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Warsaw breakage syndrome, a developmental disorder caused by
mutations in the DDX11/ChlR1 helicase, shows cellular features of
genome instability similar to Fanconi anemia (FA). Here we report
that DDX11-deficient avian DT40 cells exhibit interstrand crosslink
(ICL)-induced chromatid breakage, with DDX11 functioning as
backup for the FA pathway in regard to ICL repair. Importantly,
we establish that DDX11 acts jointly with the 9-1-1 checkpoint
clamp and its loader, RAD17, primarily in a postreplicative fashion,
to promote homologous recombination repair of bulky lesions, but
is not required for intra-S checkpoint activation or efficient fork
progression. Notably, we find that DDX11 also promotes diversi-
fication of the chicken Ig-variable gene, a process triggered by
programmed abasic sites, by facilitating both hypermutation and
homeologous recombination-mediated gene conversion. Alto-
gether, our results uncover that DDX11 orchestrates jointly with
9-1-1 and its loader, RAD17, DNA damage tolerance at sites of
bulky lesions, and endogenous abasic sites. These functions may
explain the essential roles of DDX11 and its similarity with 9-1-1
during development.
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Accurate DNA replication is critical for genome integrity and
development. DNA lesions encountered during DNA rep-

lication challenge the stability of replication forks and are an
important source of DNA replication stress (1). Cells are
equipped with multiple DNA repair mechanisms, specific for
different types of lesions, cell cycle phase, and in certain cases,
cell/tissue type (2). For instance, abasic sites, estimated to be the
most common spontaneously arising lesions in mammalian cells
(3), can be repaired via accurate base excision repair. However,
if encountered during replication, they are dealt with by spe-
cialized translesion synthesis (TLS) polymerases or by homolo-
gous/homeologous recombination-mediated bypass mechanisms.
The processes by which abasic sites are tolerated or repaired
have consequences for genome integrity and serve additional
functions, such as generating Ig diversity in B cells (4). The di-
versification of Ig genes relies on activation-induced deaminase
(AID)-mediated conversion of cytidine (dC) to uracil (dU)
within regions of single-stranded DNA (ssDNA) (5), with dU
being subsequently removed by uracil-DNA glycosylase and
causing high local frequency of abasic sites. The arising abasic
sites trigger somatic hypermutation, and in certain species in-
cluding birds, homeologous recombination-mediated gene con-
version with one of the 25 copies of upstream pseudogenes (6).
Complex lesions, such as DNA interstrand crosslinks (ICLs),

also constitute replication blocks and require for repair the use
of different types of repair enzymes implicated in ICL incision,
TLS, and homologous recombination (HR) in subsequent fash-
ion (7, 8). In vertebrate cells, the Fanconi anemia (FA) pathway
is critical for ICL repair. Mutations in the so far 22 identified FA

genes result in impaired ability of cells to deal with certain
forms of DNA damage, such as endogenous formaldehyde (9),
and lead to a hereditary disorder, FA, characterized by bone
marrow failure, developmental abnormalities, and predisposition
to cancer.
The central components of the FA pathway, FANCD2 and

FANCI, interact with each other (10), and are monoubiquitylated
by the FA core complex. FANCD2–FANCI ubiquitylation pro-
motes lesion unhooking, causing the formation of a gapped DNA
molecule, with the unhooked lesion in the gapped part, and a
double strand break (DSB), repaired subsequently by TLS and
HR (11). The FA pathway is strongly linked to the intra-S phase
checkpoint function of ATR (12), with ATR-mediated phos-
phorylation of FANCD2–FANCI being required for the sub-
sequent monoubiquitylation (10, 13). Accordingly, mutations in
checkpoint factors often affect ICL repair, a phenotype used to
identify new checkpoint components and for dissecting different
functions of checkpoint mediators.
Warsaw breakage syndrome (WABS) is a disorder with mu-

tations in the XPD family helicase DDX11/ChlR1 (14–17).
WABS patient cells have features of FA (14, 17), but DDX11 has
not been formally associated with FA or checkpoint signaling.
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DDX11 displays 5′–3′ DNA helicase activity in vitro, interacts
with factors implicated in Okazaki fragment processing (18–20),
and facilitates tolerance to cisplatin in human cells (21). How-
ever, the molecular functions of DDX11 remain incompletely
understood.
Here, we found that DDX11-deficient avian cells show hall-

