2eq/kg of live weight for beef cattle,
13.24 and 11.42 kg CO2eq/kg of live weight for sheep, 1.19 kg CO2eq/kg of milk for goats, and 4.16
and 2.94 kg CO2eq/kg of live weight for pigs. The levels of carbon sequestration are also noticeably
higher, with compensation being up to 89% in meat producing ruminants’ farms, 100% in dairy goats’
farms, and values compensating the total emissions in the case of Iberian montanera pig farms.

Abstract: This study employs life cycle assessment (LCA) for the calculation of the balance (emissions
minus sequestration) of greenhouse gas emissions (GHG) in the organic livestock production systems
of dehesas in the southwest region of Spain. European organic production standards regulate these
systems. As well as calculating the system’s emissions, this method also takes into account the soil
carbon sequestration values. In this sense, the study of carbon sequestration in organic systems is of great
interest from a legislation viewpoint. The results reveal that the farms producing meat cattle with calves
sold at weaning age provide the highest levels of carbon footprint (16.27 kg of carbon dioxide equivalent
(CO2eq)/kg of live weight), whereas the farms with the lowest levels of carbon emissions are montanera
pig and semi-extensive dairy goat farms, i.e., 4.16 and 2.94 kg CO2eq/kg of live weight and 1.19 CO2eq/kg
of fat and protein corrected milk (FPCM), respectively. Enteric fermentation represents 42.8% and 79.9%
of the total emissions of ruminants’ farms. However, in pig farms, the highest percentage of the emissions
derives from manure management (36.5%–42.9%) and animal feed (31%–37.7%). The soil sequestration
level has been seen to range between 419.7 and 576.4 kg CO2eq/ha/year, which represents a considerable
compensation of carbon emissions. It should be noted that these systems cannot be compared with other
more intensive systems in terms of product units and therefore, the carbon footprint values of dehesa
organic systems must always be associated to the territory.
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1. Introduction

Dehesa, situated in the southwest of the Iberian Peninsula, is one of the largest managed
agroecosystems in Europe. However, their current environmental situation is alarming, with natural
resources, such as the soil, water, and biodiversity, being under great pressure. In spite of this, livestock
farming and agriculture can highly contribute to their preservation, although it can be the cause of
their accelerated deterioration [1], unless management of the systems is also adequate.

With the increase of the food demand and climate change as the main actors, the dehesa ecosystem
will be required to adapt to an increasing lack of natural resources and the reduction of greenhouse
gas emissions (GHG) [2]. GHG emissions and climate change represent two of the world’s greatest
environmental concerns, with the reduction of GHG emissions being one of the main challenges the
European farming industry will face in the forthcoming years.

The fight against climate change has become a current main concern. In this sense, measuring
the impact of farming and the agricultural activities of the extensive systems and specifically, of the
dehesa areas, is a major objective, as there are major differences between the more extensive and
organic production systems and the more intensified systems, which use less natural resources and
more animal feeds. These systems are a priori, more sustainable, since they could also generate added
value from an economic and environmental point of view [3].

In this context, the proliferation of studies on farming GHG emissions provides many well-founded
opinions. Papers such as that by Smith et al. [4] indicate that the conversion to organic farming in this
specific area would reduce GHG emissions, although it would also reduce production, which would
require other areas to increase production in order to offset the lack of supply, and net emissions
would therefore become higher. Other papers compare organic sustainable production systems
and high-performance farming with the purpose of meeting the increasing food demand, with the
conclusion that high-performance farming is as sustainable as organic farming and the choice of system
will be fundamental for the future of biodiversity [5].

Other papers such as that of Muller et al. [6] propose organic farming as an essential part of the
future of the food systems, together with a dramatic change in the food culture and a reduction in food
waste. Reports such as Research Institute of Organic Agriculture (FIBL) and International Federation
of Organic Agriculture Movements (IFOAM EU) [7] highlight the contribution of organic farming to
the mitigation and adaptation to climate change, pointing out that a future scenario where organic
farming increased by 50% in 2030, would yield a potential reduction of 12%–14% in the GHG emissions
from the farming industry in the European Union. Such changes would derive from the increase in the
soil’s organic matter and a reduction in the use of mineral fertilizers.

For such temporal framework, the southwest of the Iberian Peninsula will be required to accept
the coexistence of multiple production models, where organic farming must take part as an alternative
to the other models. But, can organic farming production in such ecosystems be one of the strategies to
mitigate climate change?

Although the GHG emissions deriving from farming systems are complex and heterogeneous,
the management system proposed by organic farming based on the simplification and adoption of
certain practices leading to improving pastures and soils, can mitigate the GHG emissions of the
farming systems [2,8].

Several methods can be used to calculate the carbon footprint (CF) of the various production
systems, although one of the most popular and internationally-recognized ones is the life cycle
assessment (LCA) [9]. Recent papers such as that of Gutiérrez-Peña et al. [10] which analyzes dairy
goat farms in the south of Spain, that of Eldesouky et al. [3] which analyzes cattle and sheep farms in
the southeast of Spain, or one analyzing the dairy cattle farms in the north of Spain by Nova et al. [11]
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are some of the examples. Such papers focus on conventional production farms, whereas the present
paper measures the CF in organic extensive farms.

One of the main problems when comparing GHG emissions between different livestock production
systems is the use and implementation of different methodologies, as well as the level of variation
generated by the different emission factors considered. Emission factors provided by default by
the Intergovernmental Panel on Climate Change (IPCC) (2006) generate a high level of uncertainty
compared to others that are more local or directly measured on-site. In addition to these factors,
different results can be found from the allocation of global warming potentials (CH4 and N2O) and
the system limits established. The results may vary if the limits of the system remain on the farm
itself or, as in our case, to the entire life cycle of the inputs (harvesting, transport, manufacturing, etc.).
Similarly, results may differ depending on the functional units considered, e.g., it would seem clear
that measuring the CF per unit of product (kg or L) is less appropriate than doing so per farm area (ha)
in extensive systems. For that reason, it is necessary to incorporate carbon sequestration in the GHG
emissions balance when we study extensive livestock systems.

Within this context, it becomes necessary to approach a detailed study of the GHG emissions
deriving from the rearing of organic cattle, specifically the one reared in dehesas. Such analysis
will be performed by species, providing details of the origin of the carbon footprint generated by
each aspect associated to production, with the purpose of determining its contribution to the global
carbon footprint and establishing the possibility of proposing this sustainable farming model as
an environmentally-friendly alternative against the increasing industrialization of this segment.

The dehesa of the southwest of Spain represents over a million of hectares [12] and comprises
various farming systems. This paper will focus on the organic livestock production system. The purpose
of this paper is to estimate the balance of GHG emissions and CF in seven ruminants and Iberian pig
organic farms taking also into account their carbon sequestration potential.

And lastly, the reduction of the carbon footprint is also closely associated with the increase in the
efficiency of the production system and, therefore, its profitability [13,14]. This is the reason why future
research should include carbon footprint in a system in order not only to improve system sustainability,
but also to financially reward the reduction of GHG emissions.

2. Materials and Methods

Life cycle assessment (LCA) is one of the methods most frequency used to calculate the balance of
greenhouse gas emissions (GHG) in livestock farms, as it is a standard and internationally-accepted
means to effectively quantify the environmental impact of a product, and also allows to take into account
carbon sequestration [3,9,15,16]. This was the basis for its selection as the most appropriate method
for this study. The calculation of the carbon footprint was performed following the UNE-EN-ISO
2006 standards [17,18], the IPCC guidelines [19] for national GHG emissions and their subsequent
amendments [20,21], the atmospheric emissions national inventories [22], and also an adaptation of
the technique to the Spanish Ministry of Agriculture’s method for the characteristics of the areas under
analysis [23].

2.1. Case Studies Selection and Data Collection

This research is based on a case studies methodology developed by Yin (1984) [24] on his work
titled “Case Study Research: Design and Methods” and it is mainly characterized by an intensive
approach to an object of study or unit. It is used for the description of real situations and is applicable,
for example, to problems related to the management of enterprises, being in the case of this research,
the livestock enterprise as the unit of study.

The farming system under study in this paper can be considered unique: an agro-ecosystem
grazed by different livestock species under extensive conditions and giving rise to different products
depending on the management that the owners of the farms decide to adopt. All these farms are
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management units subject to the same soil, climate, and socio-political conditions located in the Spanish
region of Extremadura, an administrative unit of governance.

The selection of seven organic farms for in-depth study has been considered as the appropriate
method for achieving the objectives of the study, since each of them is characteristic of a representative
management system in the region of Extremadura (the regional area on which the study is focused).
It should be mentioned that the number of organic farms in the region is very low, in fact, in the case
of organic pig and goat farms, the region only has three farms registered in 2017 and they were all
included in the study.

In the recent literature, there are numerous studies that use the case study approach for the
analysis of livestock farm management from both environmental and technical–economic approaches,
for example, Bernués et al. [25] study the environmental impact and ecosystem services of sheep in
Spain, Vellenga et al. [26] compare the use of conventional and organic beef cattle water, and Eldesouky
et al. [3] analyze the carbon footprint in dehesa farms in Spain. Works with a technical–economic bias
are for example those of Neira et al. [27], Asai et al. [28], and Regan et al. [29].

Data were collected from each of the seven farms by way of one-to-one interviews with the farmers
or proprietors of the farms during the first semester of 2018.

2.2. Features of the Seven Production Systems

In Table 1 we can see the main characteristics and technical indicators of the seven case studies.
The data refers to year 2017.

Table 1. Main features of the production systems included in the case study.

System Types Description Photograph

Beef cattle farm (calves): Average-size extensive beef cattle farm of
140 ha, with 7.1% of the area dedicated to crops. The expense in feed is
approximately 266.7 kg of fodder */reproductive animal and 357.3 kg of
concentrates/reproductive animal. The end product of this farm is the
sale of weaned claves of approximately 200–250 kg of live weight.
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Table 1. Cont.

