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ADP-ribosylation (ADPr) is a reversible post-translational modification of

proteins, which controls major cellular and biological processes, including

DNA damage repair, cell proliferation and differentiation, metabolism, stress

and immune responses. In order to maintain the cellular homeostasis, diverse

ADP-ribosyl transferases and hydrolases are involved in the fine-tuning of

ADPr systems. The control of ADPr network is vital, and dysregulation

of enzymes involved in the regulation of ADPr signalling has been linked to

a number of inherited and acquired human diseases, such as several neuro-

logical disorders and in cancer. Conversely, the therapeutic manipulation of

ADPr has been shown to ameliorate several disorders in both human and

animal models. These include cardiovascular, inflammatory, autoimmune

and neurological disorders. Herein, we summarize the recent findings in

the field of ADPr, which support the impact of this modification in human

pathophysiology and highlight the curative potential of targeting ADPr for

translational and molecular medicine.
1. Introduction
Uni- and multicellular organisms rely on multiple dynamic molecular processes

dictating cellular growth, cell division, prompt adaptation to environmental

changes and survival. A functional and dynamic communication between cel-

lular macromolecules is essential to control these fundamental biological

processes. At the molecular level, proteins and small molecules are responsible

for orchestrating these cellular responses. Cells have evolved mechanisms

able to regulate dynamically proteins’ functions through chemical modifi-

cations. In this regard, post-translational modifications (PTMs) can efficiently

and very rapidly control a multitude of cellular processes in a time-dependent

fashion by affecting the conformation, activity, stability, interactions and the

sequestration of proteins to cellular compartments and organelles [1].

So far, more than 300 PTMs have been described; each one is involved in a

range of fundamental cellular and biological processes. Functional alterations in

the proteins governing PTM systems are frequently dysregulated in human

disease [1].

Among the PTMs, there is ADP-ribosylation (ADPr). ADPr is the transfer of

a single or multiple ADP-ribose unit(s) from nicotinamide adenine dinucleotide

(NADþ) onto target protein substrates. Importantly, ADP-ribose nucleotide

units can be also transferred onto nucleic acids and small molecules,

such as on acetyl chemical groups to produce O-acetyl-ADP-ribose (OADPR)

during de-acetylation reactions [2–4].

Although ADPr of proteins was first described in the early 1960s, our under-

standing of the cellular processes regulated by ADPr is still in its infancy [5–8].

Indeed, strikingly little is known about most of the proteins involved in ADPr

and the governed signalling pathways. Such a gap in the knowledge also translates

into a lack of understanding of many potentially related pathogenic mechanisms.
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Table 1. Alterations of ADPr genes associated with human inherited pathologies.

gene gene alteration disease/disorder references

transferases

PARP9 overexpression B-aggressive lymphoma [11,12]

breast cancer [13]

PARP14 overexpression B-aggressive lymphoma [11,14]

sarcoma [15]

asthma [16]

hepatocellular carcinoma [17]

PARP15 overexpression B-aggressive lymphoma [11]

readers/erasers

ALC1 (CHD1L) overexpression hepatocellular carcinoma [18]

breast cancer [19]

colorectal carcinoma [20]

ARH1 missense mutations lung, breast and colon cancers [21]

ARH3 truncations/mutations neurodegenerative diseases [22,23]

GDAP2 (MacroD3) point mutations ataxia, progressive spasticity and dementia [24]

MacroD1 overexpression endometrial carcinoma [25]

gastric carcinoma [26]

colorectal carcinoma [27,28]

breast carcinoma [29,30]

MacroD2 single-nucleotide polymorphisms autism [31 – 33]

microdeletion Int 5 kabuki syndrome [34,35]

locus deletions various cancers [36,37]

deletions, missense mutations colorectal cancer [38]

TARG1 premature stop codon neurodegeneration [39]
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Yet the therapeutic modulation of ADPr is emerging as a strat-

egy with high potential in the clinic of certain human cancer

types [9,10].

However, an in-depth understanding of molecular

networks controlled by ADPr can not only further potentiate

current clinical strategies, but also impact on the treatment of

many other human diseases with no available therapy

identified so far. Herein we discuss the most recent discov-

eries available in the scientific community supporting the

central role of ADPr in the pathophysiology of many acquired

and hereditary human diseases (summarized in table 1) and

highlight the outcomes of the pharmacological modulation of

ADPr for the clinical treatment of these disorders.
2. ADP-ribosyl transferases
ADPr is carried out by transferase enzymes that, based on the

homology of their catalytic domain with bacterial toxins, are

classified in two enzyme superfamilies: the cholera toxin-like

ADP-ribosyl transferases (ARTCs) and the diphtheria toxin-

like ADP-ribosyl transferases (ARTDs) [2,40,41]. These two

classes of enzymes share an evolutionarily conserved protein

fold, called ADP-ribosyl transferase (ART) domain [40,41].

The ART protein fold is characterized by two central b-

sheets, one anti-parallel sheet containing three to five b strands,

and one sheet composed of four to five b strands [40–42].
Three crucial amino acids within the ART domain define

the affiliation to cholera or diphtheria toxin-like superfami-

lies, the R-S-E and H-Y-E triads, respectively. The first two

amino acids in the triad are important for the NADþ binding,

while the common glutamate functions in catalysis [40–42].

ARTCs and ARTDs also differ for their specificity to target

distinct amino acids. Most of the characterized ARTCs

target protein substrates on arginine residues in proteins

through an N-glycosidic bond producing arginine-ADPr

(Arg-ADPr; figure 1). The founding member of ARTC

family is the cholera toxin from Vibrio cholerae. Cholera

toxin modifies arginine 187 of the stimulatory Gsa subunit

of heterotrimeric G protein. ADPr of Gsa leads to constitutive

activation of cyclic AMP-signalling pathway and, in turn, a

dramatic efflux of ions and water from infected enterocytes,

leading to watery diarrhoea [43,44].

ARTD group of transferases most commonly modify acidic

groups [45] (figure 1). The founding member of ARTD family

is the diphtheria toxin, an exotoxin secreted by Corynebacter-
ium diphtheriae, which catalyses the modification of the

eukaryotic elongation factor-2 (EF-2) at a modified amino

acid called diphthamide, thus inhibiting the translation

machinery of the host [44,46]. For further details about

bacterial ADP-ribosyl transferase toxins (bARTTs), refer to §9.

Four members of ARTC superfamily are expressed in

humans (ARTC1, ARTC3, ARTC4, and ARTC5) and six in

mice (Artc1, Artc2.1, Artc2.2, Artc3, Artc4 and Artc5).
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Figure 1. Enzymes and mechanisms of protein ADP-ribosylation. NAD, nicotinamide adenine dinucleotide; Na, nicotinamide; ADPr, ADP-ribose.
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ARTC1, ARTC2, ARTC3 and ARTC4 enzymes are bound to

the cellular plasma membrane by a glycosyl-phosphatidyl-

inositol (GPI) anchor, while ARTC5 is an extracellular

secreted enzyme. ARTC1, ARTC2 and ARTC5 show mono-

ADP-ribosyl transferase activity and modify arginine side

chains of protein substrates (figure 1). On the contrary,

ARTC3 and ARTC4 lack the R-S-E motif in the active centre

and therefore are probably inactive enzymes [47,48].

Mainly, extracellular or plasma membrane-residing

proteins are substrates of Arg-ADPr, such as P2X7 and

haemopexin [47,48]. However, several studies revealed Arg-

ADPr of intracellular proteins as well (e.g. BIP, GAPDH

and tubulin) [49–52], though the ARTs responsible for

intracellular Arg-ADPr remain largely unknown.

