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bootstrap approach as well as survival analysis.

associated with poor chemotherapeutic outcomes.

patient survival and guiding their treatment.

Background: Gastric cancer (GQ) is a primary reason for cancer death in the world. At present, GC has become a
public health issue urgently to be solved to. Prediction of prognosis is critical to the development of clinical
treatment regimens. This work aimed to construct the stable gene set for guiding GC diagnosis and treatment in

Methods: A public microarray dataset of TCGA providing clinical information was obtained. Dimensionality
reduction was carried out by selection operator regression on the stable prognostic genes discovered through the

Findings: A total of 2 prognostic models were built, respectively designated as stable gene risk scores of OS (SGRS-
0S) and stable gene risk scores of PFI (SGRS-PFI) consisting of 18 and 21 genes. The SGRS set potently predicted
the overall survival (OS) along with progression-free interval (PFl) by means of univariate as well as multivariate
analysis, using the specific risk scores formula. Relative to the TNM classification system, the SGRS set exhibited
apparently higher predicting ability. Moreover, it was suggested that, patients who had increased SGRS were

Interpretation: The SGRS set constructed in this study potentially serves as the efficient approach for predicting GC

Keywords: Gastric cancer, Molecular typing, Prognosis, Prediction of efficacy of chemotherapy, Immune infiltration
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Introduction

Gastric cancer (GC) ranks the 6th place in terms of can-
cer morbidity, and it is also the 5th cause of cancer
deaths in the world [1]. The overall survival (OS) rate of
GC cannot be improved through surgery or neoadjuvant
therapy [2]. GC is a kind of heterogeneous malignant
tumor, whose primary or acquired drug resistance makes
chemotherapy unable to completely destroy tumor cells,
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while insensitivity to chemotherapy is a common cause
of tumor recurrence and metastasis [3]. Therefore, the
evaluation of the overall survival, progression-free inter-
val (PFI) and chemotherapy effect of patients with GC
can help optimize the treatment strategy. The develop-
ment of clinical prediction model is a conventional
method to predict prognosis, and the key of modeling
lines in the selection of stable and effective variables.
Conventional clinicopathologic variables, such as
depth of invasion (T Stage) or lymph node metastasis (N
stage), are predominantly focused on cancer cells to pre-
dict prognosis. While these variables are valid and widely
used, they do not provide sufficient prediction [4].
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Before this study, some articles have proposed new fac-
tors in addition to clinical factors for predicting the
prognosis of GC, but the area under the curve (AUC) of
the prediction model is not high, which suggests that
new, more effective predictors need to be discovered [5].

DNA microarray technology or “gene chips,” derived
from large-scale sequencing methods, are increasingly
used to produce much more data than represents the se-
quence itself. It sheds novel lights on the pathophysi-
ology and classification of disease, gene function, as well
as drug research [6]. Using DNA microarray technology,
we developed a reliable prognostic gene set in the hope
of predicting overall survival, progression-free interval
(PFI) and the chemotherapeutic effects on GC cases,
thus laying solid foundation for treatment in clinic.

Materials and methods

Transcriptome data acquisition and clinical information
collection

The Cancer Genome Atlas (TCGA) provides a large, free
reference database for cancer research through the col-
lection of cancer-related omics data, which is publicly
available at the Data Portal TCGA (https://
cancergenome.nih.gov). We downloaded the expression
matrix of GC patients and relevant clinical information
from the TCGA database in September 2018. The clin-
ical information included overall survival, progression-
free interval, AJCC pathologic tumor stage, histologic
grade, gender and age.

Study population and clinicopathological variables

We used the “createDataPartition” package in R to di-
vided the data set into training cohort and validation co-
hort according to the stage stratified sampling with a
ratio of 7:3. In this study, we used two analysis end-
points: OS, the time interval from diagnosis to death;
PFI, the time interval between the beginning of observa-
tion and tumor progression.

