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Abstract: Nucleotide excision repair (NER) resolves DNA adducts, such as those caused by ultra-
violet light. Deficient NER (dNER) results in a higher mutation rate that can predispose to cancer
development and premature ageing phenotypes. Here, we used isogenic dNER model cell lines to
establish a gene expression signature that can accurately predict functional NER capacity in both
cell lines and patient samples. Critically, none of the identified NER deficient cell lines harbored
mutations in any NER genes, suggesting that the prevalence of NER defects may currently be un-
derestimated. Identification of compounds that induce the dNER gene expression signature led to
the discovery that NER can be functionally impaired by GSK3 inhibition, leading to synergy when
combined with cisplatin treatment. Furthermore, we predicted and validated multiple novel drugs
that are synthetically lethal with NER defects using the dNER gene signature as a drug discovery plat-
form. Taken together, our work provides a dynamic predictor of NER function that may be applied
for therapeutic stratification as well as development of novel biological insights in human tumors.

Keywords: gene expression signature; nucleotide excision repair defects; breast cancer; cancer
treatment; novel therapeutic approaches

1. Introduction

The hallmark of human cancer can be classified into six biological capabilities: main-
taining proliferative signal, evading growth suppressors, resisting cell death, enabling
replicative immortality, inducing angiogenesis, and activating invasion and metastasis.
Genome instability has been shown as undertaking these events [1]. To sustain genome
integrity and keep high-fidelity genetic message transmission, there is a set of complicated
repair machinery in response to DNA damage in cells. Numerous structurally unrelated
DNA damages were removed by nucleotide excision repair (NER) using a versatile ‘cut and
paste’ mechanism [2]. RNA polymerase II stalling in transcriptional genes was generally
caused by massive DNA damages containing ultraviolet light (UV)-induced pyrimidine
dimers. The transcription-coupled NER (TC-NER) removes stalled RNA polymerase and re-
pairs these damages, initiating by the Cockayne syndrome proteins CSA and CSB/ERCC6.
Once RNA polymerase has been eliminated, the Xeroderma pigmentosum (XP) proteins
can catalyze DNA damage repair [3]. The global genome NER (GG-NER) is triggered by
Xeroderma pigmentosum complementation group C (XPC) and performs by probing the
genome for helix-distorting base lesions [4]. GG-NER deficiency predisposes to cancer de-
velopment, whereas defective TC-NER results in all kinds of diseases, including ultraviolet
radiation-sensitive syndrome and severe premature ageing conditions such as Cockayne
syndrome [2].

Int. J. Mol. Sci. 2021, 22, 5008. https://doi.org/10.3390/ijms22095008 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://doi.org/10.3390/ijms22095008
https://doi.org/10.3390/ijms22095008
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22095008
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms22095008?type=check_update&version=1


Int. J. Mol. Sci. 2021, 22, 5008 2 of 15

Breast cancer represents the most common types of tumor diagnosed among women
and is responsible for the majority of female cancer-related deaths [5]. Striking histopatho-
logical characteristics commonly served as prognostic and predictive biomarkers in clinical
therapeutic applications [6]. Nevertheless, there is a challenge to understand breast cancer
heterogeneity and precisely predict clinical outcomes only depending on these features [7].
Data derived from genome-wide researches have determined defective DNA repair signa-
tures caused by categorizing mutational types, but the impact of these studies has been
diluted by uncertainty regarding the molecular origin and clinical relevance of these signa-
tures [8]. Thus, we propose a hypothesis that defective DDR is involved in cancer response
by analyzing molecular status.

The NER pathway involves a large amount of proteins that can recognize, verify, signal,
and repair DNA damage [2]. It can be used, as an example, to understand the clinical
influence of many DDR processes including cell cycle checkpoint, transcriptional responses,
and extensive post-translational modifications [9]. Recent studies have uncovered that
a number of genes are involved in NER repair [2]. However, the understanding of the
molecular mechanism of defective NER generating by gene mutations is still unclear. Here,
a transcriptional profiling-based method was established to systematically distinguish
common molecular alterations related to defective NER repair and generate defective NER
gene signatures. We found that the dNER gene expression signature predicted loss of
NER function in both cell lines and primary patient samples. Leveraging this signature,
we further identify multiple novel synthetic lethal therapeutic strategies to directly target
NER deficient tumors, as well as novel agents to inhibit dNER as a rational combination
to sensitize to current standard chemotherapeutic regimens. Taken together, the dNER
gene signature established in our study enables prediction of NER capacity to improve
personalized medicine approaches as well as our understanding of the NER pathway.