Seventeen members of the ARTD superfamily have been

identified in mammals and are known as poly(ADP-ribose)

polymerases (PARPs) [3,41,53]. PARPs most commonly

transfer ADP-ribose onto aspartic/glutamic acids (Asp/

Glu-ADPr), through ester linkages, and on serine (Ser-

ADPr) residues through O-glycosylation [54,55] (figure 1).

Several PARPs can produce chains of ADP-ribose polymers

(also called poly(ADP-ribose), thus abbreviated as PAR),

where repeating single ADP-ribose units (up to 200 in

length) are linked via unique O-glycosidic ribose-ribose

bonds [45,56–58]. This type of modification is generally

named poly(ADP-ribosyl)ation (PARylation). Well-character-

ized PARPs able to generate PARylation are PARP1, PARP2,
Tankyrase-1 and Tankyrase-2 [45]. However, the remaining

human PARP members are instead only capable of transfer-

ring a single ADP-ribose group to their target proteins, thus

producing mono(ADP-ribosyl)ation (also abbreviated as

MARylation) [45,59,60] (figure 1).
3. ADP-ribosyl hydrolases
ADPr is a fully reversible PTM. Two unrelated protein

families show hydrolytic activity against proteins modified

by ADPr, with diverse target specificity; the ADP-ribosyl-

acceptor hydrolases (ARHs) and the macrodomain-containing

enzymes.

Mg2þ-dependent ADP-ribosyl-acceptor hydrolases

(ARHs) are classified as DraG-like fold-containing proteins,

based on the homology encountered with the bacterial dinitro-

genase reductase-activating glycohydrolase (DraG). Bacterial

DraG homologues have been described as mono(ADP-ribosyl)

hydrolases that control nitrogen fixation by counteracting the

arginine modifying ART activity of DraT [61]. Three ARH

members are found in mammals: ARH1 (also named

ADPRH), ARH2 (also named ADPRHL1) and ARH3 (also

named ADPRHL2). While an enzymatic activity has not

been identified for ARH2, ARH1 and ARH3 have distinct sub-

strate specificities [62–64]. As seen for the bacterial DraG

proteins, ARH1 reverses Arg-ADPr synthesized by both



royalsocietypublishing.org/journal/rsob
Open

Biol.9:190041

4
mammal endogenous ARTCs and bacterial toxins [64]

(figure 1). Indeed, Arh1-deficient mice show enhanced sensi-

tivity to cholera toxin infection [65]. By contrast, ARH3

shows high activity on O-glycosidic bonds and is the only

known enzyme possessing hydrolytic activity against Ser-

ADPr [66] (figure 1). Interestingly, ARH3 is inhibited by the

metabolite ADP-ribosyl arginine, suggesting a cross talk

between ADPr systems [67].

Macrodomain-containing proteins share a common ADP-

ribose recognition domain, which is called macrodomain. The

macrodomain is an ADP-ribose binding unit that plays cru-

cial roles in the sensing and hydrolysis of ADPr in different

cellular contexts [68]. Macrodomains are found in vertebrates

as well as in many bacteria, archaea, viruses and plants,

suggesting their evolutionary conservation and wide utility

[69]. Depending on the type, macrodomains can exhibit the

ability to bind ADP-ribose or PAR or OADPR (a metabolite

released from the sirtuin-mediated NADþ-dependent deace-

tylation reaction). In addition, some macrodomains also act

as ADP-ribosyl hydrolases [42,68–71]. Nevertheless, several

macrodomain-containing proteins have been suggested to

bind RNA intermediates instead of ADP-ribose [69,72].

Among the 12 macrodomain-containing proteins

encoded by the human genome, only four exhibit catalytic

activity [2,3,68,69]. The poly(ADP-ribosyl)glycohydrolase

(PARG) is the only macrodomain-containing protein that

efficiently cleaves PAR chains, though, it is unable to

remove the terminal ADP-ribose linked to protein sub-

strates [73]. Conversely, MacroD1 and MacroD2 of the

MacroD subfamily of proteins as well as Terminal ADP-

ribose glycosylhydrolase 1 (TARG1/C6orf130 or OARD1)

specifically hydrolyse protein MARylation on acidic

residues [39,74,75] (figure 1).
4. PARP1
PARP1 is the best-studied PARP enzyme, which is also the

most ubiquitous and abundant PARP protein [57]. Together

with PARP2 and PARP3, PARP1 belongs to the

DNA-dependent nuclear PARPs group whose catalytic activity

is potently stimulated by DNA breaks [10,76,77]. However, over

the years, PARP1 functions have been expanded with roles in

DNA damage repair as well as transcription, chromatin struc-

ture and metabolism [76,78–80]. Thus, PARP1 appears to be

involved in both basal processes and response to cellular stresses

with implications in human disease, particularly in cancer. For

instance, PARP1 functions in DNA damage repair are the

most attractive strategy to induce selective cell death in DNA

damage repair-deficient cancers. Novel and specific structure-

based chemicals acting as inhibitors of DNA damage

PARPs (most notably PARP1) have been developed and under

experimentation for treatment of pathological conditions

[9,10,81,82]. The topic of PARP1 inhibitors in cancer will not

be discussed in detail in this review.

The regulation of PARP1 activity is essential. A distinct

PARP1 interacting protein milieu may play a crucial role in

the fine-tuning of PARP1 when it functions in specific

physiological processes or stress conditions. One of the

best-characterized PARP1 accessory proteins is Histone PAR-

ylation Factor 1 (HPF1), which is required during the switch

from basal conditions to stress response [83]. HPF1 has a cen-

tral role in triggering PARP1-dependent ADPr of histone
proteins as well as of many other DNA damage-related pro-

teins following genotoxic stresses [83,84]. In the presence of

DNA damage, HPF1 directs PARP1 to modify target proteins

on serine residues within conserved motifs usually preceded

by lysine residues (KS motifs) [54,84,85] (figure 1). Notably,

most of the DNA damage-inducible ADPr is lost in the

absence of HPF1. Importantly, PARP1 can still modify itself

and other proteins on acidic residues in both DNA-damaged

and undamaged cells in the absence of HPF1 [85].

In addition to the modification of DNA repair proteins,

PARP1/HPF1-dependent Ser-ADPr targets include many

other proteins involved in the maintenance of the

genome stability. Indeed, in response to oxidative DNA

damage, Ser-ADPr has been found linked to RNA proces-

sing, chromatin modification, splicing, transcription

factors and mitotic proteins [84,86,87]. Interestingly,

Ser-ADPr often overlaps with phosphorylation sites on

proteins; such as Ser-ADPr of Ser10 on Histone H3, a

well-known mitotic marker [54,85,88]. Proteome-wide

studies have further expanded this observation, showing

that Ser-ADPr occupies serine phosphorylation sites of

many proteins that are also target of the mitotic regulators

Aurora A and Aurora B kinases [86]. In addition, Ser-ADPr

has been shown to compete with other PTMs by steric hin-

drance, in particular with modifications targeting the

histone tails [88,89].