Stable prognostic gene identification and selection

In order to obtain stable prognostic genes, bootstrapping
testing was used to test the stability of the initial genes.
Seventy percent of patients were randomly selected from
samples to assess the genetic impact on survival. After
1000 iterations, genes enrolled into 70% resampled runs
(P< 005 upon stability test) were selected to be the
creditable prognostic genes. Survival analysis was per-
formed on all patients using the R software, and the
genes with P value less than 10e-3 were screened for fur-
ther study. The genes selected out after these two steps
were identified as stable prognostic genes.
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Gene set generation using LASSO cox regression

LASSO regression is a statistical method that can not
only select variables but also make regularization [7]. In
biological and medical research, it is also used to build
prediction models in data sets with many interrelated in-
dependent variables [8]. Therefore, LASSO regression
has important statistical characteristics that help to as-
sess the relationship between many biomarkers and clin-
ical characteristics [9]. Using LASSO regression, select
ten-fold cross validation, intercept the modeled optimal
penalty parameter value, and finally generate the optimal
genetic set for predicting prognosis. Based on the gener-
ated gene set, we used Cox analysis to obtain the risk
scores of OS and PFI with OS and PFI as endpoint vari-
ables, respectively. Risk scores for each patient will be
generated using the following formula:

n
Risk scores = E Bixi
=1

Bi referred to the coefficients of each gene; i repre-
sented the expression value of the gene; n was the num-
ber of genes selected.

Estimation of immune infiltration

Tumor is a kind of tissue with high heterogeneity, where
the tumor microenvironment (TME) surrounds and in-
teracts with the malignant cells, and the TME contains
various immunocyte types. The dialectical relationship
of cancer cells with immune microenvironment is of
critical clinical significance; therefore, it is necessary to
develop approaches to investigate the cell components
in immune microenvironment [10]. MCP-counter pack-
age from the R software might be used in this case,
which using the gene expression matrix to produce the
scores of immunocytes (T cells, CD8 T cells, cytotoxic
lymphocytes, B cells, NK cells, monocytes, dendritic
cells, neutrophils, endothelial cells and fibroblasts). The
MCP-counter estimates represented scores of individual
samples because they are calculated independently from
each sample [11]. The MCP-counter package of R soft-
ware was adopted for converting the mRNA data to
non-tumor cell infiltrating levels within TME. Before the
analysis by MCP-counter, the standard annotation file
was used to make the gene expression profile.

Gene set variation analysis (GSVA)

GSVA calculates the enrichment fraction of the sample
gene set according to the gene function inside and out-
side the gene set, which is a non-parametric, non-
supervised competitive gene set test. Conceptually, such
method may be interpreted to alter the gene expression
data coordinate system from one gene to one gene set
[12]. To assess pathway variability in large


https://cancergenome.nih.gov
https://cancergenome.nih.gov

Wu et al. BMC Cancer (2021) 21:684

heterogeneous populations with complex phenotypic
characteristics, we applied RNA-seq data and GMT to
GSVA and acquired the enrichment fraction of each
sample.

Immunohistochemistry

Immunohistochemistry was obtained from the human
protein atlas (HPA) (http://www.proteinatlas.org/) [13].
The expression levels of different expression genes,
which chosen to build the OS and PFI models, were
evaluated between normal stomach tissues and GC tis-
sues from the HPA.

Statistical analysis

The survival rate was calculated by the Kaplan-Meier
method, while significance of difference was determined
by log-rank test. Cox proportional hazard models with
the stepwise method “LRforward” were used for single
factor and multiple factor analysis. The Iasonos’ guide
was used to construct and validate the nomogram [14].
The accuracy of survival prediction of the prognostic
model was evaluated by time-dependent ROC as well as
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the Harrell's concordance index (c-index). R package
was employed for statistical analysis and P value were
tested by double-tail. The truncation points of P values
were statistically significant.