2. Results
2.1. Generation and Validation of Isogenic NER Deficient Cell Lines

In order to directly probe molecular changes associated with defective NER, we
generated isogenic dNER cell lines using non-malignant, genomically-stable, MCF-10A
mammary epithelial cells. To induce dNER, we depleted five independent dNER repair
genes: XPA, XPC, ERCC4, ERCC5, and ERCC6 (Figure 1A,B). XPA has a key role in
coordinating the NER complex owing to its multiple functions in NER repair. XPC serves
as a vital DNA damage sensor by stabilizing and assisting the RAD23B, a UV excision repair
protein, and centrin 2 (CETN2) in GG-NER machinery [10–12]. XPG/ERCC5, a structure-
specific endonuclease, either related to transcription Factor II H (TFIIH) or separately, binds
to the preincision NER complex [2]. The XPF/ERCC4–ERCC1 heterodimer is directed to
the damaged strand by RPA to create an incision 5′ to the lesion. CSB/ERCC6 are required
for further assembly of the TC-NER machinery, which includes the core NER factors and
several TC-NER-specific proteins [13].

To validate that NER was functionally impaired in our model isogenic cell lines, we
first analyzed the ability of cells to repair an eGFP plasmid damaged with 400–1200 J/m2

of UV light. In this assay, NER capacity is detected as restoration of eGFP expression
normalized to a non-damaged transfection control [14]. Across all levels of UV damage
analyzed, we found that NER was inhibited in all five dNER cell lines (Figure 1C). To further
confirm these results, we next analyzed the ability of isogenic cell line models to survive
following exposure to UV light [15] and cisplatin [16]—recovery from both of these requires
NER function. While the majority of shCTRL cells were able to recover from exposure to
30 J/m2 UV light, as indicated by clonogenic capacity, dNER lines failed to recover from
UV damage (Figure 1D). Similar results were obtained following treatment with cisplatin,
with all five isogenic dNER lines gaining sensitivity to cisplatin treatment (Figure 1E).
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Figure 1. Characterization of isogenic deficient nucleotide excision repair (dNER) model cell lines. (A) Western blots 
demonstrating knockdown of NER genes. (B) Heatmap showed the knockdown effect of NER-related genes by RNAseq 
analysis. (C) Measurements of DNA repair capacity (DRC) by fluorescence-based multiplex flow-cytometric host cell re-
activation assay (FM-HCR); DNA lesions are introduced into fluorescent reporter plasmids in vitro normalized to a trans-
fection efficiency control. Numbers labeling the plasmids represent the dose (in joules per square meter) of UV radiation. 
After 48 h incubation, cells were assayed for fluorescence by flow cytometry. ** p < 0.01, *** p < 0.001. (D) Representative 
colony formation assays with defective and intact breast cancer cell lines. Anchorage-independent colonies were treated 
with 30 J/m2 UV treatment and grown for 7 days before replacing the media for 14 additional days. (E) The indicated 
cancer cell lines were treated with cisplatin for 5 days before assessing cell viability. Each value is relative to the value in 
the cells treated with vehicle control. Results are shown as mean ± s.e.m. from three independent experiments. 

2.2. Identification of a Predictive dNER Gene Expression Signature 
To understand how deficient NER transcriptionally rewires cells, we performed 

RNA sequencing on all five isogenic dNER cell line models compared with NER proficient 

Figure 1. Characterization of isogenic deficient nucleotide excision repair (dNER) model cell lines. (A) Western blots
demonstrating knockdown of NER genes. (B) Heatmap showed the knockdown effect of NER-related genes by RNAseq
analysis. (C) Measurements of DNA repair capacity (DRC) by fluorescence-based multiplex flow-cytometric host cell
reactivation assay (FM-HCR); DNA lesions are introduced into fluorescent reporter plasmids in vitro normalized to a
transfection efficiency control. Numbers labeling the plasmids represent the dose (in joules per square meter) of UV radiation.
After 48 h incubation, cells were assayed for fluorescence by flow cytometry. ** p < 0.01, *** p < 0.001. (D) Representative
colony formation assays with defective and intact breast cancer cell lines. Anchorage-independent colonies were treated
with 30 J/m2 UV treatment and grown for 7 days before replacing the media for 14 additional days. (E) The indicated cancer
cell lines were treated with cisplatin for 5 days before assessing cell viability. Each value is relative to the value in the cells
treated with vehicle control. Results are shown as mean ± s.e.m. from three independent experiments.