marks of impaired ICL repair and genome instability. Mecha-
nistically, DDX11 functions as backup to the FA pathway and
facilitates anHR-related pathway of DNA repair that is not critical for
replication fork speed and stability. Importantly, ddx11 is epistatic with
mutations in the 9-1-1 checkpoint clamp loader, RAD17, in regard to
DNA damage hypersensitivity, recombination defects, and chromo-
some aberrations. In similar trends to 9-1-1, DDX11 contributes to Ig
variable gene (IgV) diversification via homeologous recombination-
mediated gene conversion. Moreover, we find that DDX11 also
contributes to hypermutation-mediated IgV gene diversification, and
that the compensatory use of hypermutation in rad17 cells is de-
pendent on DDX11. In conclusion, our findings identify a DDX11
helicase-dependent DNA repair pathway that supports and coordi-
nates DNA damage tolerance of bulky replication lesions and of
endogenous abasic sites in vertebrate cells. This function may explain
the essential role of DDX11 during development (22, 23).

Results
DDX11 Helicase Facilitates Repair and Averts Genomic Instability
Induced by ICLs. To examine the effect of DDX11 deficiency in
vertebrate cells, we established DT40 knockout cell lines (24).
DDX11−/− cells (hereafter ddx11) proliferate normally (24), but
are hypersensitive toward cisplatin (CDDP), which causes intra-
and interstrand crosslinks (ICLs), and methylmethane sulfonate
(MMS), which causes bulky lesions (Fig. 1A and SI Appendix, Fig.
S1A). The sensitivity of ddx11 mutants is complemented by
expressing chicken and human DDX11 (Fig. 1A and SI Appendix,
Fig. S1A), but not by expressing a helicase-dead, K87A variant of
chicken DDX11 (cDDX11), carrying inactivating mutations in a
conserved lysine residue located in the Walker A motif (Fig. 1B
and SI Appendix, Fig. S1B), despite similar levels of expression of
these variants (SI Appendix, Fig. S1C). These effects are observed
in both colony formation (Fig. 1A and SI Appendix, Fig. S1A) and
cellular viability assays (Fig. 1B and SI Appendix, Fig. S1B).
In similar trends with FA mutants, such as fancc and fancj,

ddx11 cells are defective in recovery from a transient exposure to
mitomycin C (MMC) (Fig. 1C). Moreover, after exposure to
MMC, the frequency of chromosome abnormalities increased,
especially in regard to chromatid breaks (Fig. 1D). Thus, DDX11
is important in averting genome instability induced by ICLs.

DDX11 Functions as Backup to the FA Pathway in ICL Repair. To ex-
amine the phenotypic relationship between DDX11 and the FA
pathway, we established double knockout mutants between
DDX11 and FANCC, an FA core component required for
FANCD2–FANCI ubiquitylation (25). Double mutant fancc
ddx11 cells exhibited much greater sensitivity to cisplatin and
MMC than either single mutant (Fig. 2A). Differently from fancc
mutants, ddx11 cells were proficient in inducing FANCD2
ubiquitylation in response to cisplatin and MMC (Fig. 2B). Thus,
DDX11 is important for ICL repair, acting in parallel with FA or
downstream of FANCD2 ubiquitylation in the FA pathway.
The FA pathway is required to act on metabolic formaldehyde

(9), which can cause formation of DNA adducts. ddx11 cells
showed mild sensitivity to formaldehyde, but strongly aggravated
the sensitivity of fancc mutants (SI Appendix, Fig. S2A). We also
established double mutants between DDX11 and FANCJ, as
FANCJ is the main helicase associated with the FA pathway, and
both DDX11 and FANCJ are orthologs of budding yeast Chl1
(26). ddx11 fancj cells showed slow proliferation (Fig. 2C), with
accumulation of cells in sub-G1 (SI Appendix, Fig. S2B), and
exhibited synergistic sensitivity to formaldehyde (Fig. 2D), sug-
gesting compensatory functions of DDX11 and FANCJ in pro-
liferation and DNA repair. Thus, DDX11 is dispensable for

FANCD2–FANCI ubiquitylation and acts as backup to the FA
pathway in ICL repair.

