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Abstract: The aortic root has long been considered an inert unidirectional conduit between the left
ventricle and the ascending aorta. In the classical definition, the aortic valve leaflets (similar to what
is perceived for the atrioventricular valves) have also been considered inactive structures, and their
motion was thought to be entirely passive—just driven by the fluctuations of ventricular–aortic
gradients. It was not until the advent of aortic valve–sparing surgery and of transcatheter aortic
valve implantation that the interest on the anatomy of the aortic root again took momentum. These
new procedures require a systematic and thorough analysis of the fine anatomical details of the
components of the so-called aortic valve apparatus. Although holding and dissecting cadaveric heart
specimens remains an excellent method to appreciate the complex “three-dimensional” nature of the
aortic root, nowadays, echocardiography, computed tomography, and cardiac magnetic resonance
provide excellent images of cardiac anatomy both in two- and three-dimensional format. Indeed,
modern imaging techniques depict the aortic root as it is properly situated within the thorax in an
attitudinally correct cardiac orientation, showing a sort of “dynamic anatomy”, which admirably
joins structure and function. Finally, they are extensively used before, during, and after percutaneous
structural heart disease interventions. This review focuses on the anatomy of the aortic root as
revealed by non-invasive imaging techniques.

Keywords: aortic root; echocardiography; computed tomography (CT); cardiac magnetic resonance
(CMR)

1. Introduction

Cardiac anatomy is usually taught to medical students on the basis of examination
of the cadaveric heart specimens. Indeed, holding and dissecting a human heart remains
an excellent method to appreciate the complex “three-dimensional” anatomy of the heart.
However, it must be recognized that cardiac anatomy is, “per se”, extremely complex and
not always does it become part of the student’s cultural background, especially when it is
learned in the first years of medical school as a small part of the body’s anatomy. In addition,
anatomical exploration is done in the flaccid, cadaveric heart. Today, echocardiography,
computed tomography (CT), and cardiac magnetic resonance (CMR) provide excellent
images of cardiac anatomy both in two- and three-dimensional format. Although these
techniques are mainly used to discover pathological features, they also offer exceptional
images of normal cardiac anatomy. For many aspects, these techniques can be considered
nowadays as a kind of novel “anatomical gold standard” for the following reasons: First,
differently from explanted hearts, these techniques depict the cardiac anatomy as it is
properly situated within the thorax in an attitudinally correct cardiac orientation. Second,
they have the unique ability to show “live” images from the beating heart, a sort of
“dynamic anatomy”, which admirably joins structure and function. Third, the rapid
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progression of percutaneous structural heart disease interventions highlights the need to
revisit cardiac anatomy using a multimodality approach. These non-invasive techniques
have reached an optimal agreement with anatomy. Indeed, their accuracy in providing fine
anatomic details has been verified in several studies by comparing side-by-side anatomic
specimens and non-invasive images [1–9]. This review focuses on the anatomy of the aortic
root as revealed by non-invasive imaging techniques.

2. Aortic Root

The fine details of the “aortic root complex” have been often overlooked by the cardi-
ology community. Two main reasons explain this sort of “disinterestedness” towards this
complex structure: (a) for a long time, the aortic root has been considered a simple and inert
unidirectional conduit between the left ventricle (LV) and the ascending aorta; (b) because
aortic leaflets do not have an extensive attachment with the ventricular myocardium, their
motion was thought to be entirely passive—just driven by fluctuations of LV–AO gradients.
The advent of aortic valve–sparing surgery and transcatheter aortic valve implantation
(TAVI) techniques renewed the interest on the anatomy of the aortic root, since both pro-
cedures require a systematic and thorough analysis of the fine anatomical details of the
components of this valve apparatus [10,11].

3. Terminology

There is a remarkable variability in the terms used to describe the aortic root compo-
nents. Table 1 clarifies the terminology for everyday use.

Table 1. Terms used to describe the aortic root components.

Name Meaning

Ventricular–arterial
junction

The term ventricular–arterial junction describes the border
between the ventricular myocardium and the fibroelastic
structure of the aortic root. Contrary to the right AV
junction, where the pulmonary root is entirely supported by
the muscular infundibulum, only the left and the right
coronary sinuses are partially supported by the
myocardium (see text), being the remaining extent of the
aortic root supported by fibrous tissue (MS = membranous
septum; see text and references [12,13]).
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root. When seen in closed position from the ventricular
perspective, this component is similar to the surface of a
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structure of the valve (i.e., unicuspidal, bicuspid, and
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Table 1. Cont.