System Types Description Photograph

Meat sheep farm (lambs 18.5 kg live weight): Extensive sheep farm
with a total area of 500 hectares. The area dedicated to crops is 18%
a year. The expense in feed is 58.8 kg of fodder */reproductive animal
and 85.9 kg of concentrates/reproductive animal. The end product is the
sale of sheep of 18.5 kg of live weight approximately from 2 to
2.5 months old.
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* Fodder refers to straw and hay. 1 Montanera is the local name for the free-range fattening of Iberian pigs whereby
animals are free to roam in the dehesa and mainly eat acorns (aprox. 10 kg/day) and pasture (aprox. 3–4 kg/day).
This covers period from November to February [30].

2.3. System Boundaries and Functional Unit

The scope of this study covers the entire process until the finished product, which will vary
subject to the type of farm. The limits selected for the organic systems included all the on-farm and
the off-farm emissions, understanding them as a dynamic set of activities. The on-farm emissions
are all the emissions caused by the cattle (enteric fermentation, CH4), manure and soil management,
and (CH4 y NO2). Off-farm emissions are emissions associated with the manufacture and transport of
feed for the cattle, the use of fuel, electricity, transport, etc.

Emissions are indicated in two functional units: the first one uses the main type of product in
each system, i.e., the kg of live weight per sold animal (in meat farms) and the kg of fat and protein
corrected milk (Fat and protein corrected milk (FPCM) in dairy farms) [31] and the second one is based
on 1 ha of the total hectares of the farm.

2.4. Estimation of GHG Emissions and CF Level in Farms

The method used for the estimation of the GHG emissions is the guidelines established by IPCC
for the national GHG inventories [19]. All the emissions are expressed in kg CO2eq depending on their
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potential global warming. These global warming potentials proposed by [20,21] are 1 for CO2, 25 for
CH4, and 298 for N2O.

2.4.1. On-Farm Emissions

In order to estimate the on-farm emissions, the following have been taken into account: enteric
fermentation, manure management, and soil management. The emission factors were taken from
the National Greenhouse Gases Inventory for agricultural processes. Additionally, the existence of
more specific emission factors, according to the type of farm and location, provided the opportunity of
adapting the methodology and introducing more specific emission factors to the features of the areas
under analysis, as well as the manure and soil management [23,32].

As can be seen in Table 2, different emission factors have been used for GHG estimation,
choosing local emission factors and/or their adaptation to dryland pasture systems whenever possible.
The objective has been to be as close as possible to a Tier 3 level. In this sense, for example, the factors
used in the Spanish national inventories are at a Tier 2 or 3 level. This objective has been met in the
on-farm emission factors; however, in the off-farm emission factors (system inputs), different sources
have been used and in some of the cases, were more distant from the Tier 3 objective.

2.4.2. Off-Farm Emissions

The emission factors of the inputs brought onto the farms were obtained from Bochu et al. [32]
and the Spanish National Commission for Markets and Competition [33]. As all of them are organic
products, the emission factors were recalculated from an estimate of the factors proposed by Bochu et al. [32].
These factors were calculated by discounting the emissions attributed to transport. In order to calculate
this proportion, the ReCiPe 2016 Midpoint (H) V1 [34] method was used with the Agri-footprint mass
allocation [35] and Ecoinvent 3 allocation [36] databases.

In terms of fuel emissions, both the emissions generated and the combustion emissions were
taken into account. The electricity used in these types of farms is mainly for lighting purposes.

The main emission factors used by species are shown in Table 2.

Table 2. Emission factors used to quantify greenhouse gas emissions (GHG).

Emission and Source Type of GHG Emission Factors Unit

On-farm

Enteric fermentation CH4 51.06 kg CH4/cow a year a kg CH4/year
CH4 7.64 kg CH4/sheep a year a kg CH4/year
CH4 5 kg CH4/goat a year a kg CH4/year
CH4 2.75 kg CH4/breeding pig a year a kg CH4/year
CH4 0.62 kg CH4/growing-finishing pig a year a kg CH4/year

Manure management

Manure management CH4 CH4 6.91 kg CH4/cow a year b kg CH4/year
CH4 0.28 kg CH4/sheep a year b kg CH4/year
CH4 0.21 kg CH4/goat a year b kg CH4/year
CH4 18.76 kg CH4/breeding pig a year b kg CH4/year
CH4 7.59 kg CH4/growing-finishing pig a year b kg CH4/year

Manure management direct N2O N2O 0.005 kg N2O eN/kg N solid storage system c kg N2O/year d

Manure management indirect N2O N2O 0.01 kg N2O eN/volatilized c kg N2O/year d

Soil management

N from urine and dung inputs to
grazed soils in Cow (Iberian swine) N2O 0.02 kg N2O eN (kg N input)−1 c kg N2O/year d

N from urine and dung inputs to
grazed soils in Sheep N2O 0.01 kg N2O eN (kg N input)−1 c kg N2O/year d

N from urine and dung inputs to
grazed soils in Goat N2O 0.01 kg N2O eN (kg N input)−1 c kg N2O/year d

Indirect emissions soil management N2O 0.01 kg N2O eN (kg % N
volatilized/leaching)−1 c kg N2O/year d
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Table 2. Emission factors used to quantify greenhouse gas emissions (GHG).

Emission and Source Type of GHG Emission Factors Unit

Off-farm

Concentrates Meat Cow CO2 0.410 kg CO2eq/kg e kg CO2eq/year
Concentrates Meat Calf CO2 0.445 kg CO2eq/kg e kg CO2eq/year

Concentrates Meat sheep CO2 0.410 kg CO2eq/kg e kg CO2eq/year
Concentrates Meat Lamb CO2 0.410 kg CO2eq/kg e kg CO2eq/year
Concentrates Dairy Goat CO2 0.410 kg CO2eq/kg e kg CO2eq/year

Concentrates Piglet, 2nd stage feed CO2 0.227 kg CO2eq/kg e kg CO2eq/year
Straw CO2 0.100 kg CO2eq/kg e kg CO2eq/year
Hay CO2 0.170 kg CO2eq/kg e kg CO2eq/year

Wheat CO2 0.335 kg CO2eq/kg e kg CO2eq/year
Barley CO2 0.305 kg CO2eq/kg e kg CO2eq/year

Pea CO2 0.116 kg CO2eq/kg e kg CO2eq/year
Electricity CO2 0.410 kg CO2eq/kWh f kg CO2eq/year

Fuel CO2 2.664 kg CO2eq/L-Combustion e kg CO2eq/year
CO2 0.320 kg CO2eq/L-upstream e kg CO2eq/year

a [23]; b [22]; c [37]; d N2OeN*44/28 1
4 N2O; and from: e [32]; f [33].

2.5. Carbon Sequestration in LCA

The carbon sequestration concept refers to the changes in the carbon (C) composition levels of the
soil. Such changes take place in the soil due to the addition of manure, crop, and grassland waste.
Therefore, the C-level composition of the soil can be impacted by the changes in the use of the land
and the various management systems applied to the farm.

In terms of methodology, there are several methods that can be used to estimate carbon
sequestration. For example, IPCC [19] estimates the changes in soil C levels according to inventories
and with a 20-year time horizon. For the purposes of this piece of research, the balance of net carbon
flows in the livestock–manure–grassland system proposed by Petersen et al. [38] was used with some
variants and by adaptation to other systems of similar characteristics to the systems under study [39].
The main difference with IPCC [19] is the recommendation of using a 100-year perspective in order to
analyze the changes taking place in the soil carbon levels in time [39]. Therefore, it has been estimated
that 10% of the C added to the soil will be sequestrated in a 100-year time horizon [38]. Another
correction introduced in the method was the consideration of crops in the livestock–manure–grassland
systems, separately assessing C sequestration according to land use in the farms. In this regard,
the calculation of C sequestration in the production systems under analysis is performed by taking into
account carbon fixation in airborne and underground pasture waste, crop airborne and underground
waste, and carbon fixation from manure and the soil fertilized by it.

Specifically, in extensive organic farming systems, the pasturelands and crop lands can be
considered as a form of carbon sequestration and a way to mitigate the carbon footprint these types of
production systems cause [3,15,19,40,41]. When we talk about crop lands, we generally mean cultivated
meadows or rainfed crops for animal feeding. This is when we consider the residues for the carbon
fixation of in the soil.

As some authors have pointed out, when considering carbon sequestration in soil, CF in extensive
farms is lower than in intensive farms. In this context, trees play an important role in the carbon cycle
and therefore the quantification of the balance between carbon emission and sequestration is one of the
main challenges. This way, maximizing carbon sequestration can become a management objective in
both agroforestry and rangelands systems [3]. No information is available on annual sequestration
due to trees in these systems, so this aspect has not been considered in this document.

3. Results

In this section of our paper, we describe the results obtained from our CF calculation. The features of
the farms under analysis are shown (Table 3) in the first place. And in the second place, the composition
of the emissions according to the various greenhouse gases is analyzed (Tables 4 and 5).
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The results are broken down by emission type, the livestock species of the farm, and its contribution
to the carbon footprint, expressed in kg CO2eq, kg of CO2eq per functional unit, and kg of CO2eq per
hectare of total farm area.

3.1. Technical Features of the Farms under Analysis

Table 3 shows the most significant features of the farms under analysis and their technical–financial
indexes with the purpose of contextualizing the results of the CF analysis which will be shown at
a later stage. The data has been organized by livestock species.

Table 3. Technical indicators of the farms included in this research.