4.1. Role of PARP1 in human diseases
Although PARP1 genetic alterations are not associated with

any known inherited disease, PARP1 is involved in the

pathogenesis of many human disorders. For instance,

depletion of NADþ induced by PARP1 over-activation as

well as excessive synthesis of PAR associates with ischaemia

reperfusion injury, myocardial infarction and neurodegenera-

tive disorders [90–94]. These disorders as well as many other

acute or chronic pathological processes share a common

pathogenic mechanism, which involves the production of

reactive oxygen (ROS) or nitrogen species (NOS) followed

by DNA damage and PARP1 activation. For instance,

PARP1 was found activated in myocardial sections of

patients with circulatory shock, with a degree of PARP

activation correlating with the degree of myocardial dysfunc-

tion. Similar observations were made in circulating leucocytes

in patients affected by myocardial infarction and therapeutic

revascularization [95–97]. Moreover, PARP1 activation was

shown in brain specimens of patients who died of stroke or

brain ischaemia attributable to cardiac arrest, as well as in

patients affected by brain trauma [98,99]. Finally, there is

evidence for a boost of PARylation mediated by PARP1 in

autoimmune (e.g. systemic lupus erythematosus) and

inflammatory diseases (e.g. colitis), as well as in human

atherosclerotic plaques, microvessels and lymphocytes of

type 2 diabetic patients [100–108].

This body of information suggests a central role for

PARP1 in human disorders. Indeed, the chemical modulation

of PARP1 can be proposed to ameliorate or treat many patho-

logical conditions, from cardiovascular, inflammatory and

autoimmune diseases to neurological disorders. We next

describe the role of PARP1 activation and the effects of its

inhibition in the pathogenesis of neurological disorders,

such as in a rare cerebellar ataxia caused by biallelic loss of

function mutations of XRCC1, Parkinson’s disease (PD),
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amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease

(AD) [94,109,110].

4.2. PARP1 in neurological disorders
The base excision repair (BER) X-ray repair cross-

complementing 1 (XRCC1) protein is a molecular scaffold

protein that is recruited by PAR and PARP1 on DNA

damage foci. The BRCT domain of XRCC1 mediates its recruit-

ment on DNA damage sites, and it is vital for the assembly

of DNA single-strand break repair (SSBR) protein factors

[111–115]. Importantly, several DNA-end processing enzymes

recruited by XRCC1 are mutated in human ataxias, such as the

spinocerebellar ataxia with axonal neuropathy-1 (SCAN1;

mutated in TDP1), ataxia oculomotor apraxia-1 (AOA1;

mutated in aprataxin) and ataxia oculomotor apraxia-4

(AOA4; mutated in PNKP) [116–121]. Furthermore, com-

pound heterozygous mutations in human XRCC1 gene were

shown to be responsible for ocular motor apraxia, axonal

neuropathy and progressive cerebellar ataxia [109]. Mechanis-

tically, in the presence of DNA damage, XRCC1 depletion

results in severe delays in DNA SSBR repair and hyper-

recombination phenotypes, which are accompanied by

PARP1 hyper-activation followed by elevated levels of nuclear

ADPr. The hyper-recombination as well as the cerebellar ataxia

phenotype in Xrcc1 knockout mice is rescued by Parp1 gene

deletion but not by enzymatic inhibition of PARP1. Thus,

preventing the binding of PARP1 to DNA but not its enzyma-

tic inhibition can be exploited for the therapeutic treatment

of clinical cerebellar ataxias associated with unrepaired

SSBs [109].

The genetic or enzymatic modulation of PARP1 has been

also proposed for other common neurodegenerative diseases,

such as PD, ALS and AD. These neurological disorders have

a common pathogenic mechanism, which is characterized by

aggregation of cytotoxic proteins, elevated levels of oxidative

stress followed by DNA damage, PARP1 activation and

excess of cellular levels of PAR.

In PD, intracellular monomeric a-synuclein assembles

into higher-ordered protein aggregates that can spread from

cell to cell [122]. Aggregates of a-synuclein activate nitric

oxide synthase followed by production of NOS, which in

turn cause DNA damage and activation of PARP1, and

nuclear production of PAR. In a pathogenic loop, PAR is

transported into the cytosol where it binds a-synuclein and

further accelerates fibrillization and misfolding of the cyto-

toxic protein. Accumulation of pathologic a-synuclein

ultimately leads to cell death via parthanatos and neuronal

dysfunction. Inhibition of PARP activity or Parp1 gene del-

etion fully mitigates neuron-to-neuron transmission of

pathologic a-synuclein and neurotoxicity; thus, PARP inhibi-

tors (PARPi) can be exploited as therapeutic intervention for

PD [110].

The liaison between protein aggregations, ROS formation,

DNA damage and PARP1 activation has been also largely

shown in AD. A peptide of 39–42 amino acids (Ab) is the

major component of protein aggregates present in AD

senile plaques. Ab is produced by the sequential proteolytic

processing of the amyloid precursor protein (APP) by b-

and g-secretases [123]. Genetic and/or environmental factors

are responsible for an imbalance between production and

clearance of A b, which in turn leads to Ab oligomerization

and production of higher-order soluble assemblies and
protofibrils and fibrils [123]. Through the impairment of the

mitochondrial electron transport and the interaction with

metal ions (Cu2þ, Zn2þ and Fe2þ), the aggregation of Ab leads

to ROS production and PARP1 activation [124–131]. The

chemical inhibition of PARP1 blocks the accumulation of PAR

and the morphological transformation in microglia-induced

Ab [130].

In ALS, the normally nuclear RNA/DNA-binding protein

TDP-43 redistributes in the cytoplasm of affected neurons

and glial cells, and forms phosphorylated protein aggregates

[132,133]. TDP-43 and other proteins mutated in ALS (e.g.

Ataxin-2) are a component of stress granules (SGs). SGs are

cytoplasmic membraneless structures composed of RNAs

and associated proteins structures, which form well cellular-

defined zones of stalled translation complexes in response to

a variety of environmental stresses that interfere with mRNA

translation [134,135]. Among the cellular stresses inducing

SGs there are heat shock, glucose deprivation, oxidative

stress and viral infection [136,137]. Importantly, several

PARPs and PAR itself have been shown to localize and regu-

late SGs formation; for instance, PARP1, Tankyrase-1 (also

known as PARP5a), PARP12, the two PARP13 splice variants

(PARP13.1 and PARP13.2) and PARP15 [138–142]. In ALS,

motor neurons in the spinal cord show high levels of nuclear

staining of PAR, suggesting massive PARP1 activation. In

turn, PARP1 activity facilitates the nuclear export and the cyto-

plasmic aggregation of TDP-43 by an unknown mechanism.

Indeed, the specific inhibition of PARP1 by Veliparib mitigates

the formation of stress-induced aggregates of TDP-43 in the

cytoplasm [141]. Altogether, these data suggest that PARP1

plays a central role in the formation of stress granules and,

therefore, in the pathogenesis of TDP-43-dependent ALS

[140,141]. Interestingly, other PARPs have a clear role in the

pathophysiology of TDP-43-associated ALS in addition to

PARP1; Drosophila melanogaster Tankyrase-1 and Tankyrase-2

(also known as PARP-5a and PARP-5b; refer to §6 for details)

regulate the specific cytoplasmic aggregation of TDP-43.

Importantly, contrary to PARP1, the inhibition of tankyrases

does not alter the overall formation of SGs [142]. Thus, the

differential impact of PARPs’ inhibition on formation of SGs

suggests that PARP1 is deputed to the overall control of SG

formation, while tankyrase activity is specifically required for

TDP-43 nuclear-SG translocation. Through a PAR-binding

motif in its N-terminal nuclear localization sequence, TDP-43

non-covalently binds PAR. The binding of TDP-43 to PAR

leads to liquid– liquid phase separation of protein, which

is required for its accumulation in stress granules. Down-

regulation of tankyrases and inhibition of PARP catalytic

activity by using small-molecules reduces the accumu-

lation of TDP-43 in the cytoplasm and potently mitigates

neurodegeneration [142].