Name Meaning

Commissures
In the anatomy of the aortic root this term refers to the most
distal area where the insertions of the leaflets on the aortic
wall join each other.
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The aortic root is a highly sophisticated and complex apparatus, which has been
forged by millions of years of evolution to function properly for a lifetime in the most
challenging physical environment. The functions of the aortic root are described in Table 2.
Preserving leaflet integrity is probably the most relevant function of the aortic root. It
must be said that leaflets are living structures subjected to a natural biological turnover.
Their structural micro-architecture is continuously renovated, and the micro-injuries are
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self-repaired. Nevertheless, leaflet integrity and durability are highly dependent on the
stress applied to the tissue during the closure and opening phases. The aortic root provides
an extraordinary “low-stress environment” that favors leaflet durability [14–16].

Table 2. Functions of the aortic root.

Functions of Aortic Root

Allowing the transit of a significant amount of blood with a minimum gradient between the left
ventricle and the aorta

nsuring a wide flow variation (up to 5 times)

Preventing significant back flow, having, at the same time, a robust structural integrity to
withstand the aortic pressure

Enabling an optimal coronary perfusion

Preserving leaflet integrity

3.2. Aortic Root and Surrounding Structures

The AO is the cardiac “centerpiece” partially wedged between the atrioventricular
orifices. (Figure 1A). Viewed from an antero-posterior plane, the aortic root is positioned
to the right and posterior in respect to the right ventricular outflow tract (RVOT). The
angle between the aortic root and the RVOT is approximately 40–60◦ (Figure 1B), while
the line joining the nadir of the aortic sinuses lies in a plane that is tilted on its left of
30◦ in respect to the horizontal line. As a consequence, the left coronary sinus and its
leaflet are at the highest position among the three sinuses (Figure 1C). On its right lateral
aspect, the aortic root is surrounded by the right atrial appendage (Figure 1D), while
posteriorly a space, called “sinus transversum”, separates the AO from the left atrial
cavities. Adipose tissue is located at both the aortic and atrial side of the sinus (Figure 1E).
The close proximity of the non-coronary sinus to the fossa ovalis (FO) is well known to
interventionalists. Indeed, puncturing the FO or implanting a device for a patent foramen
ovalis or secundum atrial septal defect closure may injure the aortic wall, especially if the
aortic root is enlarged [17] (Figure 1F). In conclusion, the AO comes into contact with the
right atrium, left atrium, interatrial septum, RVOT, mitral valve (aorto–mitral continuity),
pulmonary valve, tricuspid valve, and conduction system (see below).

3.3. The Components of the Aortic Root

The aortic root is composed of five key components: the ventricular–arterial junction
(VAJ), the crown-shaped hinge of the semilunar leaflets (also called annulus), the leaflets,
the sinuses, and the sinutubular junction (STJ).

3.3.1. The Ventricular–Arterial Junction (VAJ)

The VAJ refers to an area where the left ventricular outflow tract (LVOT) joins the
fibro-elastic wall of the AO. Differently from the right VAJ, which is entirely muscular, the
left VAJ is in part muscular and in part fibrous.