Results

GC patients’ characteristics and stable prognostic gene
identification

The detailed characteristics of the patients in this study
are as follows (Supplemental Table S1). In this study,
362 patients with clinical information in the TCGA data
set were screened. The mean age at diagnosis was 67.0
years (range:30.0—90 years), 234 (64.6%) were males, and
128 (35.4%) were females. All patients screened had OS
and PFI information. The mean survival days of OS was
603.7 days, and the mean survival days of PFI was 543.6
days. Through bootstrapping testing described in the
materials, 1446 genes were screened. After survival ana-
lysis, 425 of the 1446 genes were screened. Because these
425 genes had at least 70% chance of being associated
with survival in 1000 iterations, and P < le-3 was found
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in the survival analysis of all samples, they were identi-
fied as stable prognostic genes (Supplemental Table S2).

Construction of molecular subgroups using stable
prognostic genes

Unsupervised clustering was adopted for classifying GC
to diverse molecular subtypes on the basis of those 425
stable prognostic genes with the R package “Consensu-
sClusterPlus”. We divided the patients into two types
through the package (Fig. la-b). Kaplan-Meier curve
showed there was a significant difference in OS and PFI
between the two types of patients (Fig. 1c-d). The pa-
tients with better OS and PFI were redefined as Typel,
and patients with poorer OS and PFI were defined as
Type2. The patients of Type2 significantly had a more
advanced grade compared with Typel (Supplemental
Table S3).

Exploration of TME in type 1 and type 2 patients

To explore the TME in Type 1 and Type 2 patients, we
conducted cell infiltration analysis. Results revealed sig-
nificant differences in the proportion of stromal cells
and immune cells between Typel and Type2 patients,
including T cells (t=-4.3, p=1.8e-5), CD8 T cells (t=
- 3.6, p=4.0e-4), cytotoxic lymphocytes (t=-3.9, p=
1.2e-4), B cells (t=-6.7, p=7.1e-11), NK cells (t = - 4.3,
p =2.4e-5), monocytes (t=-5.7, p=2.1e-8), dendritic
cells (t=-84, p=6.9e-16), neutrophils (t=-3.6, p=
4.0e-4), endothelial cells (t=-13.3, p =9.3e-33) and fi-
broblasts (t=-13.7, p =4.1e-34) (Fig. 2a). Subsequently
we investigated the relationship between cell proportion
and OS, and found that the higher proportion of neutro-
phils (Fig. 2b) and endothelial cells (Fig. 2c), the poorer
the survival of patients. As can be seen from the violin
plot, there were significantly fewer neutrophils and
endothelial cells in Typel than in Type2, which sug-
gested that the neutrophils and endothelial cells may
play a promoting role in the development and progres-
sion of GC, which was also responsible for the poorer
survival of Type2 patients. In order to provide a treat-
ment regime for Type2 patients as a reference, differen-
tial expression analysis was conducted between Typel
and Type2 patients. Connectivity Map (CMap) analysis
was performed using the differentially expressed genes
(DEGs) screened out so that we can identify two small
molecule drugs that could be used as potential targeted
therapeutic drugs for GC (Supplemental Table S4). The
chemical structures of these two small molecule drugs
were shown. They were thiamine (mean connective
score = —0.735; P=0.00018; Fig. 2d) and eticlopride
(mean connective score = — 0.254; P = 0.00074; Fig. 2e).
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Construction of prognostically relevant gene set