System Types
Indicators

Beef Cattle
(Calves)

Beef Cattle
(Yearlings)

Meat Sheep
(Lambs 23)

Meat Sheep
(Lambs 18.5)

Dairy
Goat

Iberian Pig
Montanera
Fattening

Iberian Pig
Closed Herd

Total Area (ha) 140 105 370 500 80 300 230

Average annual
temperature (◦C) 16.1 15.7 15.6 15.6 15 16 15.5

Pasture area (%) c 92.9 97.1 86.5 82 81.2 86.7 97.8

Wooded area (%) 100 97.1 - - 31.2 100 100

Cultivated area (%) 7.1 2.9 13.5 18 18.8 13.3 2.2

No. of reproductive
females (average

population)
75 25 900 1700 110 - 22

Total stocking rate
(LU b/ha) 0.59 0.3 0.44 0.60 0.24 0.18 0.19

No. of weaned
animals/reproductive

females
0.73 0.68 1.1 1.15 1.7 - 9.2

Inputs purchased by
the farm

Total kg of fodder/
reproductive animal 266.7 136 44.4 58.8 72.7 - -

Total kg of
concentrates/

reproductive animal
357.3 325.6 103.7 85.9 353.8 - 484.4

Outputs produced
by the farm

No. of animals sold/
reproductive animals 0.73 0.68 1 1.1 1.44 - 9

Liters of milk
sold/year - - - - 30,000 - -

Weight (kg) average
of animals sold 220 * 400/500 23 18.5 9 160 ** 40/170

kg of weaned animals 12,100 - 22,770 36,075 2061 - 4000

kg of fattening animals - 8500 - - - 22,400 17,000

Total live weight (kg)
produced (FU c) 12,100 8500 22,770 36,075 2061 22,400 21,000

a Pasture area (%): includes with and without trees; b LU: Livestock Unit; c FU: Functional Unit (kg of live weight);
* 400 kg female and 500 kg male. ** 40 kg for weaner piglets y 150 kg for montanera pigs.

In Table 3, the farms under analysis are seven different farms with four different livestock species
and resources that are adapted to their production models. They all (organic) have a common
feature [42–44]: all animals are reared and fed in freedom, with the majority of their time spent grazing
in the dehesas or pasturelands of the farms.

In these farms, the land type varies according to the geographical area where they are situated:
the beef cattle farms are situated in dehesa areas, that is, they include a variable number of holm oaks
or cork oaks, as is the case of pig farms. The latter are also associated to these ecosystems due to
the end stage of pig fattening, where pigs feed mainly on acorns from the holm oak or the cork oak.
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These two predominant species (Quercus ilex and Quercus suber) make up 60% of the national fruit of
the montanera system [45]. Additionally, these lands are also used by cattle as pasturelands. On the
other hand, sheep farms are located in pasturelands, where trees are scarce in the plains and only exist
in the mountain areas, where they share habitat with all kinds of endemic bushes. Lastly, dairy goat
farms are situated in areas combining mountain and dehesa as well as crop lands.

In relation to the characteristics of the soil (type/conditions of the farms), these dehesas and
pasturelands are mostly acidic soils with low organic matter content and a semi-arid Mediterranean
climate. Regarding climate conditions, the predominance is the dry climate with low rainfall and
extreme temperatures in the winter and summer seasons.

In terms of livestock stocking rate, beef cattle represent 0.59 LU/ha for weaned cattle and 0.3 LU/ha
for fattening cattle, which coincide with the findings of Horrillo et al. [46] and notably less with the
research carried out on conventional cattle farms (0.73 LU/ha) by Maroto-Molina et al. [47].

In terms of sheep, the stocking rate is 0.44 LU/ha for farms selling animals at 23 kg and 0.6 LU/ha
for farms selling animals at 18.5 kg, in line with the farms with low stocking rates described in papers
such as those of Gaspar et al. [48]. The dairy goat farms have a stocking rate of 0.24 LU/ha and in pig
farms, the stocking rate does not exceed 0.2 LU/ha.

With regards of the inputs brought into the farms, there are clear differences between the feeding
expenses by hectare in ruminant farms (beef cattle–sheep) dedicated to meat production and those
of dairy goat and Iberian pig farms. Energy use (fuel and electricity) reveal similar levels, except for
one, the farms selling sheep at 18.5 kg. The use of fuels in these farms is attributable to the use of
vehicles for employees to move about and the machinery employed in the farming activities. Goat
farms, as Table 3 shows, do not have electricity expenses, as all its premises, milking, and refrigeration
units, etc. are supplied with renewable energy (solar panels).

Regarding production indicators or farm outputs, some relevant data are: the calves sold per cow,
sale of weaned animals (0.73), and sale of fattened animals (0.68), in line with the research carried out
by Escribano [49,50]. Another indicator to be highlighted is the weight of the animals sold in each farm,
as this allows to identify the differences amongst the production models for each livestock species.
For example, the sale of weaned calves or yearlings, the sale of sheep at 18.5 kg or 23 kg in weight,
the sale of kids for the purposes of milking the goats, or the sale of 1–2-year-old pigs and fattening
montanera pigs in Iberian pig farms.

3.2. Greenhouse Gas Emissions

Table 4 includes the contribution of the various GHG in the seven systems under analysis expressed
in kg CO2eq/FU. It also includes the percentage contribution of the various production processes.

Table 4 shows the dairy goat farm as having the lowest CF levels per functional unit (FU) (1.19 kg
CO2eq/kg of corrected milk), followed by the Iberian pig dehesa farms (2.9–4.2 kg CO2eq/kg of live
weight at time of slaughter) and lastly, beef cattle (16.27–10.43 kg CO2eq/kg of live weight), and sheep
(11.42–13.24 kg CO2eq/kg of live weight) with a similar level. When comparing the farms with the
same species, the farm that does the fattening of calves within the farm itself reveals lower CF levels
than the farm selling weaned claves. The same is the case with sheep farms, the farm selling sheep of
heavier weights (23 kg) reveals lower CF levels than the farm selling them at 18.5 kg.

If we analyze the group of GHG, the total emissions can be classified in two according to origin:
total emissions deriving from the farm and total emissions deriving from the inputs.

In the organic farms under study, the majority of the emissions originate in the farm itself, although
they can vary subject to species. In the beef cattle and sheep farms, which are dedicated to meat
production, the farm management itself produces over 90% of the emissions. Therefore, the emissions
on account of inputs are lower than 10%. However, in the semi-extensive goat and Iberian pig farms,
the sourcing of off-farm fodder implies that GHG emissions originating within the farm are 65%,
which is a lower value than those of ruminants farms. Whereas, the proportion of the emissions
originated in the purchase of inputs, which include mainly the purchase of animal feed, increase.
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Table 4. Carbon footprint per functional unit.

Beef Cattle (Calves) Beef Cattle
(Yearlings)

Meat Sheep
(Lambs 23)

Meat Sheep
(Lambs 18.5) Dairy Goat Iberian Pig

Montanera Fattening
Iberian Pig

Closed Herd

GHG Emissions
kg

CO2eq/kg
Product

%
kg

CO2eq/kg
Product

%
kg

CO2eq/kg
Product

%
kg

CO2eq/kg
Product

%
kg

CO2eq/kg
FPMC

%
kg

CO2eq/kg
Product

%
kg

CO2eq/kg
Product

%

Enteric fermentation CH4 9.18 56.42 5.41 51.87 9.13 79.95 10.38 78.40 0.51 42.86 0.1 3.41 0.16 3.85
Manure management

CH4 1.24 7.62 0.73 7 0.33 2.89 0.38 2.87 0.02 1.68 1.19 40.61 1.46 35.10
Direct N2O 0.12 0.74 0.14 1.34 0.33 2.89 0.41 3.10 0.0919 7.72 0.07 3.39 0.06 1.44

Indirect N2O 0.00046 0.00 0.00056 0.01 0.0013 0.01 0.0016 0.01 0.0004 0.03 0.0003 0.01 0.0002 0.00
Total manure management 1.36 8.36 0.87 8.35 0.66 5.79 0.79 5.98 0.112 9.44 1.26 43.01 1.52 36.54

Soil management
Direct N2O soil 4.15 25.51 2.41 23.11 1.11 9.72 1.27 9.59 0.21 17.65 0.34 11.60 0.50 12.02

Indirect N2O soil 0.58 3.56 0.76 7.29 0.22 1.93 0.25 1.89 0 0.00 0.03 1.02 0.05 1.20
Total soil management 4.73 29.07 3.17 30.39 1.33 11.65 1.52 11.48 0.21 17.65 0.37 12.63 0.55 13.22

Total On-farm Emissions 15.27 93.86 9.45 90.61 11.12 97.38 12.69 95.86 0.83 69.94 1.73 59.05 2.07 53.61
Feeding

Concentrate feed cows 0.1 0.61 - - - - - -
Concentrate fattening calves - 0.16 1.53 - - - - -

Concentrate sheep - - 0.20 1.75 0.06 0.45 - - -
Concentrate lambs - - 0.05 0.44 0.09 0.68 - - -
Concentrate goats - - - - 0.25 21.01 - -

Concentrate growth pigs - - - - - 0.91 31.06 -
Seeds (wheat, barley, vetch) - - - - 1.57 37.74

Straw 0.08 0.49 - - - - - -
Hay - - - - - - -

Total Feeding 0.18 1.11 0.16 1.53 0.25 2.19 0.18 1.13 0.25 21.01 0.91 31.06 1.57 37.74
Electricity - - - - - 0.14 4.78 0.11 2.64

Fuel
Production 0.09 0.55 0.09 0.86 0.005 0.04 0.041 0.31 0.012 1.01 0.017 0.58 0.027 0.65

Combustion 0.73 4.49 0.73 7 0.043 0.38 0.36 2.72 0.098 8.24 0.14 4.78 0.23 5.53
Total fuel 0.82 5.04 0.82 7.86 0.048 0.42 0.403 3.03 0.11 9.24 0.16 5.36 0.25 6.01

Total Off-farm Emissions 1 6.15 0.98 9.40 0.30 2.61 0.58 4.16 0.36 30.25 1.20 41.19 1.93 46.39
TOTAL CF kg CO2eq/FU 16.27 100 10.43 100 11.42 100 13.24 100 1.19 100 2.94 100 4.16 100

Total kg de CO2eq 200,857 90,454 260,314 477,724 40,635 67,267 97,153
Total kg de CO2eq/ha 1434.7 861.5 717.9 974.9 518.3 224.2 422.4
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Within the total farm emissions, the GHG emissions deriving from enteric fermentation in
ruminants farms vary between 79.9% and 42.9% of the total emissions, and it is associated to the
extensification of these systems and the diet of the animals based on grazing. On the other hand,
when we talk about monogastric animals such as pigs, the emissions from CH4 enteric fermentation
decrease considerably, going down to percentages such as 3.4% and 3.9% for extensive Iberian pig farms.