3.3.2. The Muscular Component of VAJ

The muscular tissue of VAJ represents nearly 45% of the entire VAJ. Interestingly,
there is not an abrupt transition line between the ventricular myocardium and the aortic
sinuses, on the contrary, the muscular component of the LVOT irregularly extends a few
millimeters above the hinge lines of the right coronary leaflet (RCL) and the anterior
part of left coronary leaflet (LCL) [18]. The hinge lines of the posterior part of the LCL
and the non-coronary leaflet (NCL) are lacking myocardial fibers being in continuity
with the anterior mitral leaflet and membranous septum. Hasdemir et al. [18] studied
95 human hearts, analyzing longitudinal strips of tissue containing each cusp, aortic,
and pulmonary artery walls and left and right ventricular outflow tract. They found
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muscular fibers in 7 out of 95 aortic strips (7%) in continuity with the underlying LVOT
muscle. In around 70% of cases, myocytes were mixed with fibrosis and fatty tissue. The
arrangement where electrically active muscular fibers cover the distal part of the vessels
in their junction with the muscular myocardium can also be found in the pulmonary
veins [19], where they may trigger abnormal electrical activity and atrial fibrillation. Since
a subgroup of outflow tract ventricular tachycardias originate from the aortic VAJ, it can
be speculated that, similarly to the muscular sleeves around the pulmonary veins, the
irregular mixture of electrically active myocytes, fibrosis, and fat may trigger ventricular
arrhythmias [20–23]. In case ventricular arrhythmias require radiofrequency catheter
ablation, an in-depth understanding of the anatomic complexity of this region may help
maximize ablation success. At the same time, the electrophysiologist should be aware of
potential complications when operating in this area (Figure 2).
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posterior projection showing the obliquity of the aortic root (yellow arrow), sited posterior and rightward to the RVOT
(red arrow). (C) Computed tomographic in multiplanar imaging modality showing the correct attitudinal orientation of
the aorta. The black line, that joins the nadir of aortic sinuses, is near 30◦ tilted in respect to the horizontal red line, so that
the left coronary sinus (LCS) and its leaflet are at the highest position among the right coronary (RCS) and non-coronary
sinuses. (D) CT image in 3D volume rendering modality in antero-lateral projection showing the AO is surrounded laterally
by the right atrial appendage (RAA). (E) CT image in 3D volume rendering modality in lateral projection, showing the
space between the left atrium (LA) and the AO (yellow arrow) named “sinus transversum” filled up by epicardial adipose
tissue. (F) The 2D transesophageal echocardiography in short-axis aortic view, showing the close proximity between the
fossa ovalis (FO) and the non-coronary sinus (NCS) (see text).
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Figure 2. (A) CT image of short-axis view of the aortic root from an aortic perspective. The gray-beige
areas superimposed to the image indicate the myocardium enclosed at the bases of right coronary
sinus (RCS) and left coronary sinus (LCS). (B) CT scan of volumetric image of the aortic root. The
ventriculo–arterial junction is indicated by the yellow dotted line. The red areas below indicate the
muscular myocardium enclosed in the bottom part of the sinuses. (C) Cardiac magnetic resonance
showing the left ventricle (LV), the left atrium (LA), and the aorta (AO) in cross-section long-axis
view. (D) Magnified image of the structures in the red square of the panel C. The double-headed
arrow marks the extension of muscular sleeve on the right coronary sinus (RCS). (E) Computed
tomography showing the LV, the LA, and the AO in cross section long-axis view. (F) Magnified image
of the structures in the red square of the panel C. The double-headed arrow marks the extension of
muscular sleeve on the RCS.

During the ventricular filling phase and the isovolumetric contraction, the muscular
component of the VAJ expands (together with the STJ), making the aortic root larger
in order to accommodate the stroke volume. This expansion reduces the area of leaflet
coaptation and at the time of their opening, the leaflets are in apposition only with their
free edge, reducing the leaflet-to-leaflet friction. During the ejection, the VAJ contracts,
while the STJ continues to expand. The shape of the aortic root becomes a truncated cone
with the smaller opening toward the ventricle facilitating the progression of the blood
column towards the ascending aorta. The fine sequential movement of the root components
during systolic ejection resembles the peristalsis in the gut, and it is meant to optimize the
efficiency of the system and reduce the stress on the structures [24].
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3.4. The Fibrous Component of VAJ

The fibrous component represents nearly 55% of the entire VAJ and includes the
mitral–aortic (MA) curtain, a fibrous avascular area located between the left (LCS) and the
non-coronary sinus (NCS), and the membranous septum (MS) located between the NCS
and the right coronary (RCS) sinuses.