DDX11 Facilitates DNA Repair by Homologous Recombination. In line
with previous reports (27), we found that DDX11 helicase is re-
quired to provide resistance against the PARP inhibitor, olaparib
(SI Appendix, Fig. S3A), which causes lesions that are repaired
primarily by HR. To further investigate connections with HR, we
established double mutants between DDX11 and BRCA2, which
is critical for HR and implicated in FA (28). ddx11 brca2 cells
showed additive sensitivity in regard to both cisplatin and olaparib
(Fig. 3 A and B). These results suggest a role for DDX11 in a repair
mechanism that responds to olaparib, but which presents distinct
features from the BRCA2- and FA core-mediated pathways. Of
interest, ddx11 cells are sensitive to the UV mimetic 4NQO (SI
Appendix, Fig. S3B), suggesting general roles of DDX11 in the re-
pair of bulky lesions, rather than specificity toward ICLs.
Many HR-related FA factors contribute to DSB repair. ddx11

cells display sensitivity toward drugs that cause topological stress
and ultimately induce DSBs, such as camptothecin, bleomycin,
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and etoposide (SI Appendix, Fig. S3 C–E), but are proficient in
DSB-induced recombination, as measured with a GFP reporter
assay (SI Appendix, Fig. S3F). In this assay, the negative effects
on HR caused by overexpression of the chicken BRC4 repeat of
BRCA2 was used as control (29).
To examine whether DDX11 may contribute to HR repair by

affecting RAD51 focus formation, we measured RAD51 foci
after a short treatment of cells with MMC, followed by recovery.
Notably, RAD51 foci were decreased in ddx11 mutants compared
with WT control cells (Fig. 3C). To further address a possible
role for DDX11 in endogenous recombination-mediated pro-
cesses, we examined its role in Ig gene conversion, measured as
the gain of surface IgM (sIgM) expression. DT40 cells carry a
frameshift mutation in the Ig light-chain variable (IgVλ) segment,
but gene conversion from pseudo-V segments removes the
frameshift mutation, causing sIgM expression (Fig. 3D, Left). WT
and ddx11 clones were expanded for 14 d, in the absence or
presence of tricostatin A (TSA), a histone deacetylase inhibitor
that increases the frequency of Ig gene conversion in DT40 cells
(30), thus allowing detection of rare gene-conversion events. In
both spontaneous and TSA conditions, ddx11 mutants showed
significant reduction in the frequency of Ig gene conversion events
compared with WT cells (Fig. 3D). In all, the results suggest that
DDX11 facilitates HR repair of bulky lesions and gene conversion
at the IgV region, but is dispensable for initiating HR at DSBs.

DDX11 Acts Jointly with 9-1-1 to Facilitate Postreplicative DNA Repair.
To address whether DDX11 repair functions are manifested at
the fork, in which case their absence will delay fork speed, we
used CldU/IdU double labeling, with each labeling for the same
amount of time. In unperturbed conditions, the ratio is close to
1, whereas in DNA damaging conditions, the ratio is smaller than
1. We did not observe significant differences between WT and
ddx11 cells in either condition (Fig. 4A). Moreover, DDX11 is
not essential for replication fork stability, as deduced from the
lack of sensitivity of ddx11 cells to aphidicolin, a DNA poly-
merase inhibitor (SI Appendix, Fig. S4A and see below). Taken
together, these results suggest that DDX11 may manifest its
DNA repair functions primarily postreplicatively.

Because PrimPol has been implicated in reinitiating replica-
tion upon different types of replication lesions in eukaryotic cells
(31), we also generated ddx11 primpol double mutants. These
mutants showed additive sensitivity toward cisplatin and MMS
(SI Appendix, Fig. S4B), suggesting that DDX11 affects a step in
DNA damage tolerance that is distinct from the replication re-
start step and TLS functions mediated by PrimPol. This step is
likely independent of proliferating cell nuclear antigen ubiq-
uitylation, as we found this modification to be proficient in ddx11
cells (SI Appendix, Fig. S4C).
The 9-1-1 checkpoint clamp promotes HR and facilitates re-

pair of various types of replication lesions, including those trig-
gered by ICLs, bulky adducts, and ssDNA gaps (32, 33). Because
these features are overlapping to what we uncovered here for
ddx11, we next analyzed the functional interaction between
DDX11 and 9-1-1. Strikingly, we found epistasis between DDX11
and the 9-1-1 checkpoint clamp loader, RAD17, in regard to
cisplatin and MMS sensitivity (Fig. 4B).
Next, we analyzed whether DDX11 would act similarly with 9-