On the other hand, in pig farms, unlike in ruminants farms, the majority of the emissions derive
from manure management, specifically, from manure management direct N2O, which yields 36.5% and
43%, respectively.

Soil management and the resulting N2O direct and indirect emissions have also been assessed.
For the purposes of this analysis, we must take into account that all farms are organic and the production
systems are adapted to each species, even when they have common features. The most important
feature to take into account is that all the animals spend 90% of their time grazing and therefore they
deposit their dung directly on the ground. The results, i.e., Table 4, reveal certain differences between
species and their management types. The estimation of (total) GHG on the soil is between 4.73 kg
CO2eq/FU (30.3%) and 0.21 kg CO2eq/FU. These GHG emissions deriving from soil management are
mostly due to direct N2O, as the quantities calculated for indirect emissions were minimal because
there is no manure accumulation.

In terms of the inputs brought into the farms, Table 4 includes both the fuel generated and the fuel
consumed, electricity, purchase of livestock feed for each species, age, and type of animal. The emissions
deriving from these inputs create major differences between species, in the same way they did for CH4

emissions deriving from enteric fermentation. The beef cattle and sheep farms included in this paper
reveal values between 2.61 and 9.4 for GHG percentages attributed to off-farm emissions. On the other
hand, these acquire importance in the pig and semi-extensive goat farms, especially in terms of the
purchase of animal feed (21%–37.7%), thus indicating that farm self-sufficiency based on grazing or
self-production of feed is essential and the purchase of feed should be limited. Figure 1 shows the
distribution of the carbon footprint components (emissions indicated in kg of CO2eq/FU) for each type
of farm under study and for all the farms.
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3.3. Carbon Sequestration

Table 5 shows the results of carbon sequestration relating to the farms acting as GHG sinks.

Table 5. Carbon sequestration.

Sequestered CO2

Beef
Cattle

(Calves)

Beef
Cattle

(Yearlings)

Meat Sheep
(Lambs 23)

Meat Sheep
(Lambs 18.5)

Dairy
Goat

Iberian Pig
Montanera
Fattening

Iberian Pig
Closed Herd

C from pasture and crops waste
Pasture waste (kg DM) a 276,640 217,056 486,400 623,200 153,216 553,280 478,800
Above ground kg C 32,760 25,704 57,600 73,800 18,144 65,520 56,700
Below ground kg C b 91,728 71,971 161,280 206,640 50,803 183,456 158,760
Crop waste (kg DM) 101,840 30,552 408,880 735,984 71,829 327,104 319,200
Above ground kg C 12,060 3618 48,420 87,156 8506 38,736 37,800
Below ground kg C 33,768 10,130 135,576 244,037 23,817 241,024 235,200
Total kg CO2eq pasture + crops 624,492 408,553 1,477,212 2,242,653 371,325 1,452,634 1,316,700
C from organic N (manure and grazing)
kg N excreted 5955 2694 8648 16,095 2838 3323 3798
kg C from applied manure 3638 2177 10,571 20,517 5801 216 185
kg C during grazing 15,715 6578 17,534 31,791 4879 1944 2284
Total kg CO2eq manure + soil c 70,962 32,102 103,050 191,796 33,820 7919 9052
Total kg CO2eq/farm 695,454 440,655 1,580,262 2,434,450 405,144 1,460,553 1,325,753
Total kg CO2eq manure-soil/ha 507 306 279 384 517 135 201
Total kg CO2eq farm/ha 4968 4197 4271 4869 5064 3646 3712
kg CO2 pasture + crops sequestration 62,449 40,855 147,721 224,265 37,132 145,263 131,670
kg CO2 manure + soil sequestration 7096 3210 10,305 19,180 3382 792 905
Total kg CO2 sequestration 69,545 44,066 158,026 243,445 40,514 146,055 132,575
Total CO2 sequestration (kg CO2eq/FU/year) d 5.75 5.18 6.94 6.75 1.19 6.52 6.31
Total CO2 sequestration (kg CO2eq/ha/year-) 497 420 427 487 506 487 576
Compensated CF
Compensated CF/functional unit (kg of CO2eq/FU) 10.52 5.25 4.48 6.49 0 −3.58 −2.15
Compensated CF/ha (kg of CO2eq/ha) 938 442 291 488 12 −263 −154

a Pasture waste has been estimated to account for 40% of the total production of pasture, with a C content of
45%; b According to [37] the default expansion factor for below-ground biomass in semi-arid pasturelands is 2.8;
c The conversion factor for N to C is 13/4 and 44/12 for C to CO2; d Annual C sequestration of 10% is considered.

Carbon sequestration in farm soils has the potential to compensate the emissions deriving from
the production systems based on grazing [51]. Therefore, the extensive farms or farm businesses
under analysis in this paper are situated on lands with the capacity of fixing GHG emissions in the
form of vegetable waste and organic nitrogen. Additionally, the biomass waste remaining in the
soil and shock-absorbing the CO2 emissions also contribute to restore the soil and to the production
of pasturelands. This capacity to shock-absorb emissions is also due to the N to C transformation
process occurring when animals deposit their dung while they are grazing and when manure is added.
Additionally, authors such as Conant et al., Soussana et al., Byrne et al., and Jaksic et al. [52–55] in their
papers already suggested that, apart from becoming important carbon sinks, soils with permanent
pasturelands can also have a major role in C sequestration, particularly when improved grazing
strategies are adopted. Veysset et al. [56] stated that should carbon sequestration be taken into
account, the compensation percentages would become 40%–70% of the total GHG emissions from the
grazing-based systems. Soussana et al. [57] conclude that it is likely for pasturelands in Europe to act as
large sinks for the atmospheric CO2, which would reduce the CF of milk. However, the paper written
by Beauchemin et al. [58] concludes that there is still great uncertainty as to the available estimations,
and further research is required before the quantification of the amount attributed to 1 kg of milk can
be attained.

Table 5 shows the results of carbon sequestration in the seven farms under study. Such results are
expressed as the equivalent total CO2 fixed by hectare and by functional unit (FU = kg of meat or kg of
milk) and result from the addition of the soil C-sequestration value (pastures and crops) and the N
deposited by animals (manure and pasture). They include the total kg of fixed CO2 in the pastures
and the crops and the total kg of fixed CO2 derived from the N deposited through manure and while
grazing. The CO2 equivalent deriving from the pastures and the crops is obtained from the calculation
of the kg of dry matter contained in the farm in question. The estimation of the dry matter of pastures
for each farm was obtained according to location and the distribution of the farms. Values between
1000 and 1400 kg on average per hectare were calculated for the various farms [59,60]. N is calculated
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through the dung depositing of animals, allocating this value between the value that is fixed through
the spreading of manure and the accumulated value while grazing. This calculation is performed for
each age group in the farm, with the deposited N being different according to age and type of animal.

The carbon input to the soil is from above and below ground grazing land and crop residues
(assuming a C content of 45% of dry matter). Table 5 shows all major C inputs each year: C inputs
from crop residues and manure. The amount of manure and N excreta per animal per year is based
on national data [22,23]. The C:N ratio of the submerged manure was 13.4. However, the current
methodology does not allow further adjustments to be made to the soil management as there are no
data in the literature on which it can rely.

The final result in terms of sink storage reveals that an amount of between 419.7 and 576.4 kg of
CO2eq/ha is stored, which goes to prove the importance of extensive farming, where pastures and
animals (their dung) play a key role in the agricultural systems. For example, Figure 2 shows the
sequestration % in pasture–crop and by way of excrements in manure–soil and according to species.
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dung depositing.

Lastly, Figure 3 shows the compensated CF by FU. The positive values represent farm emissions
in kg of CO2eq/FU, whereas the negative values represent the carbon sequestration in these systems,
also in kg of CO2eq/FU.
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4. Discussion

The impact of livestock farm production on the environment is particularly relevant for society.
Livestock farming is currently directly associated to climate change, the emission of greenhouse gases,
and global warming. However, not all the livestock farming production systems produce and/or
compensate to the same extent, as there are extensive livestock farming systems which have a function
as carbon sequestration systems and can compensate the amounts of equivalent CO2 generated by
livestock farms [3] to a great extent.

The scientific literature has seen the number of livestock farming CF studies increase. However,
the majority of these papers focus on the study of intensive farms such as meat sheep and beef cattle
farms [61]; dairy farms [62,63], and intensive pig farms [64]. Other papers have approached the grazing
cattle [65–67] and grazing goats [68–70] production systems. However, very few papers deal with
organic livestock farming [9,71,72] that also includes different species and management systems.

The results and conclusions from these papers are hard to compare due to the various production
contexts and the methods used, as well as their definition of a functional unit [10,25]. Additionally,
there is a limited number of papers on organic farming.

In this study, it has been identified that, organic systems in extensive conditions, the result of
CF per unit of product is lower than in other conventional systems. The beef cattle species for the
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production of organic meat reveals two results: 16.27 kg CO2eq for farms selling weaned animals
weighing 220 kg of live weight and 10.23 kg CO2eq for farms selling fattening animals weighing
450–550 kg of live weight. As can be seen, in farms where animals are fattened, the final CF decreases,
although the cycle might be longer than that of the farms selling animals at weaning age. Other papers
such as that of Cardoso et al. [65] show results that coincide with the results obtained in this paper,
registering lower CF values per kg of live calf sold with the more intensive farming systems. In the
same way, the debate is open by other papers indicating that there is a direct association between
intensification and lower CF per product unit in farms [9,39]. In this sense, it would become necessary
to standardize the functional unit, the system limits, and the allocation method, as well as incorporating
carbon sequestration to these studies.