The MA curtain is well known to surgeons and cardiac imagers. Indeed, this area is
often a target of aortic endocarditis (either on native leaflets or on aortic prostheses). The
infection propagates by direct continuity of the aortic infected tissue or by infected regurgi-
tant jet striking this area. The uncontrolled infection usually perforates the MA curtain,
dissecting the aortic wall and propagating around the aortic root. A direct communication
with the LVOT is often present, while a true enclosed abscess cavity very rarely develops
and often a fistulous communication to other cardiac chambers can be recognized. In
almost all cases the diagnosis is made by 2D TEE [25]. The peri-annular aortic abscess is a
life-threatening condition since it may disrupt the fibrous skeleton and the atrioventricular
septum, making the reconstructive procedure very complicated (Figure 3A,B) [26–28].
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Transcatheter implantation of the aortic valve (TAVI) is now recognized as state-of-
the-art for patients with severe aortic stenosis and high risk for surgery. Recently, increased
operator experience and enhanced transcatheter valve systems have led to a worldwide
trend to use TAVI in patients who are at intermediate or low risk [29]. However, TAVI has
an increased risk of injuring the atrio-ventricular conduction system. This is due to the
close anatomical relationship between the aortic valve and the heart conduction system.
Three major variants of AV nodes have been described, with 50% of individuals exhibiting a
relatively right-sided AV bundle and 30% with a left-sided AV bundle, whereas in about 20%
of patients the bundle courses under the membranous septum just below the endocardium.
The last two above-described variants may expose patients to a higher risk of TAVI-induced
conduction disturbances, especially in patients with a short membranous septum [29].
Today, the imaging of the membranous septum by CT scan prior to TAVI is a standard step
to assess the risk of AV block after TAVI. The longer the length of the membranous septum,
the lower the risk of post-TAVI AV conduction abnormalities [30]. According to the valve
academic consortium, the development of post-procedural conduction disturbances may
not be the strongest predictor of mortality but has a significant influence on long-term
prognosis and the patient’s quality of life [31] (Figure 3C,D). Figure 4 shows an anatomic
specimen with the components of the VAJ.
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Figure 4. Anatomic specimen components of the aortic root: the sinus–tubular junction (white
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ILT = interleaflet triangle.

3.5. The Aortic Annulus

There are different interpretations of the aortic annulus depending on whether you are
an echocardiographer, a cardiac surgeon, or a pathologist. Since the beginning of the bidi-
mensional echocardiographic era, annular measurements have been routinely performed
on 2D TEE in the parasternal long-axis view. More recently, using 2D TEE, the aortic annuls
is measured in a 120–140◦ long-axis view of the ventricle. These measurements are taken
on mid systole at the basal attachment of adjacent leaflets. In the TAVI era, a “virtual”
annulus is obtained by joining the lower points of the three leaflets (the term “virtual”
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refers to the fact that this “circumferential” annulus does not exist neither anatomically nor
histologically). When measured with CT multiplanar imaging or with 3D TEE, this “virtual
annulus” has an elliptic shape in diastole and a more circular shape in systole. Interestingly,
since the lowest points of the three leaflets do not lie on the same plane, dedicated software
reconstructs the virtual annuls as if it was lying in one plane. Though CT is considered
the main imaging modality for identifying the correct size of the prosthesis [32], 3D TTE
may be a valid imaging alternative in patients unsuitable for MDCT. Tamborini et al. [33]
showed that 3D TTE measurements were highly reproducible, and the agreement between
3D TTE and CT was very good (k = 0.84, p < 0.001) (Figure 5).
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Even the so-called “surgical anulus” does not exist as a specific anatomical entity, 
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Figure 5. (A) The 2D and (B) 3D TEE long-axis view showing the echocardiographic annulus. (C,D)
Multiplanar reconstruction using the 3D data set showing the virtual annulus. (E,F,H) CT scans
showing the 3 nadirs (marked by the red, green, and yellow circles). (G) Dedicated software aligns
the three nadirs in the same plane making possible measurements of diameters (white dotted lines)
and circumference (blue line).
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Even the so-called “surgical anulus” does not exist as a specific anatomical entity,
once the diseased leaflets are removed, the prosthetic valve is sutured in a sort of “ring
area”, which lies between the lowest part of the native leaflet hinge line and midway to
the commissures. However, referring to this ring area as “annulus” is not illogical since
it provides a precise reference point when the prosthesis is sutured in a supra-annular
position [34].