2.2. Identification of a Predictive dNER Gene Expression Signature

To understand how deficient NER transcriptionally rewires cells, we performed RNA
sequencing on all five isogenic dNER cell line models compared with NER proficient
shCTRL cells, and found highly correlated transcriptional changes in all five dNER cell
lines (R = 0.51–0.77, Figure 2A). To identify core transcriptional changes associated with
NER deficiency, we selected genes with an absolute fold change greater than 1.5 and
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false discovery rate less than 0.05 in all five cell lines, yielding a 105 gene transcriptional
signature (Figure 2B, Table S1). This dNER gene expression signature clearly divided model
cell lines both by hierarchal clustering (Figure 2C) and by calculation of a gene expression
score (Figure 2D).
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Figure 2. Generation of dNER gene expression signature. (A) RNAseq analysis comparing NER proficient shCTRL cells to
various NER deficient isogenic cell lines. Correlogram indicates Spearman correlation coefficient for gene expression changes
in indicated cell lines relative to shCTRL cells. (B) Venn diagram showing 105 core genes differentially regulated with an
FDR <0.05 and fold change >1.5 in all five model cell lines selected for dNER gene expression signature. (C) Hierarchal
clustering using genes from the dNER gene expression signature. (D) dNER score in MCF10A knockdown cell lines.

2.3. Functional Prediction of dNER in Breast Cancer Cell Lines

In order to assess the functional predictive capacity of our dNER gene expression
signature, we calculated dNER scores across a panel of breast cancer cell lines (Figure 3A).
From each breast cancer subtype, we selected an NER deficient (D) and NER intact (I) cell
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line pair for functional analysis: basal/triple negative HCC1806 (D) and MDA-MB-231
(I), luminal MCF7 (D) and MDA-MB-361 (I), and HER2 SKBR3 (D) and MDA-MB-453
(I). Using the NER fluorescence reporter assay, we found NER activity was significantly
impaired in predicted NER deficient lines in all three cell line pairs (Figure 3B,C). This
impaired NER activity was further validated by dNER cell lines showing impaired re-
covery from UV exposure (Figure 3D,E and Figure S1) as well as increased sensitivity to
cisplatin (Figure 3F,G). Taken together, these results suggest that our dNER transcriptional
signature can accurately predict NER functional deficiencies in breast cancer cell lines.
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of three independent biological replicates. (G) Combined data from (F), with each dot representing the area under the
viability curve of an individual cell line. Paired t-test.
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2.4. Activity of dNER Signature in Primary Patient Samples

To further validate our signature, we next sought to determine if our dNER signature
was predictive in vivo using primary patient samples from The Cancer Genome Atlas
(TCGA). First, we assessed if the dNER signature score could predict tumors with muta-
tions in critical NER genes. As breast tumors lacked sufficient tumors with mutated NER
genes for this analysis, we focused on gastric cancer, where 8.6% of tumors had mutations
in an NER gene. As illustrated by the receiver operating characteristic (ROC) curve in
Figure 4A, we observed robust prediction of NER deficient tumors with an area under
the ROC curve (AUROC) value of 0.77. At the optimal threshold determined by Youden’s
statistic, this corresponded to a 90.6% sensitivity and 44.2% false positive rate, though it
is unclear how many theoretical false positives are actually NER defective, but lack any
identified mutations in NER genes. As NER defects will lead to increased mutagenesis,
we hypothesized that, if theoretical false positive tumors are actually NER defective, they
would exhibit similar mutational characteristics as tumors with mutations in NER genes.
To evaluate this, we next analyzed the mutagenic processes operative within tumors as
quantified by mutational signatures [17] in three distinct groups: (1) “gold-standard” dNER
tumors with mutations in NER genes; (2) theoretical false positive dNER tumors predicted
to be dNER, but lacking any mutations in NER genes; and (3) tumors predicted to be
NER proficient by gene expression and lacking mutations in any NER genes. Compar-
ing changes in mutational signatures between group 1 “gold-standard” dNER tumors
and group 2 predicted dNER tumors relative to group 3 NER proficient tumors revealed
highly concordant alterations in mutational processes (Figure 4B), indicating that our dNER
transcriptional signature is likely predicting NER defects in primary patient tumors. As
NER deficiencies sensitize to chemotherapeutics such as cisplatin, we further hypothe-
sized patients with dNER tumors would exhibit better prognosis than those with NER
proficient tumors. Consistent with our hypothesis, patients with gastric cancer exhibited
improved overall survival if their tumors were predicted to be dNER (p = 8.2 × 10−4, haz-
ard ratio = 0.46, Figure 4C). Although breast tumors did not harbor significant mutations
in dNER genes, the subset of patients with breast cancer with predicted dNER tumors
exhibited improved prognosis as well (Figure 4D). These results indicate that our dNER
gene expression signature can predict NER defects in primary patient samples.
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Figure 4. Prediction of NER function in primary patient tumors. (A) ROC curve for prediction of gastric tumors with
mutation in NER genes by dNER gene expression score. (B) Correlation between alterations in mutational signatures in
either tumors with mutations in NER genes (x-axis) compared with tumors with NER mutations predicted to be NER
deficient by gene expression (y-axis). Pearson correlation coefficient. (C) Overall survival of patients with gastric cancer,
stratified by predicted NER function. Log-rank test. (D) Progression-free survival of patients with breast cancer, stratified
by predicted NER function. Log-rank test.