With regards to organic sheep farms producing meat, the emissions derived from enteric
fermentation account for 75% to 97.4% of the total emissions. This result seems reasonable, as thanks
to feed management in these farms, which is based on extensification and self-sufficiency, and given
that the sheep are not finished here, off-farm GHG emissions contribute to the CF value in a lesser
proportion. The results found in this piece of research are lower than those drawn from others in
similar conditions with non-organic farms such as those of Ripoll-Bosch et al. [73] which vary between
19.5 and 25.9 kg CO2eq/kg of live weight sheep in the north of Spain. Other pieces of research such
as that of Dougherty et al. [14] show results more in consonance with the results of our research,
concluding with a CF of 10.9 to 17.9 kg of CO2eq/kg of sheep in the market (sold). In the same way,
the comparison of the various pieces of research on the results of farm CF is very sensitive and depends
on the method of analysis being used and the way results are presented, either by weight, financial
value, or by area, such as Wiedemann et al. [74] states in his paper on the sheep production in the
United Kingdom, Australia, and New Zealand.

Semi-extensive organic dairy goat farms register lower values in kg of CO2eq/liter of FPCM than
the values reported in the literature. Gutiérrez-Peña et al. [10] registered a total amount of emissions of
3.17 ± 0.41, 2.22 ± 0.13, 2.29 ± 0.17 kg CO2eq kg−1 FPCM1 for the tree types of farms under analysis
or 1.88 ± 0.24, 1.31 ± 0.08, 1.36 ± 0.10 kg CO2eq kg−1 FPCM2, which were more in line with the
results found in this paper. These figures do not take into account the total kg CO2eq/FPCM that
the sequestrated carbon values in our study does. Other papers such as that of Patra [75] allocate
2.54 kg CO2eq kg−1 to the CF of farms in India. Robertson et al. [69] reveal the average CF they found
was 0.90 kg of CO2eq/kg of FPCM (without carbon sequestration) lower than that found through our
research, but 8.78 t of CO2eq/ha, which is substantially above 0.518 t of CO2eq/ha calculated for our
organic farm, although they state that the CF of the farms under study decreases as the farms become
less intensive, with no CF data being provided for dairy goats in organic farms.

It is hard to compare the results obtained for the Iberian montanera pigs, whose final feed is based
on pastures and acorn (ripe fruit of the Quercus spp.). This feature that is so inherent to the dehesa is the
one differentiating these systems from those in the research available on pig’s CF, which are intensive
systems, such as that of Arrieta and González [64] who found a CF value of 5.14 and 5.17 ton CO2eq/ton
LW in paddocks and of 6.06 and 6.04 ton CO2eq/ton LW in confinement. Other papers such as that of
Bava et al. [76] in Italy, found that for traditional ham-producing intensive pig farms, the CF calculated
for six farms yielded an average of 4.25 ± 1.03 kg CO2eq/kg of live weight. The results reported in this
paper take into account the GHG emissions attributed to soy and its transport. The protein that soy adds
to the pig’s diet is essential, but the production of soy is limited in Europe, hence requiring importation
from third countries, mainly America and China. In the paper written by Wiedemann et al. [77,78] in
Australia, the average calculated was 2.1 to 4.5 kg CO2eq/kg of LW.

In organic livestock farming, according to the standards (EU) Regulation 834/2007; (EU) Regulation
2018/848), “the livestock shall have permanent access to open air areas, preferably pasture, whenever
the weather conditions and the state of the ground allow”, with the maximum number of animals per
ha being limited (2 LU/ha). Nevertheless, even in compliance with this maximum limit, the degree of
extensification of organic farms varies to a great extent subject to the production systems and farm
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dedication. Not only can this variability be seen at the European level due to its large heterogeneity,
but also at a smaller scale (regional or local) such as is the case of dehesas. Organic farms in dehesas
are highly extensificated with livestock stocking rates significantly below the limits established by
the standard (between 0.18 and 0.6 LU/ha). The maintenance of these stoking rates is considered
as a sustainability factor [79], given that adequate livestock stocking rates contribute to the ecologic
stability of the system, as they prevent shrub invasion (as is the case with under grazing; [80] and the
degradation and erosion of the land (as is the case with overgrazing) [81].

But the maintenance of these stocking rates also allows for adequate carbon sequestration by the
soil, and its quantification is particularly relevant within the current context of fight against climate
change. In the farms under study, in the case of ruminants, the emissions are compensated in 35% to
89%, and they are even compensated in 100% of the GHG emissions in the case of dairy goat farms.
In the case of the Iberian pigs, the carbon sequestration exceeds the emissions both in farms dealing
with the full cycle and fattening montanera farms. These results differ from other papers such as that
of Alemu et al. [66] which included soil C-sequestration but only saw a reduction of the greenhouse
gases emission balance in the farm by 12%–25%, with stocking rates ranging 1.2 to 2.5 cow-calf pair/ha.

Maintenance of livestock at stocking rates that are adapted to the productive capacity of the
pastures on which they live, reducing the entry of off-farm feed and with capacity to sequestrate carbon,
makes organic farms in dehesas a model to follow from the environmental viewpoint, differentiating it
from models that pose a threat to the environment. This is the reason why institutions, especially in
Europe, must be prepared to discern between the systems that need to be protected and promoted
from those that do not have a positive impact.

Currently, the key elements of the post-2020 Common Agricultural Policy (CAP) reform are under
debate. The environmental and climate-related aspects are at the center of the debate, as became
clear at the Agriculture and Fisheries Council of 15 July 2019 (CAP Progress report 2019), where the
delegates highlighted the importance of allowing the member states to have the needs of the locals into
account when it comes to applying environmental and climate-related requirements. The debate is
focusing on the redefinition of the role of the farmers in climate action and, in particular, in the capture
of the soil’s carbon for the purposes of improving its structure and quality, which helps agriculture
adapt to climate change.

In the currently effective CAP (EU Regulation 1307/2013, EU Delegated Regulation 639/2014, EU
Implementing Regulation 641/2014), there is no standard to regulate or propose specific requirements
in relation to soil’s carbon content. However, in its Greening section, some requirements are indirectly
proposed for the protection of soil’s carbon, such as the regulations relating to the proportion of the
permanent pastures compared to the total declared farming area. We must take into account that
the soil’s carbon sequestration is a complex issue and that it is necessary to improve the methods of
measurement of carbon, increase research, and put it into practice, relying on innovation that allow
for the quantification of the extent to which the CAP contributes to increase those amounts of carbon.
The post-2020 CAP reform is an opportunity for the member estates to support carbon retention in the
soil by developing national and regional supporting measures that can actually contribute to the fight
against climate change.

It is clear that in the present context of CAP debate, the discussions are being focused on the
environmental pillar of sustainability, but obviously, the final approach proposed for the other two
pillars (economic and social) will also be crucial. It has to be considered that, from an economic point of
view, the subsidies (first and second pillar of the CAP) received by organic ruminant farms in the dehesa
area represent about 45% of their total income [49]. It cannot be ignored that the livestock production
model of these extensive systems is based on small and medium-sized farms, often family-run, with
traditional and low-input management. These farms contribute to the settlement of the population in
rural areas by facing depopulation, but their dependence on public economic resources is very high
and therefore their sustainability may be compromised depending on the economic funds they finally
may receive.
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In the past, the different models of public policies derived from the implementation of the CAP
have had a significant environmental impact on the dehesas. In the period between 1992 and 2000,
the model was oriented towards the compensation of income from commercial production activities,
resulting in an increase of stocking rates at farm level, intensifying the systems in order to obtain higher
levels of income. The intensification led to environmental problems such as lack of tree regeneration
and soil degradation and erosion. During the period between 2000 and 2013, the support system
known as “decoupling” was established, which had an unequal effect on livestock farming: while
cattle maintained their censuses, in the case of sheep and especially goats, the censuses dropped and
many farms abandoned their activity, leading to an invasion of scrub, significant changes in the pasture
species and landscape alterations [82].

More recently, the CAP 2014–2020 has focused on promoting the development of territories,
the efficient use of resources with a view to a sustainable and diverse agricultural sector, paying even
more attention to rural areas [49,83]. This approach has led to the maintenance of livestock censuses
in dehesa systems and in particular it can be also said that it has been from that moment on that the
development of organic farming in Spain has been most notable, with an increase in the number of
farms of more than 50% between 2014 and 2018 [84].

The post-2020 CAP that finally takes effect will undoubtedly affect the long-term sustainability of
organic livestock farming in dehesas. It is therefore crucial at this time that, specific measures might
be included to guarantee the agro-ecological balance of the system, enhancing and compensating
economically its environmental functions in order to increase the low income and margins that these
farms obtain whilst promoting practices that maintain their ecological stability.

In view of the above, it seems appropriate to consider that the balance of GHG emissions is
a good indicator of the environmental sustainability of livestock farming, although not the only one,
since in order to quantify the overall sustainability of the dehesa agroecosystem, there are many other
environmental, social, and economic indicators to be considered. In this sense, there is research that
globally evaluates the sustainability of extensive and organic livestock farms based on a set of indicators
of different nature (environmental, economic, and social) [50,79,85]. In a future climate change scenario,
the carbon footprint and carbon sequestration are indicators that should be incorporated into a global
framework of sustainability and used in a combined way to measure the vulnerabilities of extensive
systems to possible effects such as droughts, temperature increase, forest fires, and other extreme
weather events that may affect this highly sensitive agroecosystem.

5. Conclusions

This paper analyzes the CF of organic livestock farming in seven farms using a life cycle
assessment approach, which allowed for the quantification of the GHG balance in the productive
process, differentiating it by origin (enteric fermentation, manure management, soil management, feed
inputs, and energy use).

On analyzing the origin of the greenhouse gas emissions, our research reveals that enteric
fermentation is the major one in ruminants farms. In the case of pigs, however, emissions deriving
from manure management are the highest. On the other hand, feed inputs in organic farms are not
so relevant as in conventional farms. Organic systems maximize pasture exploitation which in turn
contributes to the lesser consumption of off-farm feeds and at the same time, the grazing technique
improves the quality of the pasture by increasing soil’s carbon sequestration.