Finally, from an anatomical point of view, the aortic annulus is a geometrically complex
three-dimensional crown-shaped structure. The insertion of the leaflets on the aortic wall,
in fact, takes the form of three prolonged coronets with the lowest part (called nadir) lying
slightly below the ventricular–arterial junction and the highest point joining the sinutubular
junction. The highest joining point of two adjacent leaflets is named commissure. This
anatomical arrangement guarantees a great flexibility that allows the anulus to expand
during the systole minimizing the transvalvular gradient [35]. This flexibility would not be
possible in the presence of a circular fibrous ring, which should be robust and rigid enough
to withstand the diastolic aortic pressure. Such a ring-shaped annulus, on the other hand,
would have probably resulted in a fixed transvalvular gradient comparable to that present
across a mechanical or a biological prosthesis (Figure 6).
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3.6. The Interleaflets Triangles

The ventricular aspect of the aortic root is lined by three fibrous triangular extensions,
filling the space between the hinge line of leaflets and extending from the VAJ to the
commissures [36]. The triangle between the left and right coronary leaflets is usually the
smallest, while the triangle between the left and the non-coronary leaflets is in continuity
with the mitral–aortic curtain. The surgical relevance of this latter triangle relies on the
fact that, in a small aortic annulus (i.e., an annulus that cannot house a prosthesis size
≥21 mm), the annulus enlargement to accommodate a larger valve prosthesis may involve
this anatomical portion of the root [37]. The surgical procedure consists in extending
the aortotomic incision posteriorly through the commissure at the left and non-coronary
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sinus, cutting this triangle up to the mitral–aortic curtain. Finally, the triangle between
the non-coronary and the right coronary leaflets includes the MS, which marks the site
of the atrioventricular conduction bundle. Interestingly, all inter-leaflet triangles, despite
anatomically considered part of the aortic root, are subjected to ventricular pressures
because they remain below the aortic valve leaflets (Figure 7).
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3.7. The Sinuses of Valsalva

The sinuses of Valsalva are bulges of the aortic root, one for each cusp in the tricuspid
aortic valves. They are named according to the coronary arteries arising from them as right
(RCS), left (LCS), and non-coronary (NCS) sinuses, and have different sizes, with the NCS
being the largest and the LCS the smallest. One function of the aortic sinuses is to provide
enough space behind the open leaflets to prevent the occlusion of the coronary artery
orifices. However, the main function of the sinuses is to preserve the integrity of the aortic
leaflets [38]. The most peripheral layers of blood flow, sliding along the ventricular surface
of the leaflets during systole, encounter the “bottle neck” of the sinutubular junction. These
peripheral layers are then forced back into the space between the open leaflets and the
sinuses. By entering this space, the back flow creates a vortex that promotes a slow closure
motion of leaflets, which approximate each other during the systole. At the end of the
systole when the forward systolic flow still crosses the valve, the free margins of the leaflets
are already very close to each other. At the beginning of the diastole, when the blood
flow reverses, the distance between the valve leaflets is minimal, ensuring a synchronous,
homogeneous, and stress-free leaflet closure [39] (Figure 8).

Moreover, the presence of Valsalva sinuses may guarantee a progressive increase in the
valve area and therefore an absence of gradient every time the cardiac output is increased
(i.e., during an intense physical activity) [40]. During the systole, in fact, a progressive
reduction of the pressure inside the sinuses (induced by the vortices) favors the increased
flow across the valve. In other words, the lower pressure beyond the leaflets explains
how the leaflet can reach and keep a wider opening area in an increased cardiac output
maintaining a relatively low gradient. In the absence of sinuses, the aortic valve appears to
be progressively more obstructive to the blood flow when the output increases. Indeed,
the leaflets have less space for moving to their full opening position, and their free margin
will show wrinkles and folds that might increase gradients and potentially contribute to an
accelerated leaflet’s degeneration [41–43].
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The elastic capability of the sinuses to distend under pressure is another relevant
characteristic that preserves the leaflets integrity. A cross-section in the middle of the body
of the sinuses reveals that, in diastole, the sinuses move outward assuming a three-lobed
arrangement. This diastolic configuration splits the aortic root in three almost circular
sinus–leaflet assembly units, which are formed by the sinus and the corresponding leaflet
and divided by the inter-leaflets’ triangles. The stress on the leaflets in diastole is almost
four times than in the sinuses, and this would tether the sinuses’ wall inwards. If this does
not happen, it is because these sinus–leaflet assembly units adapt, at every single beat,
to the diastolic stress conditions on leaflets by reducing the “radius of curvature” of any
single sinus (in other words the sinus–leaflet assembly becomes approximately spherical).
This allows the share of the diastolic circumferential stress between the leaflet and the sinus
becoming an enclosed self-sustained unit that contains the pressure within. This stress
sharing preserves the longevity of the aortic leaflets [39,41,42]. Interestingly, in case of a
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bicuspid aortic valve, this sophisticated stress-sharing architecture, resulting from millions
of years of evolution, is lost. It is unsurprising that these valves are predisposed to an
additional circumferential stress at an early calcification and a worse outcome [43].