Altogether, all studies summarized above uncover a

common role for PAR in the regulation of the subcellular re-

distribution of proteins in response to cellular stresses and,

eventually, in their cytosolic aggregation. Thus, the inhibition

of PARPs’ functions can be considered a therapeutic strategy

for neurological disorders that are characterized by PAR-

dependent protein aggregation. Inhibitors of PARP1 activity

possessing significant brain penetration are already commer-

cially available, such as Pamiparib (BeiGene/Merck Serono)

[10]. Nevertheless, new drugs may be required to specifi-

cally treat certain disorders that show different pathogenic

mechanisms (e.g. XRCC1-dependent ataxias) [109].
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4.3. PARP1 in inflammation-induced colorectal cancer
It is worth mentioning the contribution of PARP1 as well as

of other ADPr players (see §§7 and 8) to the pathogenesis of

inflammatory bowel disease. Colitis refers to inflammation

of the inner lining of the colon. There are numerous

causes of colitis including infection, ischaemia and allergic

reactions. The inflammatory bowel diseases, Crohn’s disease

(CD) and ulcerative colitis (UC), are chronic inflammatory

disorders of the gastrointestinal tract of unknown aetiology.

The diseases are thought to be the result of a dysregulated

mucosal immune response to commensal gut flora in

genetically susceptible individuals [143–147]. Importantly,

the association between long-standing and extensive colitis

and an increased risk of colorectal cancer (CRC) is well

established [148–150].

PARP1 plays crucial roles in both colon inflammation and

CRC. By using protocols of carcinogenesis in animal models,

it has been shown that PARP1 is required to protect against

DNA alkylation and oxidation damage during the initial

steps of CRC carcinogenesis. Consistent with this, PARP1-

deficient mice challenged with alkylating drugs show high

levels of DNA strand breaks compared with control animals,

thus, confirming that PARP1 works as a caretaker tumour

suppressor gene [151]. In addition, PARP1 promotes

tumour growth by supporting the focal inflammation

during the tumour progression. Indeed, PARP1-deficient

mice show an attenuated innate immune response. The

pro-inflammatory functions of PARP1 pass through the

modulation of NF-kB activity and following activation of

the IL6-STAT3-Cyclin D1 axis. Importantly, tissue microarray

analyses reveal that PARP1 is overexpressed in human

CRC and its expression levels correlate with disease

progression [151].
5. Macrodomain-containing PARPs
in human disease

Twelve macrodomain-containing proteins are encoded in the

human genome, including the previously mentioned hydro-

lase enzymes [3,42,68,69]. Three understudied PARP

members are equipped with a number of macrodomains in

addition to the PARP catalytic protein fold; thus, they are

named Macro-PARPs [3,11,68]. Macro-PARPs were originally

identified as members of a B-aggressive lymphoma protein

family, which includes PARP9 (B-aggressive lymphoma 1;

BAL1, also called ARTD9), PARP14 (BAL2, also called

ARTD8) and PARP15 (BAL3, also called ARTD7) [11].

PARP9 (BAL1) was identified in a genome-wide search

for risk-related genes in chemo-resistant diffuse large B-cell

lymphoma (DLBCL), the most common non-Hodgkin lym-

phoma. PARP9 is largely overexpressed in DLBCL and

promotes cell migration [11,12]. PARP9 is also overexpressed

in breast cancer [13]. At the molecular level, PARP9 plays

roles in DNA damage repair. In response to DNA damaging

agents, PARP9 localizes at the DNA damage foci via its

macrodomain, which drives PARP9 at the PARP1-generated

PAR foci. There, PARP9 interacts with the E3 ligase DTX3L

(also known as B lymphoma- and BAL-associated protein;

BBAP) and promotes DNA damage repair via the ubiquitina-

tion-dependent recruitment of BRCA1 (Breast Cancer Type 1

susceptibility protein), 53BP1 (p53-binding protein 1) and
RAP80 (receptor-associated protein 80) [152]. PARP9 activity

negatively regulates the function of PARP9/DTX3 L hetero-

dimer complex by transferring single units of ADP-ribose

specifically on the carboxyl terminal of glycine 76 of ubiquitin

molecules, thus interfering with the canonical protein ubiqui-

tylation system [153]. The oncogenic potential of PARP9 has

been described to be dependent on its transcriptional func-

tions, particularly required for IFNg-mediated host

inflammatory response. PARP9, whose expression is acti-

vated by IFNg, interacts with the IFNg receptor complex

and STAT1 acting as a transcriptional co-repressor of anti-

proliferative and pro-apoptotic genes, and as a co-activator

for the transcription of responsive proto-oncogenes, such as

IRF2 and B-cell CLL/lymphoma 6 (BCL6) [154,155].

PARP14 (BAL2) was initially identified as an interactor

and transcriptional collaborator for Signal Transducer and

Activator of Transcription 6 (STAT6) and, therefore, named

Co-activator of STAT6 (CoaSt6) [156]. PARP14 plays roles

mainly in transcription of interleukin-4 (IL4)-responsive

genes, which control cell survival, metabolism and prolifer-

ation [14]. Under non-stimulating conditions, PARP14 binds

the transcriptional repressors histone deacetylase 2

(HDAC2) and HDAC3 at IL4-responsive promoters [16].

Under IL4 stimulation, PARP14 ADP-ribosylates HDAC 2

and 3 leading to their dissociation and the recruitment of

transcriptional co-activators including the p100 cofactor,

which is also a substrate of PARP14 [16,157]. This process

leads to the transcription of IL4-responsive genes, which are

vital for both B and T cells. In B cells, PARP14-dependent

transcription of IL4-responsive genes transduces pro-survival

and anti-apoptotic signals [14]. In addition, by regulating the

binding of STAT6 to the Gata3 promoter, PARP14 and its

enzyme activity are required for differentiation of T cells

towards a T helper type-2 (Th2) lineage [158]. Th2 cells and

Th2 cytokines (e.g. IL4, 5 and 13) associate with the pro-

motion of IgE and eosinophilic responses and play a central

role in the response to allergens, therefore, Th2 are the

initiators of the allergic asthmatic condition [159]. Inhibition

of PARP14 attenuates allergic airway disease, and it has

been proposed as therapeutic strategy for asthma [158].

In addition to the transcriptional functions, PARP14 plays

crucial roles in the metabolic control of cancer cells. PARP14 is

indeed involved in the control of the cytokine-regulated gly-

colysis and glucose oxidation, thus, aiding the B-lymphoid

oncogenesis [160]. Studies on solid tumours, such as sarcoma

and hepatocarcinoma, further corroborate the link between

PARP14 and cellular metabolism. In sarcoma cancer cells,

PARP14 was shown to stabilize the glycolytic enzymes phos-

phoglucose isomerase (PGI) [15]. When secreted into the

extracellular environment, PGI acts as a cytokine eliciting

motogenic and differentiation cellular responses and, in

addition, facilitates angiogenesis, metastasis and vessel leaki-

ness [161–163]. In hepatocellular carcinoma, PARP14 inhibits

JNK1-dependent phosphorylation and activation of the pyru-

vate kinase M2 isoform (PKM2), thus, promoting the aerobic

glycolysis (Warburg effect) of cancer cells [17].