The high capacity of carbon sequestration of the soil in these farming systems of dehesas derives
from the large areas of land, which to a great extent compensates for the livestock emissions. In the
case of ruminants farms, the emissions are compensated in 35% to 89%, and even in 100% in the case
of dairy goats; in the case of Iberian pigs, carbon sequestration levels exceed the emissions. Given
these results, particularly highlighting the extensive livestock management system of these ecosystems,
we can conclude that the model used by organic livestock farming in the dehesas is a feasible strategy
for reducing GHGs from livestock farming.



Animals 2020, 10, 162 18 of 22

Author Contributions: Conceptualization: A.H.; methodology: A.H., P.G. and M.E.; validation: P.G. and M.E.;
formal analysis, A.H.; investigation: A.H., P.G. and M.E.; resources: A.H., P.G. and M.E.; data curation: A.H.;
writing—original draft preparation: A.H.; writing—review and editing: A.H., P.G. and M.E.; supervision, P.G.
and M.E.; project administration: P.G.; funding acquisition: P.G. and M.E. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by Junta de Extremadura and FEDER Funds within the V Plan Regional de I +
D + I (2014–2017), grant number IB16057.

Acknowledgments: The authors would like to acknowledge the support provided by the organics farmers which
is not covered by the author contribution or funding sections.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Horrillo, A.; Gaspar, P.; Mesías, F.J.; Elghannam, A.; Escribano, M. Understanding the barriers and exploring
the possibilities of the organic livestock sector in dehesa agroforestry systems: A multi-actor approach for
effective diagnosis. Renew. Agric. Food Syst. 2019, 1–15. [CrossRef]

2. Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Enfrentando
el Cambio Climático a Través de la Ganadería—Una Evaluación Global de las Emisiones y Oportunidades de Mitigación;
Organización de las naciones unidas para la alimentación y la agricultura (FAO): Roma, Italy, 2013; p. 153.

3. Eldesouky, A.; Mesias, F.J.; Elghannam, A.; Escribano, M. Can extensification compensate livestock greenhouse
gas emissions? A study of the carbon footprint in Spanish agroforestry systems. J. Clean. Prod. 2018, 200,
28–38. [CrossRef]

4. Smith, L.G.; Kirk, G.J.D.; Jones, P.J.; Williams, A.G. The greenhouse gas impacts of converting food production
in England and Wales to organic methods. Nat. Commun. 2019, 10, 4641. [CrossRef]

5. Balmford, A.; Amano, T.; Bartlett, H.; Chadwick, D.; Collins, A.; Edwards, D.; Field, R.; Garnsworthy, P.;
Green, R.; Smith, P.; et al. The environmental costs and benefits of high-yield farming. Nat. Sustain. 2018, 1,
477–485. [CrossRef] [PubMed]

6. Muller, A.; Schader, C.; El-Hage Scialabba, N.; Brüggemann, J.; Isensee, A.; Erb, K.; Smith, P.; Klocke, P.;
Leiber, F.; Stolze, M.; et al. Strategies for feeding the world more sustainably with organic agriculture.
Nat. Commun. 2017, 8, 1–13. [CrossRef] [PubMed]

7. FIBL; IFOAM EU. Organic Farming, Climate Change Mitigation and Beyond: Reducing the Environmental
Impacts of EU Agriculture. Brussels: IFOAM EU. Available online: https://www.ifoam-eu.org/sites/default/
files/ifoameu_advocacy_climate_change_report_2016.pdf (accessed on 8 November 2019).

8. Sobrino, O. Gases de Efecto Invernadero en Ganadería. III Jornada Ganadería y Medio Ambiente. Subdirección
General de Medios de Producción Ganaderos; Ministerio de Agricultura, Alimentación y Medio Ambiente:
Madrid, Spain, 2016; p. 25.

9. Buratti, C.; Fantozzi, F.; Barbanera, M.; Lascaro, E.; Chiorri, M.; Cecchini, L. Carbon footprint of conventional
and organic beef production systems: An Italian case study. Sci. Total Environ. 2017, 576, 129–137. [CrossRef]
[PubMed]

10. Gutiérrez-Peña, R.; Mena, Y.; Batalla, I.; Mancilla-Leytón, J.M. Carbon footprint of dairy goat production
systems: A comparison of three contrasting grazing levels in the Sierra de Grazalema Natural Park
(Southern Spain). J. Environ. Manag. 2019, 232, 993–998. [CrossRef]

11. Noya, I.; González-García, S.; Berzosa, J.; Baucells, F.; Feijoo, G.; Moreira, M.T. Environmental and water
sustainability of milk production in Northeast Spain. Sci. Total Environ. 2018, 616–617, 1317–1329. [CrossRef]
[PubMed]

12. Sánchez Martín, J.M.; Blas Morato, R.; Rengifo Gallego, J.I. The Dehesas of Extremadura, Spain: A Potential
for Socio-economic Development Based on Agritourism Activities. Forests 2019, 10, 620. [CrossRef]

13. Jones, A.K.; Jones, D.L.; Cross, P. The carbon footprint of lamb: Sources of variation and opportunities for
mitigation. Agric. Syst. 2014, 123, 97–107. [CrossRef]

14. Dougherty, H.C.; Oltjen, J.W.; Mitloehner, F.M.; Depeters, E.J.; Pettey, L.A.; Macon, D.; Finzel, J.; Rodrigues, K.;
Kebreab, E. Carbon and blue water footprints of California sheep production. J. Anim. Sci. 2019, 97, 945–961.
[CrossRef] [PubMed]

http://dx.doi.org/10.1017/S1742170519000334
http://dx.doi.org/10.1016/j.jclepro.2018.07.279
http://dx.doi.org/10.1038/s41467-019-12622-7
http://dx.doi.org/10.1038/s41893-018-0138-5
http://www.ncbi.nlm.nih.gov/pubmed/30450426
http://dx.doi.org/10.1038/s41467-017-01410-w
http://www.ncbi.nlm.nih.gov/pubmed/29138387
https://www.ifoam-eu.org/sites/default/files/ifoameu_advocacy_climate_change_report_2016.pdf
https://www.ifoam-eu.org/sites/default/files/ifoameu_advocacy_climate_change_report_2016.pdf
http://dx.doi.org/10.1016/j.scitotenv.2016.10.075
http://www.ncbi.nlm.nih.gov/pubmed/27783931
http://dx.doi.org/10.1016/j.jenvman.2018.12.005
http://dx.doi.org/10.1016/j.scitotenv.2017.10.186
http://www.ncbi.nlm.nih.gov/pubmed/29107364
http://dx.doi.org/10.3390/f10080620
http://dx.doi.org/10.1016/j.agsy.2013.09.006
http://dx.doi.org/10.1093/jas/sky442
http://www.ncbi.nlm.nih.gov/pubmed/30452693


Animals 2020, 10, 162 19 of 22

15. Stanley, P.L.; Rowntree, J.E.; Beede, D.K.; DeLonge, M.S.; Hamm, M.W. Impacts of soil carbon sequestration
on life cycle greenhouse gas emissions in Midwestern USA beef finishing systems. Agric. Syst. 2018, 162,
249–258. [CrossRef]

16. Vagnoni, E.; Franca, A. Transition among different production systems in a Sardinian dairy sheep farm:
Environmental implications. Small Rumin. Res. 2018, 159, 62–68. [CrossRef]

17. ISO International Standard 14040:2006. In Environmental Management—Life Cycle Assessement—Requirements
and Guidelines, ISO 14040, International Organization for Standardization; Wiley-VCH Verlag GmbH & Co.
KGaA, Boschstr.: Geneva, Switzerland, 2006.

18. ISO International Standard 14044:2006. In Environmental Management—Life Cycle Assessement—Requirements
and Guidelines, ISO 14044, International Organization for Standardization; Wiley-VCH Verlag GmbH & Co.
KGaA, Boschstr.: Geneva, Switzerland, 2006.

19. IPCC. IPCC Guidelines for National Greenhouse Gas Inventories. Prepared by the National Greenhouse Gas Inventories
Programme; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; IGES: Hayama, Japan, 2006;
ISBN 92-9169-320-0.

20. IPCC. Mitigación del Cambio Climático: Contribución del Grupo de Trabajo III al Cuarto Informe de Evaluación del
IPCC (Vol. 4); Cambridge University Press: Geneva, Switzerland, 2007.

21. IPCC. Cambio Climático 2014. Mitigación del Cambio Climático. Resumen para Responsables de Políticas.
Contribución del Grupo de trabajo III al Quinto Informe de Evaluación del Grupo Intergubernamental de Expertos
sobre el Cambio Climático; IPCC: Geneva, Switzerland, 2014.

22. MAPA. Inventarios Nacionales de Emisiones a la Atmósfera 1990-2012. Volumen 2: Análisis por Actividades
SNAP. In Análisis por Actividades SNAP; Centro de Publicaciones: Madrid, Spain, 2012; Volume 2, pp. 1–148.

23. MITECO. Informe de Inventario Nacional Gases de Efecto Invernadero; Ministerio para la Transición
Ecológica-Gobierno de España; Centro de Publicaciones: Madrid, Spain, 2019.

24. Yin, R.K. Case Study Research and Applications: Design and Methods; Sage: Thousand Oaks, CA, USA, 1984;
Volume 5, pp. 1–53.

25. Bernués, A.; Rodríguez-Ortega, T.; Olaizola, A.M.; Ripoll Bosch, R. Evaluating ecosystem services and
disservices of livestock agroecosystems for targeted policy design and management. Grassl. Sci. Eur. 2017,
22, 259–267.