1-1, or redundantly with it, to facilitate intra-S checkpoint acti-
vation. Differently from RAD17, DDX11 was not required for
efficient checkpoint activation upon DNA damage as measured
by Chk1 phosphorylation (Fig. 4C), and did not affect the ability
of cells to slow down S phase progression in the presence of
DNA damage (SI Appendix, Fig. S4D). Importantly, DDX11
was also largely dispensable for survival following hydroxyurea
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(HU)-induced dNTP pool depletion (Fig. 4D), in contrast to the
strong effects caused by the rad17 mutation (Fig. 4D) or in-
hibition of Chk1 (SI Appendix, Fig. S4E), which functions
downstream of 9-1-1 and ATR in the checkpoint response.
DDX11 was proposed to function together with Tim–Tipin to
mediate fork restart upon HU treatment (34). While the
checkpoint proficiency and the modest sensitivity of ddx11 cells
to HU (Fig. 4 C and D) do not exclude roles in fork protection
and fork restart upon HU treatment, here we focused on the
joint role of 9-1-1 and DDX11 in DNA repair.
Next, we tested whether the lesions remaining in ddx11 and

rad17 cells are amenable to postreplicative HR repair, a pathway
induced by improving sister chromatid cohesion (SCC) in G2/M,
after the bulk of DNA replication is complete. We improved
postreplicative SCC by inhibiting a prophase pathway of cohesin
release relying on Plk1-mediated phosphorylation of the cohesin
subunit, SA2 (35) (Fig. 4E). We found that expression of SA2-
12A can partly rescue the sensitivity of ddx11 and rad17 cells to
cisplatin and MMS (Fig. 4E). We note that SA2 and SA2-12A
were expressed at similar levels and strictly induced by doxycy-
cline (SI Appendix, Fig. S5A). Similar effects were observed when
the consequences of SA2-12A overexpression were compared
with cells that do not induce its expression (SI Appendix, Fig.
S5B). Thus, the lesions accumulating in ddx11 and rad17 cells can
be repaired postreplicatively by alternate HR pathways.
Because HR repair of DNA damage leads to increased sister

chromatid exchanges (SCEs) (36), we measured whether DDX11
and RAD17 were required for this process. Both ddx11 and rad17
mutations did not affect the frequency of SCEs in unperturbed
conditions, but impaired the ability of cells to efficiently induce SCEs
following treatment with cisplatin, in an epistatic manner (Fig. 5A).
Next, we asked whether DDX11 and 9-1-1 play similar or

distinct roles in averting genome instability induced by MMC

(Fig. 1D). We observed similar and nonadditive effects in single
and double mutants, with increased incidence in chromatid
breaks upon DNA damage (Fig. 5B). Moreover, defects in
RAD51 focus formation and accumulation of γH2AX foci fol-
lowing MMC treatment appeared similar in rad17, ddx11, and
ddx11 rad17 double mutants (Fig. 5C). In all, these results in-
dicate that DDX11 and 9-1-1 act jointly to mediate efficient HR-
mediated repair in response to replication lesions.

DDX11 Facilitates Ig Hypermutation and Gene Conversion. To better
analyze the in vivo role played by DDX11 at endogenous abasic
sites (Fig. 3D), and its relationship with RAD17, we examined
the diversification of the IgVλ region in WT, ddx11, rad17, and
ddx11 rad17 mutants overexpressing AID, required for pro-
grammed induction of abasic sites at this locus (37, 38). We se-
quenced IgVλ gene libraries from expanded clones and analyzed
the contributions of TLS-mediated hypermutation and gene
conversion in this process (SI Appendix, Fig. S6). In a similar
trend with rad17, and in line with the sIgM assay of gene conversion
(Fig. 3D), we found a reduction in gene conversion events in ddx11
cells compared with WT (Fig. 6A). The reduction in gene conver-
sion events was stronger in rad17 cells, and in line with previous
reports (32, 39), and ddx11 rad17 showed similar trends with rad17
mutants (Fig. 6A). rad17 mutants compensate for the reduction in
gene conversion by increasing hypermutation (Fig. 6A and ref. 32),
similarly with mutations in RAD51 paralogues (39). Interestingly,
ddx11 mutants showed reduction in both hypermutation and gene
conversion, and the strongly increased hypermutation events in
rad17 cells depended in large part on DDX11 (Fig. 6A). These
results indicate that DDX11 promotes both gene conversion and
TLS-mediated repair of abasic sites.
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Discussion
The importance of the FA pathway in repairing complex lesions
such as ICLs is now well established. The existence of genetic dis-
orders that have clinical and cellular overlaps with FA indicates the
presence of pathways that can compensate in certain contexts for
FA and/or act on other types of endogenous lesions. Our study
highlighted that one such pathway is defined by the highly con-
served DDX11/ChlR1 helicase mutated in the WABS genetic