To establish a reliable model for prognostic prediction,
LASSO Cox regression model was utilized to reduce the
dimensionality of those 425 stable genes. All cases were
classified as the training or the validation cohort accord-
ing to the stage with a ratio of 7:3 to analyze the progno-
sis. Differences were not statistically significant in
clinical features between groups above (Supplemental
Table S1). Through the LASSO model, based on the in-
formation OS and PFI, we generated stable gene sets
(Supplemental Fig. Sla-d). The OS stable gene set con-
tained 18 genes, and the PFI gene set contained 21 genes
(Supplemental Table S5). Then, Cox analysis was per-
formed on the two gene sets to establish two prognostic
models respectively. The coefficient of each gene was
obtained and stable gene risk scores of OS (SGRS-OS)
and PFI were acquired (SGRS-PFI) (Supplemental Table
S5). All cases were classified as 2 groups based on
SGRS-OS and SGRS-PFI, and the cutoff value calculated
by the whole queue was adopted (0.14 for SGRS-OS and
1.44 for SGRS-PFI). In the training and validation sets,
the Kaplan Meier curves showed that patients in the
high SGRS-OS cohort had a worse prognosis. (Fig. 3a-b).
In the ROC, SGRS-OS, which served as the continuous
variable in both training and validation cohorts, dis-
played high predicting ability compared with the TNM
classification system. Stage was a categorical variable, so
SGRS-OS was converted into a four-categorical variable,
for the sake of enhancing the comparability. Even as a
categorical variable, the prediction accuracy of SGRS-OS
remains good (Supplemental Fig. S2a-b). Similar results
were also found for the SGRS-PFI set with documented
PFI information (Fig. 3c-d, Supplemental Fig. S2c-d).
The predictive ability of SGRS-OS and SGRS-PFI models
was tested in each subgroup stratified by immune sub-
type, grade, sex, stage and age in the whole cohort, re-
spectively, and SGRS-OS and SGRS-PFI were analyzed
as continuous variables. As observed from the forest
plots, the greater values of the two models markedly
identified cases with dismal prognostic outcomes in each
subgroup (Fig. 3e-f).

Stable gene set predicted the efficacy of chemotherapy in
GC

Relative to supportive care [15], systemic chemotherapy,
which is associated with the advantages of survival as
well as quality of life, is developed to be the standard
therapeutic modality to manage the metastatic or unre-
sectable GC [16]. In order to give clues to conventional
chemotherapy regimens, we screened the patients with
chemotherapy information and combined the chemo-
therapy results with SGRS-OS and SGRS-PFI to explore
the relationship. The ROC curve showed that low SGRS-
OS patients were associated with good chemotherapy
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outcomes, while high SGRS-OS patients tended to be as-
sociated with bad chemotherapy outcomes (Fig. 4a). The
same results can be seen when using SGRS-PFI to pre-
dict the efficacy of chemotherapy (Fig. 4b). In order to
exclude the influence of patients’ own conditions on the
prediction of efficacy, we classified the patients accord-
ing to grade, stage and type, and SGRS-OS and SGRS-
PFI were used to predict the chemotherapy efficacy of
the patients in every group. In each group, both SGRS-

OS and SGRS-PFI were effective predictors of chemo-
therapy outcomes (Supplemental Fig. S3a-c). We could
use the SGRS-OS and SGRS-PFI to predict the chemo-
therapy efficacy of patients, providing a strong reference
for clinical patients to judge the outcomes of chemother-
apy. For developing a related quantitative approach to
predict the mortality possibility in patients, 2 nomo-
grams were established in the present work, whose C-
index were 0.777 and 0.769 respectively (Fig. 4c-d) by
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enrolling the prognostic factors and scores obtained
from the stable gene set. As suggested by the calibration
plots, those as-constructed nomograms had favorable
performance (Fig. 4e-f).

Identification of SGRS-OS and SGRS-PFI related clinical
characters and biological pathways

This study also examined the correlations between
scores obtained from the stable gene set and clinical fea-
tures/molecular subtypes (Fig. 5a—b). In terms of clinical
features, SGRS-OS and SGRS- PFI were significantly in-
creased in more advanced stage patients. Grade also af-
fected the scores of the stable gene set, while age and
gender had less influence on the it. In terms of molecu-
lar typing, we observed that the SGRS-OS and SGRS-PFI
for Type2 patients were also higher than Typel patients.

In terms of the pathway, we found that both SGRS-OS
and SGRS-PFI values were significantly correlated with
apoptosis, base excision repair and RNA degradation
(Fig. 5¢). Therefore, higher risk scores tended to be asso-
ciated with poorer clinical outcomes and tumor-
promoting pathways, which provided a strong basis to
predict the prognosis of GC.