26. Vellenga, L.; Qualitz, G.; Drastig, K. Farm Water Productivity in Conventional and Organic Farming: Case
Studies of Cow-Calf Farming Systems in North Germany. Water 2018, 10, 1294. [CrossRef]

27. Neira, D.P.; Montiel, M.S.; Fernández, X.S. Energy indicators for organic livestock production: A case study
from Andalusia, Southern Spain. Agroecol. Sustain. Food Syst. 2014, 38, 317–335. [CrossRef]

28. Asai, M.; Moraine, M.; Ryschawy, J.; de Wit, J.; Hoshide, A.K.; Martin, G. Critical factors for crop-livestock
integration beyond the farm level: A cross-analysis of worldwide case studies. Land Use Policy 2018, 73,
184–194. [CrossRef]

29. Regan, J.T.; Marton, S.; Barrantes, O.; Ruane, E.; Hanegraaf, M.; Berland, J.; Korevaar, H.; Pellerin, S.; Nesme, T.
Does the recoupling of dairy and crop production via cooperation between farms generate environmental
benefits? A case-study approach in Europe. Eur. J. Agron. 2017, 82, 342–356. [CrossRef]

30. Rodríguez-Estévez, V.; García, A.; Peña, F.; Gómez, A.G. Foraging of Iberian fattening pigs grazing natural
pasture in the dehesa. Livest. Sci. 2009, 120, 135–143. [CrossRef]

31. IDF A Common Carbon Footprint Approach for the Dairy Sector. The IDF guide to standard life cycle
assessment methodology. Int. Dairy J. 2015, 7, 283.

32. Bochu, J.-L.; Metayer, N.; Bordet, C.; Gimaret, M. Development of Carbon Calculator to promote low carbon
farming practices—Methodological guidelines (methods and formula). In Deliverable to EC-JRC-IES by
Solagro; Joint Research Centre-IES: Ispra, Italy, 2013.

33. CNMC. La Comisión Nacional de los Mercados y la Competencia. Mezcla de Comercialización Año 2018; CNMC:
Madrid, Spain, 2018; p. 29.

34. Huijbregts, M.; Steinmann, Z.J.N.; Elshout, P.M.F.M.; Stam, G.; Verones, F.; Vieira, M.D.M.; Zijp, M.; van Zelm, R.
ReCiPe 2016: A Harmonized Life Cycle Impact Assessment Method at Midpoint and Endpoint Level Report I: Characterization;
National Institute for Public Healthand the Environment: Bilthoven, The Netherlands, 2016.

35. Durlinger, B.; Koukouna, E.; Broekema, R.; van Paassen, M.; Scholten, J. Agri-Footprint 4.0–Part 2—Description
of Data; Blonk Consultants: Gouda, The Netherlands, 2014.

http://dx.doi.org/10.1016/j.agsy.2018.02.003
http://dx.doi.org/10.1016/j.smallrumres.2017.12.002
http://dx.doi.org/10.3390/w10101294
http://dx.doi.org/10.1080/21683565.2013.833154
http://dx.doi.org/10.1016/j.landusepol.2017.12.010
http://dx.doi.org/10.1016/j.eja.2016.08.005
http://dx.doi.org/10.1016/j.livsci.2008.05.006


Animals 2020, 10, 162 20 of 22

36. Frischknecht, R.; Jungbluth, N.; Althaus, H.J.; Bauer, C.; Doka, G.; Dones, R.; Hischier, R.; Hellweg, S.;
Humbert, S.; Köllner, T.; et al. Implementation of Life Cycle Impact Assessment Methods; Data v2.0 (2007).
Ecoinvent report No. 3; Swiss Centre for Life Cycle Inventoriess: Dübendorf, Switzerland, 2007.

37. IPCC. Capítulo 6: Pastizales. In Directrices del IPCC de 2006 Para los Inventarios Nacionales de Gases de Efecto
Invernadero; IGES: Hayama, Japan, 2006.

38. Petersen, B.M.; Knudsen, M.T.; Hermansen, J.E.; Halberg, N. An approach to include soil carbon changes in
life cycle assessments. J. Clean. Prod. 2013, 52, 217–224. [CrossRef]

39. Batalla, I.; Knudsen, M.T.; Mogensen, L.; Del Hierro, Ó.; Pinto, M.; Hermansen, J.E. Carbon footprint of
milk from sheep farming systems in Northern Spain including soil carbon sequestration in grasslands.
J. Clean. Prod. 2015, 104, 121–129. [CrossRef]

40. Soussana, J.F.; Tallec, T.; Blanfort, V. Mitigating the greenhouse gas balance of ruminant production systems
through carbon sequestration in grasslands. Animal 2010, 4, 334–350. [CrossRef] [PubMed]

41. Teague, W.R.; Apfelbaum, S.; Lal, R.; Kreuter, U.P.; Rowntree, J.; Davies, C.A.; Conser, R.; Rasmussen, M.;
Hatfeld, J.; Wang, T.; et al. The role of ruminants in reducing agriculture’s carbon footprint in North America.
J. Soil Water Conserv. 2016, 71, 156–164. [CrossRef]

42. Reglamento (UE) 834/2007. Reglamento (CE) no 834/2007 del Consejo de 28 de Junio de 2007 Sobre Producción y
Etiquetado de los Productos Ecológicos y por el que se Deroga el REGLAMENTO (CEE) no 2092/91; Diario Oficial
de la Unión Europea: Luxemburgo, 2007; pp. 1–23.

43. Reglamento (UE) 889/2008. Reglamento (CE) no 889/2008 de la Comisión de 5 de Septiembre de 2008 por el que se
Establecen Disposiciones de Aplicación del Reglamento (CE) no 834/2007 del Consejo Sobre Producción y Etiquetado
de los Productos Ecológicos, con Respecto a la Producción; Diario Oficial de la Unión Europea: Luxemburgo, 2008;
pp. 1–84.

44. Reglamento (UE) 2018/848. Reglamento (UE) 2018/848 del Parlamento Europeo y del Consejo, de 30 de Mayo
de 2018, Sobre Producción Ecológica y Etiquetado de los Productos Ecológicos y por el que se Deroga el Reglamento
(CE) no 834/2007 del Consejo; Diario Oficial de la Unión Europea: Luxemburgo, 2018; pp. 1–92.

45. Pérez, M.C.; Del Pozo, J. La superficie forestal de Extremadura. In La Agricultura y Ganadería Extremeñas 2000;
Caja de Ahorros de Badajoz: Badajoz, Spain, 2001; pp. 205–230.

46. Horrillo, A.; Mesias, F.J.; Gaspar, P.; Escribano, M. La explotación del vacuno ecológico en sistemas de
dehesas del SO de España: Análisis de parámetros técnicos. Arch. Zootec. 2015, 64, 307–310. [CrossRef]

47. Maroto-Molina, F.; Gómez-Cabrera, A.; Guerrero-Ginel, J.E.; Garrido-Varo, A.; Adame-Siles, J.A.; Pérez-Marín, D.C.
Caracterización y tipificación de explotaciones de dehesa asociadas a cooperativas: Un caso de estudio en España.
Rev. Mex. Ciencias Pecu. 2018, 9, 812–832. [CrossRef]

48. Gaspar, P.; Escribano, M.; Mesías, F.J.; Rodriguez De Ledesma, A.; Pulido, F. Sheep farms in the Spanish rangelands
(dehesas): Typologies according to livestock management and economic indicators. Small Rumin. Res. 2008, 74,
52–63. [CrossRef]

49. Escribano, A.J. Estudio de la producción bovina ecológica y convencional en sistemas extensivos de dehesas en
Extremadura. In Análisis Técnico-Económico, de Sostenibilidad y Eficiencia de su Sistema Productivo; Posibilidades
de conversión al modelo de producción ecológica, Universidad de Extremadura: Badajoz, Spain, 2014.

50. Escribano, A.J. Beef cattle farms’ conversion to the organic system. Recommendations for success in the face
of future changes in a global context. Sustainability 2016, 8, 572. [CrossRef]

51. Crosson, P.; Shalloo, L.; O’Brien, D.; Lanigan, G.J.; Foley, P.A.; Boland, T.M.; Kenny, D.A. A review of
whole farm systems models of greenhouse gas emissions from beef and dairy cattle production systems.
Anim. Feed Sci. Technol. 2011, 166–167, 29–45. [CrossRef]

52. Conant, R.T.; Paustian, K.; Elliott, E.T. Grassland management and conversion into grassland: Effects on soil
carbon. Ecol. Appl. 2001, 11, 343–355. [CrossRef]

53. Soussana, J.-F.; Loiseau, P.; Vuichard, N.; Ceschia, E.; Balesdent, J.; Chevallier, T.; Arrouays, D. Carbon cycling
and sequestration opportunities in temperate grasslands. Soil Use Manag. 2004, 20, 219–230. [CrossRef]

54. Byrne, K.A.; Kiely, G.; Leahy, P. CO2 fluxes in adjacent new and permanent temperate grasslands.
Agric. For. Meteorol. 2005, 135, 82–92. [CrossRef]

55. Jaksic, V.; Kiely, G.; Albertson, J.; Oren, R.; Katul, G.; Leahy, P.; Byrne, K.A. Net ecosystem exchange of
grassland in contrasting wet and dry years. Agric. For. Meteorol. 2006, 139, 323–334. [CrossRef]

http://dx.doi.org/10.1016/j.jclepro.2013.03.007
http://dx.doi.org/10.1016/j.jclepro.2015.05.043
http://dx.doi.org/10.1017/S1751731109990784
http://www.ncbi.nlm.nih.gov/pubmed/22443939
http://dx.doi.org/10.2489/jswc.71.2.156
http://dx.doi.org/10.21071/az.v64i247.413
http://dx.doi.org/10.22319/rmcp.v9i4.4534
http://dx.doi.org/10.1016/j.smallrumres.2007.03.013
http://dx.doi.org/10.3390/su8060572
http://dx.doi.org/10.1016/j.anifeedsci.2011.04.001
http://dx.doi.org/10.1890/1051-0761(2001)011[0343:GMACIG]2.0.CO;2
http://dx.doi.org/10.1079/SUM2003234
http://dx.doi.org/10.1016/j.agrformet.2005.10.005
http://dx.doi.org/10.1016/j.agrformet.2006.07.009


Animals 2020, 10, 162 21 of 22

56. Veysset, P.; Lherm, M.; Bébin, D. Energy consumption, greenhouse gas emissions and economic performance
assessments in French Charolais suckler cattle farms: Model-based analysis and forecasts. Agric. Syst. 2010,
103, 41–50. [CrossRef]

57. Soussana, J.F.; Allard, V.; Pilegaard, K.; Ambus, P.; Amman, C.; Campbell, C.; Ceschia, E.; Clifton-Brown, J.;
Czobel, S.; Domingues, R.; et al. Full accounting of the greenhouse gas (CO2, N2O, CH4) budget of nine
European grassland sites. Agric. Ecosyst. Environ. 2007, 121, 121–134. [CrossRef]

58. Beauchemin, K.A.; Henry Janzen, H.; Little, S.M.; McAllister, T.A.; McGinn, S.M. Life cycle assessment of
greenhouse gas emissions from beef production in western Canada: A case study. Agric. Syst. 2010, 103,
371–379. [CrossRef]

59. Olea, L.; Miguel-ayanz, A.S. The Spanish dehesa, a traditional Mediterranean silvopastoral system.
In Proceedings of the 21st General Meeting of the European Grassland Federation, Badajoz, Spain,
3–6 April 2006; pp. 1–15.