Lastly, PARP14 is involved in PARP10-dependent intra-

cellular signalling. PARP14 binds MARylated proteins with

high-affinity through its macrodomains. Among the ADPr

proteins, PARP14 binds very efficiently automodified

PARP10 and MARylated substrates of PARP10, such as the

small GTPase RAN and the component of the NF-kB signal

transduction pathway NEMO [164].
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6. Role of tankyrases in the pathogenesis
of cherubism

Tankyrase-1 and Tankyrase-2 are PARP enzymes character-

ized by large ankyrin repeating domains. Tankyrases play

roles in telomere length maintenance which is particularly

relevant for ageing, homologous recombination-mediated

DNA damage response, mitosis, pexophagy, and Wnt- and

Notch-mediated signal transduction [165–174].

Differently from other PARPs, tankyrases engage their

protein substrates through the ankyrin domains within

their protein sequence that bind very efficiently a well-

defined octapeptide consensus within protein substrates

[175]. The consensus for binding to tankyrase proteins

consists of arginine in position 1, small and hydrophobic

residue in position 4, aspartate in position 5, however,

glutamic acid, valine, glutamine, tyrosine, isoleucine and

cysteine are equally tolerated, and glycine in position 6

[175]. Protein–protein interaction is therefore the prerequisite

for tankyrase-dependent PARylation. A large number of bin-

ders/substrates of tankyrase proteins have been proposed

by interaction studies (608 proteins) [173,175]. Among

tankyrase-interacting proteins there are AXIN1/2, the telo-

meric-repeat binding factor-1 (TRF1), the insulin-responsive

amino-peptidase (IRAP), the 182-kDa tankyrase-binding

protein (TAB182), the nuclear mitotic apparatus protein-1

(NuMA1), 3BP2, Notch2, HectD1, NKD1 and NKD2,

the CBP80/CBP20-dependent translation initiation factor

(CTIF), BLZF1 (basic leucine zipper factor 1), CASC3

(cancer susceptibility factor 3), the component of the HIPPO

signalling pathways AMOT (Angiomotin) and PTEN,

although it is not clear whether the latter is a direct tankyr-

ase-binding protein or substrate [165,168,170,173,176–180].

Following the interaction and PARylation, a large portion

of tankyrase-binding proteins become targets of proteasome

degradation [175]. Indeed, tankyrase-mediated PARylation

of protein substrates acts as a scaffold for recruitment of the

PAR binding motif-containing protein RNF146, an E3 ubiqui-

tin ligase. Thus, RNF146 binds tankyrases’ PARylated

substrates and ubiquitinates them, leading to their protea-

some degradation. The liaison between tankyrase-mediated

ADPr and proteasome degradation was initially observed in

the regulation of the proliferative WNT pathway in CRC

cells through the modification and following degradation of

AXIN1/2, then expanded to many other cellular processes

regulated by tankyrase substrates [10,170,181]. Thereby, the

interest in targeting tankyrase proteins for the pharmacologi-

cal modulation of pathological conditions has increased in

recent times. In particular, the involvement of tankyrases in

Wnt signalling (related to tumourigenesis) and glucose

homeostasis (related to diabetes) promises advances for

targeting tankyrases for therapeutic interventions, as demon-

strated by the pre-clinical experimentation of tankyrase

inhibitors for treatment of CRC [10,170,181–186]. In addition,

the chemical inhibition of tankyrase proteins has been

proposed for treatment of brain injuries of the newborn.

Indeed, tankyrase small inhibitors stabilize Axin2 levels in

oligodendrocyte progenitor cells from brain and spinal

cord, thus accelerating differentiation and myelination after

hypoxic and demyelinating injury [187].

Dysregulation of tankyrase-mediated binding and degra-

dation of protein substrates has been recognized as the
pathogenic mechanism of cherubism, a dominantly inherited

human disorder. Cherubism is a bone inflammatory destruc-

tive disease characterized by deformities of the facial bones

[188]. Cherubism is caused by single missense mutations in

Sh3bp2, the gene that encodes the adaptor protein 3BP2

[189]. Most 3BP2 mutations associated with cherubism cluster

within the peptide sequence RSPPDG, such as R413Q,

P416H, or G418R mutations, which serve as a tankyrase-

interacting motif. Similar to all known targets of tankyrase,

PARylation of 3BP2 leads to its proteasome degradation,

which is required for controlling 3BP2 protein levels within

the cells. In cherubism, 3BP2 mutations in the RSPPDG hex-

apeptide impair tankyrase-mediated protein degradation,

which in turn translates into elevated steady-state protein

levels of 3BP2 in primary cells deputed to maintain the

bone homeostasis, namely osteoclasts. As a result of this dys-

regulation, the signalling pathway including SRC, SYK and

VAV proteins is up-regulated leading to uncontrolled acti-

vation of osteoclasts’ functions and peculiar interosseous

fibrocystic lesions in cherubism-affected patients [175,190].
7. Role of ADP-ribosyl hydrolases in human
disease

7.1. Macrod1 and MacroD2
MacroD1 and MacroD2 are related mono(ADP-ribosyl)

hydrolases belonging to a subfamily of proteins present in

both eukaryotes and prokaryotes [191]. MacroD1 and D2

contain nearly identical catalytic macrodomains that, by

using substrate-assisted catalysis, hydrolyse the ester bond

joining the ADP-ribose to the acidic residues of acceptor

proteins or cleaving OADPR [74,192]. However, MacroD1

and D2 cannot hydrolyse the O-glycosidic bond of Ser-ADPr

[66] (figure 1).

MacroD1 (also named Leukaemia-Related Protein 16;

LRP16) contains a leading sequence localizing the protein

at the mitochondria; nevertheless, its roles in transcription

as a cofactor for androgen and oestrogen receptors and

in NF-kB signal transduction cascade have been largely

established [193–196].

MacroD1 appears overexpressed in several human

cancers (such as endometrial carcinoma, gastric carcinoma,

CRC and breast carcinoma) and its expression levels correlate

with poor prognostic outcomes [25–30]. It is worth mention-

ing that the oncogenic potential of MacroD1 in CRC depends

on its ability to activate the pro-survival NF-kB-dependent

signalling in the presence of DNA damage. When stimulated

by DNA-damaging agents, MacroD1 enriches in the cytosol

of CRC cells where it interacts with double-stranded

RNA-dependent kinase (PKR), thus facilitating the kinase

activation, and promoting the binding with IKKb. The for-

mation of MacroD1/PKR/IKKb ternary complex triggers

the activation of anti-apoptotic signals mediated by NF-kB.

Importantly, a screening of molecules targeting MacroD1

macrodomain led to the identification of a small molecule

(MRS2578) that, both in vitro and in vivo, abrogates

MacroD1- and NF-kB-dependent pro-survival signals

synergistically with DNA-damaging chemotherapies [28].

The other member of the MacroD subfamily, MacroD2, also

shows connections with the NF-kB pathway. MacroD2 was

shown to play a central role in reverting PARP10-dependent
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MARylation of protein substrates, as in the case of GSK3b

kinase, a kinase involved in the WNT pathway. Additionally,

MacroD2 may revert PARP10-dependent MARylation of

NEMO (NF-kB essential modulator), modification of which

results in reduced NEMO polyubiquitylation and decreased

NF-kB signalling [68,75,197,198].

In disease, MacroD2 shows association with neurological

disorders, such as autism and kabuki syndrome (KS), as well

as cancer.