Identification of CGB8 as a potential biological target

To provide a target for early diagnosis with GC, dif-
ferential expression analysis of modeling genes was
performed using GC samples and normal samples. 9
DEGs were identified, of which 3 were down-
regulated and 6 were up-regulated (Fig. 6a). For bet-
ter validating the as-constructed stable signature,
those 9 DEGs were compared in normal versus GC
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tissues derived from the HPA. It was suggested by
immunohistochemical results that, CGB8
(ENSG00000213030.5) expression upregulated within
GC tissues, confirming the difference in CGB8 level
in normal versus GC tissues (Fig. 6b). Furthermore,
ROC curve analysis was also performed for evaluat-
ing CGB8 sensitivity and specificity in diagnosing
GC. ROC curves of CGB8 in TCGA database was

displayed (Fig. 6¢), showing good sensitivity and spe-
cificity with AUC of 0.700. In addition, survival ana-
lysis showed that CGB8 was a risk factor in the
progression of GC (Fig. 6d). Of note, the expression
and function of CGB8 in GC remained largely un-
known. Therefore, we proposed CGBS8 as a biological
target and tried to discover its role in GC
development.
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Discussion

GC ranks the 6th place in terms of its morbidity
within cancer globally, and it is also a major reason
for cancer deaths. Although important advances have
been made in the molecular mechanism, diagnosis,
treatment selection and strategies of tumorigenesis,
OS in GC patients still needs to be further improved
[17]. The great GC morbidity may be ascribed to the
fact that, specific prognostic markers are lacking,
which leads to the failure to timely adjust the clinical
treatment plan of GC patients [18]. Carbohydrate
antigen (CA) 19-9, CA72-4, and carcinoembryonic
antigen have been the extensively adopted GC bio-
markers, yet they are not the best diagnostic and
prognostic biomarkers for GC because of the limited
specificity or sensitivity [19, 20]. As a result, it is ne-
cessary to identify the novel prognostic biomarkers
for GC.

The DNA microarray technique is the efficient bio-
medical approach at present, and it can be applied in
various diagnostic fields [21]. There have been many re-
ports on predicting the prognosis of GC with single
gene, but the accuracy of prediction results still needs to
be improved [22]. In addition, the prognostic value of
Tumor-associated macrophages (TAM) density in GC
patients has been analyzed. The results showed that
compared with low-density TAM patients, the HR of OS
and PFI of high-density TAM patients were 1.56 and
1.10 respectively, indicating that TAM density did not
significantly predict adverse survival of GC patients, and
TAM density was not an independent predictor of sur-
vival of GC patients [23]. Our analysis of cell infiltration
showed that there were also significant differences in the
composition of stromal cells such as fibroblasts and
endothelial cells in Typel and Type2 patients in addition
to immune cells. It can be seen that the number of
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stromal cells was also an important factor in predicting
prognosis of GC, and analyzing the number of immune
cells only it is one-sided and inaccurate. Sequencing all
human genes is not practical in clinical prediction, but
single gene prediction is not accurate enough, so we
need to develop an effective gene group for prediction.
We performed stability analysis and survival analysis on
all genes of GC to screen out the stable prognostic
genes. The results of the immune infiltration estimation
showed that the genes were related to a variety of im-
mune cells and stromal cells, which were in close con-
nection with the TME, providing a comprehensive view
of GC.

We combined the results of molecular typing with the
result of infiltration analysis and found that neutrophils
and endothelial cells were strongly associated with prog-
nosis. An increase in neutrophils and endothelial cells
often predicts a worse prognosis. Neutrophil levels have
been shown to be a strong predictor of poor survival in
GC patients. In patients with GC, accumulation of per-
ipheral blood and invasive marginal neutrophils pro-
motes disease progression and predicts poor survival
[24]. In addition, studies have shown that endothelial
cells such as lymphatic endothelial cells and vascular
endothelial cells can promote the metastasis or growth
of GC [25, 26]. The accuracy of our results is further
verified. Treatment regimens targeting neutrophils and
endothelial cells may improve the patient’s condition.