60. Maya, V.; López, F.; Gragera Facundo, J. Producción y Calidad de Mezclas Forrajeras Cereal-Leguminosa de
Secano en Extremadura. In Proceedings of the Reunión Científica de la Sociedad Española para el Estudio
de los Pastos, Barcelona, Spain, 25–28 April 2017; pp. 1–8.

61. Sykes, A.J.; Topp, C.F.E.; Rees, R.M. Understanding uncertainty in the carbon footprint of beef production.
J. Clean. Prod. 2019, 234, 423–435. [CrossRef]

62. Hietala, S.; Smith, L.; Knudsen, M.T.; Kurppa, S.; Padel, S.; Hermansen, J.E. Carbon footprints of organic
dairying in six European countries—Real farm data analysis. Org. Agric. 2015, 5, 91–100. [CrossRef]

63. Jayasundara, S.; Worden, D.; Weersink, A.; Wright, T.; VanderZaag, A.; Gordon, R.; Wagner-Riddle, C.
Improving farm profitability also reduces the carbon footprint of milk production in intensive dairy
production systems. J. Clean. Prod. 2019, 229, 1018–1028. [CrossRef]

64. Arrieta, E.M.; González, A.D. Energy and carbon footprints of chicken and pork from intensive production
systems in Argentina. Sci. Total Environ. 2019, 673, 20–28. [CrossRef]

65. Cardoso, A.S.; Berndt, A.; Leytem, A.; Alves, B.J.R.; de Carvalho, I.D.N.O.; de Barros Soares, L.H.; Urquiaga, S.;
Boddey, R.M. Impact of the intensification of beef production in Brazil on greenhouse gas emissions and
land use. Agric. Syst. 2016, 143, 86–96. [CrossRef]

66. Alemu, A.W.; Janzen, H.; Little, S.; Hao, X.; Thompson, D.J.; Baron, V.; Iwaasa, A.; Beauchemin, K.A.;
Kröbel, R. Assessment of grazing management on farm greenhouse gas intensity of beef production systems
in the Canadian Prairies using life cycle assessment. Agric. Syst. 2017, 158, 1–13. [CrossRef]

67. Florindo, T.J.; de Medeiros Florindo, G.I.B.; Talamini, E.; da Costa, J.S.; Ruviaro, C.F. Carbon footprint and
Life Cycle Costing of beef cattle in the Brazilian midwest. J. Clean. Prod. 2017, 147, 119–129. [CrossRef]

68. Kanyarushoki, C.; Fuchs, F.; van der Werf, H. Environmental evaluation of cow and goat milk chains in
France. Int. J. Life Cycle Assess. 2009, 13, 75–86.

69. Robertson, K.; Symes, W.; Garnham, M. Carbon footprint of dairy goat milk production in New Zealand.
J. Dairy Sci. 2015, 98, 4279–4293. [CrossRef]

70. Pardo, G.; Martin-Garcia, I.; Arco, A.; Yañez-Ruiz, D.R.; Moral, R.; Del Prado, A. Greenhouse-gas mitigation
potential of agro-industrial by-products in the diet of dairy goats in Spain: A life-cycle perspective.
Anim. Prod. Sci. 2016, 56, 646–654. [CrossRef]

71. Casey, J.W.; Holden, N.M. Greenhouse Gas Emissions from Conventional, Agri-Environmental Scheme,
and Organic Irish Suckler-Beef Units. J. Environ. Qual. 2006, 35, 231. [CrossRef]

72. Tsutsumi, M.; Ono, Y.; Ogasawara, H.; Hojito, M. Life-cycle impact assessment of organic and non-organic
grass-fed beef production in Japan. J. Clean. Prod. 2018, 172, 2513–2520. [CrossRef]

73. Ripoll-Bosch, R.; de Boer, I.J.M.; Bernués, A.; Vellinga, T. V Accounting for multi-functionality of sheep
farming in the carbon footprint of lamb: A comparison of three contrasting Mediterranean systems. Agric. Syst.
2013, 116, 60–68. [CrossRef]

74. Wiedemann, S.G.; Ledgard, S.F.; Henry, B.K.; Yan, M.-J.; Mao, N.; Russell, S.J. Application of life cycle
assessment to sheep production systems: Investigating co-production of wool and meat using case studies
from major global producers. Int. J. Life Cycle Assess. 2015, 20, 463–476. [CrossRef]

75. Patra, A.K. Accounting methane and nitrous oxide emissions, and carbon footprints of livestock food
products in different states of India. J. Clean. Prod. 2017, 162, 678–686. [CrossRef]

76. Bava, L.; Zucali, M.; Sandrucci, A.; Tamburini, A. Environmental impact of the typical heavy pig production
in Italy. J. Clean. Prod. 2017, 140, 685–691. [CrossRef]

http://dx.doi.org/10.1016/j.agsy.2009.08.005
http://dx.doi.org/10.1016/j.agee.2006.12.022
http://dx.doi.org/10.1016/j.agsy.2010.03.008
http://dx.doi.org/10.1016/j.jclepro.2019.06.171
http://dx.doi.org/10.1007/s13165-014-0084-0
http://dx.doi.org/10.1016/j.jclepro.2019.04.013
http://dx.doi.org/10.1016/j.scitotenv.2019.04.002
http://dx.doi.org/10.1016/j.agsy.2015.12.007
http://dx.doi.org/10.1016/j.agsy.2017.08.003
http://dx.doi.org/10.1016/j.jclepro.2017.01.021
http://dx.doi.org/10.3168/jds.2014-9104
http://dx.doi.org/10.1071/AN15620
http://dx.doi.org/10.2134/jeq2005.0121
http://dx.doi.org/10.1016/j.jclepro.2017.11.159
http://dx.doi.org/10.1016/j.agsy.2012.11.002
http://dx.doi.org/10.1007/s11367-015-0849-z
http://dx.doi.org/10.1016/j.jclepro.2017.06.096
http://dx.doi.org/10.1016/j.jclepro.2015.11.029


Animals 2020, 10, 162 22 of 22

77. Wiedemann, S.G.; McGahan, E.J.; Murphy, C.M. Environmental impacts and resource use from Australian
pork production assessed using life-cycle assessment. 1. Greenhouse gas emissions. Anim. Prod. Sci. 2016,
56, 1418. [CrossRef]

78. Wiedemann, S.G.; McGahan, E.J.; Murphy, C.M. Environmental impacts and resource use from Australian pork
production determined using life cycle assessment. 2. Energy, water and land occupation. Anim. Prod. Sci. 2018,
58, 1153. [CrossRef]

79. Gaspar, P.; Mesías, F.J.; Escribano, M.; Pulido, F. Sustainability in Spanish extensive farms (Dehesas):
An economic and management indicator-based evaluation. Rangel. Ecol. Manag. 2009, 62, 153–162.
[CrossRef]

80. Peco, B.; Sánchez, A.M.; Azcárate, F.M. Abandonment in grazing systems: Consequences for vegetation and
soil. Agric. Ecosyst. Environ. 2006, 113, 284–294. [CrossRef]

81. Schnabel, S.C. Soil Erosion and Runoff Production in a Small Watershed Under Silvo-Pastoral Landuse (Dehesa) in
Extremadura, Spain; Geoforma: Logroño, Spain, 1997; ISBN 84-87779-29-8.

82. Langa Gonzalo, J. El impacto de la aplicación de la PAC en las producciones ganaderas de la dehesa
(1986-2010). In La agricultura y la Ganadería Extremeñas en 2010; Caja de Ahorros de Badajoz: Badajoz, Spain,
2010; pp. 181–196.

83. Franco, J.A.; Gaspar, P.; Mesias, F.J. Economic analysis of scenarios for the sustainability of extensive livestock
farming in Spain under the CAP. Ecol. Econ. 2012, 74, 120–129. [CrossRef]

84. MAPA. Agricultura Ecológica Estadisticas 2018; Ministerio de Agricultura, Pesca y Alimentación. Subdirección
General de Calidad Diferenciada y Producción Ecológica; Centro de Publicaciones: Madrid, Spain, 2019.

85. Gaspar, P.; Mesías, F.J.; Escribano, M.; Rodriguez De Ledesma, A.; Pulido, F. Economic and management
characterization of dehesa farms: Implications for their sustainability. Agrofor. Syst. 2007, 71, 151–162.
[CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1071/AN15881
http://dx.doi.org/10.1071/AN16196
http://dx.doi.org/10.2111/07-135.1
http://dx.doi.org/10.1016/j.agee.2005.09.017
http://dx.doi.org/10.1016/j.ecolecon.2011.12.004
http://dx.doi.org/10.1007/s10457-007-9081-6
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Case Studies Selection and Data Collection 
	Features of the Seven Production Systems 
	System Boundaries and Functional Unit 
	Estimation of GHG Emissions and CF Level in Farms 
	On-Farm Emissions 
	Off-Farm Emissions 

	Carbon Sequestration in LCA 

	Results 
	Technical Features of the Farms under Analysis 
	Greenhouse Gas Emissions 
	Carbon Sequestration 

	Discussion 
	Conclusions 
	References