Autism is a heterogeneous neurodevelopmental disorder

defined by deficits in language and social behaviour, as well

as patterns of repetitive behaviours of high heritability

[199,200]. However, a simpler genetic basis for autistic or autis-

tic-like traits is recognizable in around 5% of autism

individuals with diseases [201]. Single-nucleotide polymorph-

isms (SNPs) associated with autism are found in few candidate

genes, among them the MacroD2 gene [31–33]. kabuki (or Nii-

kawa-Kuroki) syndrome is a genetically heterogeneous

dominant mental retardation with a described autosomal

transmission. It is characterized by postnatal growth retar-

dation, typical facial defects, fetal pads, cleft palate and

major malformations of the heart, kidneys and vertebra [202].

A mutation screening revealed a 250 kilobase de novo micro-

deletion at 20p12.1, which hits intron 5 of MACROD2 gene

and associates in one patient with kabuki syndrome [34]. An

intron 5 deletion of the MACROD2 gene was also reported in

a patient displaying a kabuki-like phenotype [35]. It is worth

mentioning that the association between an intron deletion of

MACROD2 gene and kabuki syndrome is reported in a small

number of clinical cases. Thus, more research is needed to

clarify the specific link between MACROD2 and KS [203].

Genome-wide DNA copy-number analyses across human can-

cers have indeed revealed that common focal deletions of

MACROD2 genomic locus happen in multiple malignancies,

such as in stomach adenocarcinoma, cervical squamous

cell carcinoma and endocervical adenocarcinoma, esophageal

carcinoma, uterine corpus endometrial carcinoma, uterine carci-

nosarcoma, lung adenocarcinoma, liver hepatocellular

carcinoma and thyroid carcinoma [36,37]. Importantly, some

MACROD2 somatic mutations are found in CRC. Loss of vari-

able size of the genomic locus containing MACROD2 as well as

missense mutations is quite frequent in CRC. Importantly,

some MACROD2 somatic mutations observed in cancer are pre-

dicted to interfere with binding of ADP-ribose to the catalytic

pocket of MacroD2, therefore leading to increased sensitivity to

genotoxic stress, and chromosomal instability in CRC [38].

7.2. Terminal ADP-ribose glycosylhydrolase 1 (TARG1)
TARG1 (c6orf130) is a macrodomain-containing protein

with similar substrate specificities as seen for MacroD1

and MacroD2—it can cleave glutamate-linked protein

ADPr, OADPR and phosphate-linked ADPr on nucleic

acids [73,75,204,205] (figure 1). Nevertheless, the macro-

domain of TARG1 is very diverged from those in PARG

and both MacroD1 and MacroD2 proteins, and adopts a

distinct catalytic mechanism [39].

A distinct homozygous sequence variant of the TARG1
gene was found in a family with a number of members

affected by a severe and progressive neurodegeneration and

seizure disorders. The sequence variant associated with

disease is characterized by a premature stop codon within

the exon 4 of TARG1 locus and predicts the formation of a
truncated and not functional TARG1 enzyme. Importantly,

TARG1 knockdown in human cells leads to significant

proliferation defects and sensitivity to DNA damage [39].

Interestingly, the phenotype of TARG1-mutated patients

somewhat resembles a clinical case described in the early

1980s of an 8-year-old male who died after a 6-year course

of progressive neurologic degeneration and renal failure. Bio-

chemical studies performed on bioptic specimens obtained

from this patient showed the lysosomal accumulation of glu-

tamyl ribose 5-phosphate (a glutamate amino acid linked to a

phosphoribose group), which was proposed to arise from the

inability to cleave the glutamate-linked ADPr on proteins.

However, the identity of the deficient gene remained uncov-

ered [206,207]. The accumulation of peptides linked to a

phosphoribose group (phosphoribosylated peptides) suggests

the presence of alternative hydrolytic mechanisms in cells that

allow cleavage of the phosphodiester bond within MAR or

PAR attached to a protein. Such pathways could intervene

both under physiological and pathological conditions; for

instance, when not functional hydrolytic enzymes (e.g. in the

case of TARG1) lead to an excess and toxic accumulation of

MARylated and PARylated proteins. Interestingly, specific

members of two unrelated classes of phosphodiesterases

were shown to possess ability to produce protein phosphori-

bosylation in vitro, the nucleoside diphosphates linked to X

(any moiety) (NUDIX) and ectonucleotide pyrophosphatase/

phosphodiesterase (ENPP) [208–210].

7.3. Poly(ADP-ribosyl)glycohydrolase (PARG)
PARG contains a highly diverged macrodomain fold and its

structure has been extensively studied [73,211–214]. Dis-

tinctly from TARG1, MacroD1 and MacroD2, PARG has an

insertion of a unique catalytic loop in the conserved globular

macrodomain fold, which contains the catalytic residues and

is essential for degradation of PAR chains. PARG preferably

binds PAR at the chain termini and sequentially degrades

ADP-ribose units (exo-glycohydrolase activity; figure 1).

The endo-glycohydrolytic cleavage of PAR chains is also cat-

alysed by PARG, but this activity is less efficient

[213,215,216]. Yet PARG endo-glycohydrolase activity may

become significant in the presence of excessive PAR pro-

duction, for instance in cells or tissues exposed to abundant

oxidative stress as observed in neurological disorders

caused by aggregation of cytotoxic proteins (e.g. in PD)

[110]. Indeed, the release of free long PAR fragments was

shown to trigger apoptotic signalling [217].

Although genetic mutations have not been directly linked

to human diseases, PARG cellular functions may significantly

contribute to the pathogenesis of hereditary and acquired dis-

orders. Contrary to PARP1 inhibition or deletion, which is

not lethal for cells and mice (although it increases radiosensi-

tivity), PARG knockout results in embryonic lethality in

mouse model as a result of PAR accumulation and cellular

apoptosis. However, Parg null mouse trophoblast-derived

stem cells can be successfully cultivated in the presence of

PARP inhibitors, suggesting that PARP1 inactivation can

rescue PARG deletion [218]. Similarly, Parg null Drosophila
melanogaster flies die at the embryonic stage; however,

when grown at a permissive temperature, survival is

increased. The surviving flies display PAR accumulation,

neurodegeneration, reduced locomotion and premature

death [219]. In line with data obtained in the D. melanogaster
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model, depletion of nuclear PARG isoforms in mice results in

PAR accumulation in the brain [220]. Altogether, the body of

information provided by PARG-deficient models further sup-

ports the essential role of PAR in the regulation of cellular

homeostasis, especially in neuronal cells.

PARG functions have also been linked with the pathogen-

esis of inflammatory and neoplastic disorders. As for PARP1,

a murine experimental model of colitis shows the contri-

bution of PARG in sustaining the inflammatory response in

the colon. Mice harbouring a deletion of the 110-kDa isoform

of PARG protein, which are viable and fertile, are resistant

to colon injury when challenged by dinitrobenzene sulfonic

acid (DNBS) and show an attenuated inflammatory

response [221].

According to experimental models of colitis, the serum

titre of antibodies against PARG is a marker of mucosal

damage caused by refractory ulcerative colitis [222].