disorder. The genetic and cell-based analysis provided in this study,
with cellular models of WABS, FA subtypes (FANCC, FANCJ, and
BRCA2), and combinations, suggests that DDX11 has roles in
averting genome instability and in promoting DNA repair of ICLs,
but this function is genetically distinct and secondary in importance
to the one of canonical FA components. Importantly, our study
suggests that DDX11 also facilitates DNA damage tolerance of
bulky lesions and replication through endogenous abasic sites, in a
largely postreplicative manner and in collaboration with 9-1-1.
Although previous studies reported accumulation of post-

replicative gaps in human and mouse cells in response to UV
damage (40–43) or upon RAD51 depletion in Xenopus egg ex-
tracts (44), little is known about how postreplicative repair is
carried out in vertebrate cells. Our work indicates that DDX11
collaborates with the checkpoint clamp 9-1-1 and its loader,
RAD17, in the postreplicative HR repair of bulky lesions, and in
facilitating gene conversion induced by abasic sites, but without
affecting checkpoint activation. Based on the current findings,
we propose that 9-1-1, in addition to its role as lesion sensor and
activator of ATR, participates together with DDX11 in the
postreplicative bypass of replication lesions that are not prefer-
ential substrates for the canonical FA pathway or other fork
stabilization mechanisms. We note that a noncanonical role for
9-1-1 in the postreplicative HR-mediated repair of replication
lesions was observed in budding yeast (45), and that 9-1-1 repair
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defects can be overcome by overexpressing RAD51 (46). We pro-
pose a model in which the action of 9-1-1 favors the formation of
the RAD51 filament on postreplicative gaps, while DDX11 pro-
motes the unwinding of the stalled 3′ end (Fig. 6B). The in-
termediate formed by the joint actions of 9-1-1 and DDX11 may be
efficiently matured into an HR intermediate, while in the absence
of 9-1-1, the 3′ end exposed by the action of the DDX11 helicase
may be more readily engaged by TLS polymerases (Fig. 6B).
A joint role for DDX11 and 9-1-1 in the HR repair of repli-

cation lesions and abasic sites may explain why their individual
depletion/knockout leads to very similar developmental defects
in mouse, with the somitic mesoderm being especially sensitive
to the genomic instability produced by their individual mutations
(22, 23) and resembling the ones caused by mutations in Brca2
and Palb2 (47, 48). These repair functions are likely critical in
situations of fast proliferation, such as during early stages of
development. We also found that DDX11 mitigates replication
stress in FANCJ-defective cells and is critical for the repair of
olaparib- and cisplatin-induced DNA damage in BRCA2 and
FA-defective cells. Thus, another implication of our findings is
that DDX11 is important for limiting replication stress in FA and
BRCA mutated cells, and therefore it may be vital for the sur-
vival of these and other cancers, which often suffer from

replication stress (1). Based on our findings, we propose that
the DNA repair pathway mediated by DDX11 has important
functions related to replication of endogenous abasic sites
and DNA damage tolerance of bulky lesions. This pathway is
critical for human disease and may offer new opportunities
for cancer treatment.

Materials and Methods
The methodology employed was described in refs. 24 and 29 except for the
DNA fiber analysis, which was performed largely as described in ref. 49, and
Ig gene diversification experiments, which were performed as in ref. 38. A
complete list of reagents and detailed methodology are available in
SI Appendix.
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