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Subclinical atherosclerosis cannot be predicted and novel therapeutic
targets are needed. The molecular anatomy of healthy and athero-
sclerotic tissue is pursued to identify ongoing molecular changes
in atherosclerosis development. Mass Spectrometry Imaging (MSI)
accounts with the unique advantage of analyzing proteins and
metabolites (lipids) while preserving their original localization; thus
two dimensional maps can be obtained. Main molecular alterations
were investigated in a rabbit model in response to early development
of atherosclerosis. Aortic arterial layers (intima andmedia) and calcified
regions were investigated in detail by MALDI-MSI and proteins and
lipids specifically defining those areas of interest were identified. These
data further complement main findings previously published in
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Fig. 1. Representative MALDI-MSI images for prote
calcified regions (P) in the intima are defined by spe
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J Proteomics (M. Martin-Lorenzo et al., J. Proteomics. (In press);
M. Martin-Lorenzo et al., J. Proteomics 108 (2014) 465–468.) [1,2].
& 2015 The Authors. Published by Elsevier Inc. This is an open access

article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Specifications table
Subject area
 Biology

More specific subject area
 Cardiovascular disease, MSI development and application to arterial tissue

Type of data
 Table and figure

How data was acquired
 MALDI-MSI, FTICR

Data format
 Analyzed

Experimental factors
 Specific and careful tissue treatment was applied as previously published [1]

Experimental features

Data source location
 LUMC (Leiden, The Netherlands), IIS-Fundación Jiménez Díaz (Madrid, Spain)

Data accessibility
Value of the data
�
 A novel unexplored ex vivo imaging approach in cardiovascular disease;

�
 30 mm high spatial resolution is applied to investigate atherosclerosis tissue layers;

�
 This is the first time specific protein localization and alteration in response to atherosclerosis is

shown by MALDI-MSI;

�
 TMSB4X up-regulation in atherosclerosis is firstly identified at its original location.
1. Data, experimental design, materials and methods
1.1. Data

Specific molecular features (m/z values) were identified by MALDI-MSI, corresponding to proteins
and lipids specifically defining intima, media or calcified regions in atherosclerotic rabbit aorta (Fig. 1).
I
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ins (A) and lipids (B, C) in rabbit aorta. Intima (I) and media (M) layers and
cificm/z values. Characterization of samples is made according to histology:



Table 1
MALDI-MSI m/z values with specific localization in the intima or media layer are shown (left column): xp means specifically
located in the calcified region of the intima layer. Comparison between healthy and atherosclerotic tissues is also included
(right column):↑increased in atherosclerosis;↓decreased in atherosclerosis; P: pathologic (atherosclerotic) tissue; C: control
(healthy) tissue. Bold numbers show statistical significance (p Value o0.05, Mann–Whitney test). Identification was performed
by FT-ICR measurements, MaTisse database, MSiMass list database and literature [12,13].

Arterial localization Atherosclerosis Molecule

m/z Media Intima p-
Value

Trend Fold
change
(P/C)

p-
Value

Proteins
3011 x 0.0108 ↑ 1.67 0.0022 SEL1L, IQGAP1, GANAB, NCSTN, UGDH, CYBA, YWHAG, MIF,

EIF2S3, SYNM, ITGA5, NDUFS7, COL12A1, VASN, EEF1A1,
MYBPC1, HBA1-2, ENO1, UBA1, CA3, MUC5B

3553 x 0.0022 ↓ 0.64 0.0152 NSF, PSMC4, ACTB, MYL2, PKM2, HSPD1
3569 x 0.0022 ↓ 0.67 0.0303 DHRS7, ACTB, MYL2, PKM2, ERP44, S100A6
4597 x 0.0022 ↓ 0.92 0.4589 –

4614 x 0.0022 ↓ 0.93 0.6494 HBB
4762 x 0.0303 ↑ 3.00 0.0022 TMSB4X
4778 x 0.0303 ↑ 2.07 0.0022 –

5620 x 0.0022 ↓ 0.58 0.0087 –

6182 x 0.0022 ↓ 0.49 0.0022 –

6199 x 0.0022 ↓ 0.57 0.0152 –

Lipids
255 x 0.0152 ↑ 4.98 0.0022 SFA
518 x 0.0022 ↑ 8.74 0.0022 Lysolipids
520 x 0.0260 ↑ 4.58 0.0260 Lysolipids
522 x 0.0022 ↑ 5.64 0.0022 LPC (0:0/18:1), lysolipids
535 xP 0.0381 ↑ 4.21 0.0381 –

536 xP 0.3524 ↑ 1.42 0.1714 –

568 xP 0.1714 ↑ 3.57 0.0667 –

675 xP 0.0667 ↑ 6.84 0.0190 PA
676 xP 0.1143 ↑ 4.61 0.0381 PAþPG
691 xP 0.0667 ↑ 4.43 0.0381 SMþPAþPE�Cer
722 xP 0.1143 ↑ 4.76 0.1143 PCþPE
800 x 0.0022 ↑ 3.74 0.0022 SM
864 x 0.0087 ↑ 9.77 0.0022 PG
865 x 0.0087 ↑ 6.54 0.0022 PI
866 x 0.0260 ↑ 1.03 0.0022 PC
891 x 0.0931 ↑ 6.52 0.0022 Glc�GPþPI
893 x 0.0433 ↑ 6.18 0.0411 PS
895 xP 0.3874 ↑ 1.51 0.1320 TG
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m/z values with specific location, and fold change in response to atherosclerosis early development
are compiled in Table 1. Tentative identification was performed and is also shown.

1.2. Experimental design

A rabbit model of atherosclerosis was developed as previously published [3] to investigate
molecular alterations in arterial tissue in response to atherosclerosis. High-spatial-resolution MALDI-
MSI was applied to comparatively analyze histologically-based arterial regions of interest from control
and atherosclerotic aortas.

1.3. Materials and methods

The ascending aortic section of each animal was dissected, snap frozen in liquid nitrogen without
any fixation and stored at �80 1C [4,5].Three different MALDI-MSI protocols were applied for the
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detection of proteins [2], lipids [6] and metabolites [7,8]. Public libraries of MALDI-MSI data, MSiMass
list database [9] and MaTisse [10] were used to assign identity of the most significantly altered protein
molecular feature using a mass tolerance of 73 Da [11]. Lipid molecular identification was performed
by using exact mass measurements, peak peaking and spatial filtering combined with Lipidsmap
database using a tolerance of r0.005 Da, as previously published [12,13]. For comparison between
control and atherosclerotic tissue, a random selection of the whole spectra sets from these regions
were then imported into ClinProTools 3.0 (Bruker Daltonik) where they underwent smoothing,
baseline subtraction, mass spectral alignment and normalization. Mann–Whitney non-parametric
tests were performed using GraphPad Prism software.
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