Database analysis of sequencing data from The Cancer

Genome Atlas (TCGA) revealed that PARG is overexpressed

in many tumour types, in particular in breast tumour tissues,

where it appears to be approximately fivefold more expressed

than in normal epithelium. Approximately 15% of all inva-

sive ductal breast tumours showed elevated PARG mRNA

level, with the frequency reaching the 20% in HER2-positive

and triple-negative subtypes. Thus, PARG levels are associ-

ated with a poor prognosis in breast cancers. Depletion of

PARG significantly impairs the growth and metastasis of

triple-negative breast tumours, in both in vitro and in vivo
models, thus highlighting the therapeutic potential of

PARG inhibition in breast cancer [223]. Importantly, the inhi-

bition of PARG has already been proposed as a therapeutic

treatment of human cancers [10,224]. This would be particu-

larly appropriate for the treatment of aggressive breast

cancers. It is worth mentioning that PARG inactivation

often occurs as a resistance mechanism to PARP inhibitors

in human serous ovarian and triple-negative breast cancers.

Indeed, the genetic loss of PARG restores PAR formation

and partially rescues PARP1 signalling [225].

7.4. ADP-ribosyl-acceptor hydrolase 1 (ARH1)
ARH1 is a cytosolic and ubiquitously expressed protein.

Although the structure and mechanism are highly similar to

ARH3 [63], ARH1 possesses a robust mono-ADP-ribosyl

hydrolytic activity towards N-glycosidic bonds of arginine-

modified proteins, and no activity against Ser-ADPr

[48,62,63,226,227] (figure 1). By using both in vitro and in vivo
models, it was shown that ARH1 plays a role in tumour genesis

and progression. Indeed, Arh1-deficient mice spontaneously

develop multiple malignancies, including lymphoma, hepato-

cellular carcinoma and hemangio-/rhabdomyosarcoma [228].

Studies performed in Arh1 heterozygous mice and in nude

mice injected with Arh1-null MEFs showed the loss of hetero-

zygosity (LOH) of the remaining Arh1 allele or loss of Arh1
gene activity due to spontaneous mutagenesis. Genome

sequencing of mice revealed that Arh1 gene mutations were

located in exons encoding the catalytic site. Analysis of

human cancer COSMIC database revealed 32 ARH1 mutations

found in human lung, breast and colon cancers; 70% of those

mutations were missense mutations with single-base substi-

tution, which surprisingly overlap with the mutations that

spontaneously generate in Arh1 heterozygous mice [21].

Among those mutations, the D56N hits one of the two
conserved aspartates (positions 60 and 61 in mouse Arh1)

that are required for Mg2þ coordination and hydrolase activity

[63,229].

7.5. ADP-ribosyl-acceptor hydrolase 3 (ARH3)
ARH3 was initially identified as a back-up PAR-degrading

enzyme. Similar to PARG, ARH3 primarily cleaves the

chains as exo-glycohydrolase, however, its specific activity

against long PAR chains is nearly two levels of magnitude

lower than for PARG [62,63,66,230]. Later on, ARH3 was

shown to be the main hydrolase responsible for cleaving

the ADPr from modified serine residues [66,231] (figure 1).

The catalytic fold of ARH3 is completely different compared

with PARG, which is instead a macrodomain-containing

protein. In turn, the structural divergence reflects in a differ-

ent conformation of ADP-ribose within the catalytic pocket as

well as in a different catalytic mechanism [63,232–234]. As

for ARH1, the presence of conserved aspartates (D77 and

D78 in human ARH3), are essential for coordination of

Mg2þ within ARH hydrolase [229].

At the cellular level, most of the ARH3 is found in cyto-

plasm, nucleus and mitochondria. The mitochondrial

localization of ARH3 is determined by the presence of a mito-

chondrial-targeting sequence at the N-terminus, which

suggests a role for ARH3 for ADPr degradation in mitochon-

dria [230,235]. Nevertheless, all the ARH3 cellular functions

described so far seem to converge on safeguarding genome

stability. As discussed above, Ser-ADPr is the most abundant

type of ADPr modification in response to genotoxic stress

and it can be reversed only by ARH3, as far as we know.

ARH3 is indeed able to cleave the terminal O-glycosidic

bond joining the ADP-ribose and the serine of modified

protein substrates [66,85]. ARH3 was also shown to act on

free oligomers of PAR in cells released upon PARG endogly-

cohydrolase activity [236,237]. By doing so, ARH3 may

control a mechanism of PARP1/PAR/AIF-mediated cell

death (also known as Parthanatos) [236]. Altogether these

data support the hypothesis that ARH3 could be involved

in the pathogenesis of human disorders characterized by

the cytotoxic and pro-apoptotic accumulation of PAR, such

as in neurological disorders (e.g. in PD and AD).

Importantly, autosomal-recessive inherited genetic

variants of ARH3 are directly linked with neurodegenerative

disorders. Two independent studies have described 28 indi-

viduals belonging to fourteen families, which associate

recessive and inactivating ARH3 gene mutations with paedia-

tric-onset neurodegenerative disorder characterized by brain

atrophy, developmental delay or regression, seizures, infec-

tion-associated episodes of ataxia, and axonal sensori-motor

neuropathy [22,23]. It should be noted that most of the

detected truncations/mutations predictably affect protein

stability. As expected, ARH3 deficiencies associate with the

accumulation of cellular ADPr, which drastically affects cell

viability. Both the cellular accumulation of ADPr and the fol-

lowing cell death are prevented by treatment with PARP

inhibitors [22,23]. Thus, these results propose once

again the inhibition of PARP1 as a therapeutic strategy for

the treatment of neurodegenerative diseases.

It is worth mentioning that, although all ARH3 patients

show overall overlapping clinical features, both studies

have not established an obvious genotype–phenotype corre-

lation, for instance, regarding the onset and additional
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complications of the disorder. This observation suggests that

additional factors, such as the genetic background or the

exposure to environmental challenges, may contribute to

the phenotypic variability among individuals. Considering

the crucial roles of ARH3 in response to cellular stresses

(e.g. oxidative and DNA damage insults), the exposure to

stress conditions may be particularly important to anticipate

the onset or worsen the neurodegenerative traits of disease.
 .org/journal/rsob
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8. Additional macrodomain-containing
proteins in human disease

8.1. GDAP2 (MacroD3)
GDAP2 gene (found in metazoans and plants) encodes an

uncharacterized additional macrodomain-containing protein,

which has been recently linked to a human hereditary

disorder characterized by ataxia, progressive spasticity and

dementia [24]. Although GDAP2 macrodomain is similar to

the one of MacroD1/2 proteins, it does not seem to bind

derivatives of ADP-ribose, but instead, it appears to possess

some affinity for poly(A) [69,72]. Yet the pathogenic

mechanisms underlying GDAP2 deficiency remain unclear.

8.2. ALC1 (CHD1L)
The human ALC1 (amplified in liver cancer 1; also known as

CHD1L (chromodomain-helicase-DNA-binding protein 1-

like) gene encodes a member of the SNF2 (sucrose non-fer-

menter 2) superfamily of ATPases. Among SNF2 family

members, ALC1 is unique because it includes a macrodomain

that is capable of binding PAR. The binding of ALC1 to acti-

vated and PARylated PARP1 is crucial, but not sufficient, for

DNA-dependent ATPase and ATP-dependent nucleosome

remodelling activities [238–243].

ALC1 was originally identified as a gene amplified in

hepatocellular carcinomas [18]. Overexpression of the ALC1

protein was found to transform human cells and to be onco-

genic in mice [18,244,245]. A role for the oncogene ALC1 has

also been demonstrated in breast and CRC [19,20].

In addition, gene mutations in human ALC1 were found

in patients affected by congenital anomalies of the kidney

and urinary tract [246].
9. ADPr and infectious disease
From the perspective of human pathologies bacterial ADPr

systems can roughly be divided into two groups: the secreted

exotoxins, which participate directly in promoting bacterial

infection and associated symptoms; and those that have an

internal role in bacterial stress-response. The latter potentially

have major functions in persistence and have been proposed

as potential therapeutic targets.