3.8. Leaflets

The aortic leaflets undoubtedly represent the “working component” of the aortic root.
The normal aortic valve comprises three leaflets with slight differences in size and shape
mirroring the coronary sinuses: usually the non-coronary leaflet (NCL) is the largest and
the left coronary leaflet (LCL) the smallest, while the size of the right coronary leaflets
(RCL) is in between the other two. Each leaflet has several distinct anatomical regions. The
hinge line has a crescent shape being part of the crown-shaped annulus [14,15]. The body
is the skeleton of the leaflet bearing the most force in diastole when the valve is closed.
The lunula, which corresponds to approximately 30% of the leaflet total area, forms the
appositional surface between leaflets. In the middle of the lunula at the free margin, there
is a thickened nodule called the Nodule of Arantius. During diastole, each leaflet, together
with the corresponding sinus, takes the appearance of a bird’s nest. The insertion line of the
leaflet is approximately 1.5 times longer than the length of the free margin, and the height
(base-margin) ranges between 12 and 18 mm. A particular structure is often present on
the aged leaflets: the Lambl’s excrescences (LEs) [44–47]. LEs are fibrous strands typically
occurring at coaptation surfaces of the leaflets. These filiform fronds take origin from
small thrombi and fibrin deposition on the endocardial surfaces (where the valve margins
contact) as a result of micro injuries. Over time, this fibrin–thrombi depot overgrows in
thin papillae and eventually in thin, mobile strands made up of a dense core of collagenous
and elastic fibrils enclosed by endothelium. LEs are usually found incidentally in otherwise
asymptomatic aged patients and only rarely it can be the cause of stroke or coronary artery
obstruction/occlusion as opposed to the fibroelastomas [48] (Figure 9).
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As for atrio-ventricular valves, aortic leaflets are roughly composed of three layers
covered, on both sides, by endothelium. This latter is a natural barrier for inflammatory
cell infiltration or lipid accumulation and regulates permeability and cell adhesions by
paracrine signals. The so-called lamina fibrosa is a layer of dense collagen fibers located
beneath the aortic surface of the leaflets and arranged in a circumferential fashion. The
collagen fibers of the lamina of each leaflet curve into the wall of the corresponding
sinus, merging with elastic and muscular layers. This structural architecture reinforces
the concept that the leaflet and sinus may be considered as an anatomical and functional
unit. Individual leaflets are therefore suspended from their relative sinus almost totally by
means of lamina fibrosa. Interestingly, these collagen fibers have an “undulating” radial
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arrangement. During the cardiac cycle, the leaflet area is about 50% larger in diastole
compared to systole. Given its particular collagen fiber arrangement, the fibrosa can
be easily “stretched” in diastole and “wrinkled” in systole. The ventricularis is made
up predominantly by elastic fibers. This elastic lamina, being stretched in diastole and
recoiled in systole, concurs with the fibrosa to expand the surface of the leaflets under
diastolic pressure in order to prevent leaks through the coaptation surface. Interesting is
the role of the spongiosa, a layer of loose connective tissue situated in between the other
two layers. The spongiosa is the most complex of the three layers, being made up by
sparse elastin and collagen fibers and by a rich extracellular matrix comprising complex
glycoproteins, a network of nerve fibers and capillaries, and an array of different cell
types, among which the most representative are the valvular interstitial cells (VICs). Each
component of the spongiosa confers specific physical properties. Elastin allows recoil after
each deformation, and glycoproteins provide a sort of “lubricant”, which reduces mechanical
and frictional stress. Final VICs are essential in the regeneration process and damage repair.
The continuous renewal of all components is one of the secrets of the leaflet’s longevity [48].

3.9. The Sinutubular Junction

The sinutubular junction (STJ) is the distal part of the aortic root, between the aortic
sinuses and the tubular segment of the ascending aorta. Contrary to the other “virtual”
rings, the STJ is a true ring made up by circumferentially aligned fibro-elastic lamellae
as a mild waist. This fibrous-elastic ring is more pronounced in the proximity of the
attachments of the three commissures. Because of the strict proximity of the STJ with the
commissures, this fibrous-elastic ring is an integral part of the valvular mechanism. The
aortic valve insufficiency associated with the aneurysm of the aortic root, is due to the
stretch of the STJ and commissures (which are dragged away from each other), that causes
the tethering on the aortic leaflets and, as a consequence, a reduced systolic and diastolic
excursion. As mentioned above, the STJ plays a role in generating the vortex behind the
aortic leaflets [14,15].