We used LASSO Cox regression to screen the optimal
combination of genes and establish two models, called
SGRS-OS and SGRS- PFI. The two models contained 18
and 21 genes, respectively. We can predict the prognosis
of patients with GC, timely adjust our treatment plan, to
maximize the survival of patients. In the future, the de-
velopment of a kit to test this gene set could promote
the clinical prognosis prediction of GC for the benefit of
mankind.

CGB8 was proposed as a biological target in our study.
This gene is a member of the glycoprotein hormone beta
chain family and encodes the beta 8 subunit of chorionic
gonadotropin (CG). Recent studies have shown that
CGB8 could also be used as an immune-related prog-
nostic model gene for oral squamous cell carcinoma
(OSCC) [27]. Combined with our analysis, in conclusion,
CGB8 had the ability to diagnose GC and predict tumor
prognosis to a certain extent. It is hoped that this study
can provide support for future exploration of CGBS.
Further studying of selected genes, we found that some
genes such as PLA2R1, GPC3, AKR1B1 and SERPINE1B
were closely related to the TME. Some reports find that
PLA2R1 is expressed in neutrophils [28] and pulmonary
macrophages [29]. Additionally, PLA2R1 is able to en-
hance the tumor suppressing responses, such as apop-

tosis, senescence, or transformation suppression.
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PLA2R1 is down-regulated in a number of cancer types,
which supports its tumor suppressor role, and its expres-
sion can be suppressed by c-MYC and HIF2a, the onco-
genes [30]. Additionally, GPC3, one of the tumor-
associated antigens, elevated F4/80 + CD86+ macrophage
(M1) percentage within tumor, in the meantime of indu-
cing CD8+ T cell immune response specific to GPC3
[31]. Fidarestat, an inhibitor of AKR1B1, can markedly
suppress the inflammatory signals induced by growth
factors, tumor necrosis factor-alpha (TNF-a), environ-
mental allergens, and lipopolysachharide (LPS), and such
signals may result in various inflammatory disorders.
The inflammatory disorder animal model like cardiovas-
cular disease (CVD), diabetes, metastasis, uveitis, cancer
and asthma, inhibiting AKR1B1 evidently promotes dis-
ease occurrence [32]. SERPINEI1B is associated with B
cell function [33]. These genes related to the TME were
selected and involved in modeling that greatly improving
the accuracy of the model. Although these have been
proved to be closely related to tumor, there were still
few studies related to GC. Our findings provide new
ideas and methods for searching for potential biological
targets of GC.

Generally, 80-90% GC cases are diagnosed at the ad-
vanced stage when the cancer cannot be resected or may
relapse or metastasize after surgery [17, 34]. Although
molecular targeted therapy is promising for improving
the survival of patients with advanced GC, due to the
high heterogeneity of GC and the lack of targets, fewer
patients receive appropriate molecular targeted therapy.
Therefore, systemic chemotherapy is still the main treat-
ment method for patients with advanced GC [35].
Therefore, prediction of chemotherapy outcomes is cru-
cial to the formulation of patient prognosis and im-
provement of patient survival. We found significant
differences in the efficacy of chemotherapy in different
patients with SGRS-OS. The chemotherapy efficacy of
patients with low SGRS-OS was significantly better than
that of patients with low SGRS-OS, suggesting a correl-
ation between the two. The results of SGRS-OS can be
used to predict the chemotherapy efficacy of patients
with good accuracy. This method is expected to solve
the problem that prognosis of GC is difficult to predict.

This study had some limitations. Firstly, the patient
population was heterogeneous. Secondly, we used the
patients in the TCGA dataset to model. Some modeling
genes were not found in the patient expression matrix in
the GEO dataset. Therefore, we did not use a validation
set from the GEO database. Special attention should be
paid when using the stable gene set to detect patients in
other databases. Thirdly, the gene expression data were
imported to the Cox regression model as categorical var-
iables in this work. Therefore, more studies are needed
to verify the optimal thresholds.
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To sum up, our constructed stable gene set can stably
predict patients’ prognosis, guide the treatment for GC
patients and has a good prospect of clinical application.
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