The exotoxins group encompasses a variety of bacterial

ADP-ribosyl transferase toxins (bARTTs). MARylation of

eukaryotic targets by bARTT is usually irreversible and

aims at nucleotide-binding proteins, prevalently GTP- and,

in some cases, ATP-binding proteins [44]. Interestingly, the

deficiency of human ARH1 hydrolase leads to an increased

sensitivity to cholera toxin, suggesting that bacterial ADPr

can be reversed by the host hydrolases [65].
As outlined in §2 of this review, two subfamilies of

bARTTs can be distinguished based on their structure and

target proteins: diphtheria-like and cholera-like toxins, the

latter encompassing an additional two subgroups, C2-like

binary and C3-like toxins.

Diphtheria toxin ADP-ribosylates the eukaryotic

elongation factor 2 (EF2), a GTP-binding protein essential

for protein synthesis in the cell. The modification halts the

entire protein synthesis and, in turn, leads to cell death [44].

The same mechanism of action is shared by the Exotoxin A

from Pseudomonas aeruginosa, a ubiquitous multidrug-resistant

pathogen [247].

Cholera and cholera-toxin-like proteins (e.g. the heat-

labile enterotoxin from Escherichia coli and the pertussis

toxin from Bordetella pertussis) transfer ADP-ribose onto het-

erotrimeric G proteins. The modification locks the subunit a

of G proteins in a GTP-bound state, which constitutively

stimulates host adenylate cyclase. In the case of cholera and

enterotoxin, constitutive activation of G proteins results in

opening and efflux of the chloride ions together with water

[44]. Pertussis toxin acts towards virtually all mammalian

cell types and has a broad array of effects on host cell activi-

ties [248]. ADP-ribosyl transferase subunit of typhoid toxin

from Salmonella typhi (exclusively human pathogen) is struc-

turally similar to pertussis toxin; however, the pathogenic

mechanisms as well as the proteins substrate(s) of this toxin

remain unknown [249].

The C2-like toxins from Clostridium sp. [44,250] and the

newly characterized SpvB from Salmonella sp. [251] are

examples of toxins ADP-ribosylating non-polymerized form

of actin. The MARylated G-actin, upon incorporation into

filaments, inhibits further integrations resulting in serious

impairments of cellular cytoskeleton.

The C3-like toxins expressed by Clostridium botulinum,

Bacillus cereus, Staphylococcus aureus and others target small

Rho GTPase enzymes, which modulate actin polymerization.

The MARylation of Rho GTPase alters the interaction with

protein partners, thus locking themselves in a deactivated

state. The consequences are similar to that of the C2-like

toxins—the disintegration of the cytoskeleton. The recently

described SpyA from Streptococcus pyogenes targets

another cytoskeletal protein-vimentin, and actin to a lesser

degree [252].

In addition, a very intriguing class of bARTTs has been

described in Legionella pneumophila. The Legionella protein

SdeA modifies ubiquitin molecules of the host by transferring

ADPr on arginine 42, thus impairing the physiological ubi-

quitination processes. Through a process of phosphoribosyl-

ubiquitination, MARylated ubiquitin is in turn transferred

onto serine residues of protein substrates, therefore modulat-

ing the endogenous functions of modified proteins, such as

Rab33 [253–255]. This ADPr system is reversible, as it can

be counteracted by another bacterial protein, SidJ, acting as

a hydrolase [256].

One of the best-studied stress-response systems in bac-

teria is the toxin-antitoxin (TA) module. There are more

than 1000 TA modules known [257]. Among them, the only

known module to exploit the ADPr system is the DarT/

DarG module, which is found in various bacteria, including

the global pathogen Mycobacterium tuberculosis [258]. DarT

is an ART able to MARylate the single-stranded DNA on

specific thymidine residues, which impairs cellular processes

essential for bacterial growth and activates SOS response. The
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macrodomain protein DarG, which hydrolyses the ADP-ribo-

sylated DNA, counteracts DarT activity [258].

Another example of ADPr system in bacterial stress

response is operated by sirtuins. While the mammalian

sirtuins seem to act primarily as NAD-dependent deacety-

lases, a diverged class of sirtuins present in pathogenic

bacteria and fungi (called SirTMs) exhibits a robust protein

ADPr activity that is regulated by another protein

modification: lipoylation. This mechanism was shown to

modulate the microbial oxidative stress response [259].
rnal/rsob
Open
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10. ADPr in viral infections
Viruses from the Coronaviridae, Togaviridae and Hepeviridae
families all contain genes encoding macrodomain-containing

proteins, suggesting a role for ADPr during infection diseases

[260–265]. Notably, several human PARPs have been shown

to be activated and function in the host antiviral response. For

instance, PARPs 9, 12, 13 and 14 are among the 62 Interferon-

stimulated genes and overexpression of PARPs 7, 10 or 12

inhibits alphavirus replication [266]. In addition, PARPs 5a,

12, 13, 14 and 15 localize at the stress granules, well-known

cytoplasmic structures with antiviral functions; interestingly,

the integrity of stress granules is inhibited by the alphaviral

macrodomain-containing nsP3 [138,267]. Thus, it appears

that ADPr is required for a proper host antiviral response

and that viruses have evolved systems (mainly consisting of

macrodomain-containing proteins) able to modulate defen-

sive host ADPr systems. Not surprisingly, PARPs 4, 9, 13,
14 and 15 show a rapid evolution as a result of a strong recur-

rent positive selection in the attempt to escape the

modulation operated by viral proteins [268,269].
11. Concluding remarks
Numerous pioneering findings have shown the impact of

ADPr on many vital cellular processes, the dysregulation of

which is known to lead to human disorders. Many genes

involved in ADPr are now known to be mutated or dysregu-

lated in various acquired and hereditary diseases, such as

neurological disorders and cancer. By contrast, the pharma-

cological modulation of ADPr by small-molecule inhibitors

can be a potent tool to treat human diseases. Research

within the ADPr field has been progressing particularly fast

in recent years, and it is hoped that this will provide new

avenues for the therapeutic interventions.
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2014 Distribution of protein poly(ADP-ribosyl)ation
systems across all domains of life. DNA Repair
(Amst). 23, 4 – 16. (doi:10.1016/j.dnarep.2014.
05.003)

192. Chen D et al. 2011 Identification of macrodomain
proteins as novel O-acetyl-ADP-ribose deacetylases.
J. Biol. Chem. 286, 13 261 – 13 271. (doi:10.1074/
jbc.M110.206771)

193. Yang J, Zhao YL, Wu ZQ, Si YL, Meng YG, Fu XB, Mu
YM, Han WD. 2009 The single-macro domain
protein LRP16 is an essential cofactor of androgen
receptor. Endocr. Relat. Cancer 16, 139 – 153.
(doi:10.1677/ERC-08-0150)

194. Wu Z et al. 2015 An LRP16-containing preassembly
complex contributes to NF-kB activation induced by
DNA double-strand breaks. Nucleic Acids Res. 43,
3167 – 3179. (doi:10.1093/nar/gkv161)

195. Wu Z et al. 2011 LRP16 integrates into NF-kB
transcriptional complex and is required for its
functional activation. PLoS ONE 6, e18157. (doi:10.
1371/journal.pone.0018157)

196. Agnew T, Munnur D, Crawford K, Palazzo L,
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