3.10. The Coronary Ostia

The preferential location of the coronary ostia is immediately below the STJ, arising
from the maximum curvature of the sinus. Muriago et al. studied 23 normal hearts from
autopsies in adults. They found that the left coronary artery arose within the left coronary
aortic sinus in 16 (69%) specimens, above the sinutubular junction in 5 (22%), and at the
level of the junction in 2 (9%). The right coronary artery arose within the right coronary
aortic sinus in 18 (78%) specimens, above the junction in 3 (13%), and at the level of the
junction in 2 (9%). Interestingly, accessory coronary orifices are found in the majority of the
right coronary sinuses [49] (Figure 10A,B).

The position of the coronary ostia above the virtual annulus has relevant clinical
implication both in aortic root replacement, where the coronary ostia reimplantation is a
key stage of the operation, [50] and in TAVI procedures [51,52], also including the valve in
valve implantation [53]. In TAVI procedures, the coronary ostia may be obstructed either
by the implanted aortic stent valve itself, or by the displacement of leaflet calcifications into
the coronary lumen. The incidence of this complication in patients treated with balloon
expandable devices is higher (1.1%) than in those treated with self-expanding valves
(0.4%) [54]. The occurrence of coronary obstruction is also high in valve-in-valve TAVI
procedures (2.3%), especially when the failed bioprosthesis features externally-mounted
valve leaflets [53]. In the absence of defined guidelines, the currently recommended
minimum distance of the coronary ostia from the aortic annulus is 10 mm [54]. Although
CT is the main modality to identify coronary ostia [55] (Figure 10C,D), 3D TEE is also
a valid alternative [56] (Figure 10E,F). Thus, a pre-procedural evaluation with CT or 3D
TEE of the coronary ostia position (relative to the virtual annulus and aortic leaflets) is
mandatory to minimize the risk of this rare but potentially life-threatening complication.
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Figure 10. (A) CT Volume rendering modality showing the origin of right coronary artery arise at the
level of sinutubular junction (black dotted line). (B) The 3D TEE longitudinal cross-section showing
the orifice of coronary artery (arrow) at level of sinutubular junction (white dotted line). (C,D)
CT multiplanar image modality showing the measurements of the distance (double-headed arrow)
between the coronary ostia (white dotted line) and the virtual annulus (yellow dotted line). (E) The
2D TEE multiplanar reconstruction derived by 3D data set in short-axis view of the aorta showing the
orifice of LAD (curved arrow). The white dotted line indicates the longitudinal cross-section plane
that shows the image of the panel. (F) From this image, the distance between the coronary ostia (white
dotted line) and the virtual annulus (yellow dotted line) can be measured (double-headed arrows).

4. Conclusions

The 3D-TEE, CT, and CMR provide excellent images of a “dynamic” aortic root
anatomy, both in two- and three-dimensional format that admirably joins structure and
function. This review describes the components of the aortic root, specifically the sinu-
tubular junction, the crown-shaped aortic annulus, the Valsalva’s sinuses, the leaflets, the
STJ, and the position of the coronary ostia as revealed by non-invasive imaging techniques.
Nowadays, new portable echocardiographic machines, as small and light as a cell phone,
are available and likely will substitute the stethoscope in the coming years showing the
heart and valves in real time (does the word “stethoscope” not derive from the ancient
Greek words στηθóυς (stetheos), which means chest, and σκoπεω (skopeo), which means
look into?). With the highest spatial resolution power and ultra-low radiation exposure,
the new CT machines are able to depict cardiac anatomical details that were unthinkable
just a few years ago. Moreover, latest advances in 3D CT reconstruction techniques can
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now visualize the very nuance of the 3D living anatomy with greater spatial resolution and
wide field of view compared with echocardiography [12,13]. Finally, the new CMR offers
superb anatomic imaging, tissue structures, and flow imaging in a unique examination.
We strongly believe that in the third millennium, medical students and, in particular, cardi-
ologists will learn the cardiac anatomy using these powerful imaging tools. We hope that
this review will also serve this aim.
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