2.5. Prediction of Compounds to Inhibit NER

Given that the dNER gene signature can functionally link transcriptional changes
to NER repair deficiency, we asked whether we could identify agents that would induce
the dNER gene signature and, thereby, induce sensitivity of cancer cells to DNA damage-
inducing treatment such as cisplatin. To this end, we used the Library of Integrated
Network-based Cellular Signatures (LINCS), a catalogue of transcriptional alterations
induced by treatment with various drugs or other perturbations [18]. We looked for
compounds that induced the dNER transcriptional program. Among the top candidates
identified was an inhibitor of glycogen synthase kinase 3 (GSK3) (Figure 5A). As GSK has
been shown to have tumor-promoting roles in diverse cancers, such as bladder cancer [19],
osteosarcoma [20], leukemia [21], and glioblastoma [22], we selected it for further study
based on the hypothesis that it may both induce NER defects leading to cisplatin and
provide independent tumor killing effects. Initial testing of NER function using the flow
reporter assay indicated that inhibition of GSK3 significantly inhibited NER repair (Figure
5B). Combination of GSK3 inhibition with cisplatin led to synergistic activity in three
independent NER proficient cell lines (Figure 5C), suggesting it may present a novel
combination therapy that could benefit patients.
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detected multiple inhibitors of CDK9 predicted to preferentially kill dNER tumor cells. 
We evaluated this prediction using our isogenic dNER cell lines with an orthogonal CDK9 
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Figure 5. Inhibition of glycogen synthase kinase (GSK) impairs NER function. (A) Prediction of compounds that induce
the dNER gene expression signature using LINCS identifies GSK inhibition as a top candidate. (B) NER functional assay
as described in 1C following treatment with 100 nM GSK3 inhibitor SB-216763. (C) The indicated cancer cell lines were
treated with DMSO, cisplatin, GSK3bi, or a combination thereof for 5 days before assessing cell viability. Results are shown
as mean ± s.e.m. from three independent experiments.

2.6. Identification of Novel Compounds to Treat dNER Tumors

Although dNER tumors exhibit enhanced responses to platinum and other chemother-
apies, these therapeutic modalities generally cause undesirable side effects, lessening
patient quality of life. We hypothesized the NER defects may lead to novel synthetically
lethal therapeutic approaches that would enhance the therapeutic index, resulting in de-
creased side effects and improved quality of life, much in the way that PARP inhibitors
have done for patients with tumors that have deficient homologous recombination DNA
repair. Using our previously established algorithm to predict novel therapeutic vulnera-
bilities [23,24], we identified a series of compounds that may target dNER cells from both
CTRPv2 (Figure 6A) and GDSC (Figure 6B) drug sensitivity databases. From CTRPv2, we
detected multiple inhibitors of CDK9 predicted to preferentially kill dNER tumor cells. We
evaluated this prediction using our isogenic dNER cell lines with an orthogonal CDK9
inhibitor, and found that, while NER proficient shControl cells exhibited minimal loss of
viability upon CDK9 inhibition, the drug was toxic to dNER cell lines (Figure 6C). Like-
wise, evaluating myriocin from the GDSC sensitivity library produced similar results with
increased sensitivity in dNER lines (Figure 6D). Finally, we confirmed that both predicted
compounds preferentially killed tumor cell lines harboring endogenous NER deficien-
cies (Figure 6E,F), suggesting these compounds may have therapeutic potential for the
treatment of dNER tumors.
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Figure 6. Discovery of novel therapeutic strategies for dNER tumors. (A) Prediction of drug responsiveness by dNER
gene-expression signature in CTRPv2 cancer cell lines, where negative values indicate increased predicted sensitivity.
(B) Prediction of drug responsiveness by dNER gene-expression signature in GDSC cancer cell lines, where negative values
indicate increased predicted sensitivity. (C) Viability of MCF10A isogenic model cell lines treated with 1 µM CDK9 inhibitor
LDC000067 for 5 days. Each value is relative to the value in the cells treated with vehicle control. Results are shown as
mean ± s.e.m. from three independent experiments. (D) Viability of MCF10A isogenic model cell lines treated with 1 µM
Myriocin for 5 days. Each value is relative to the value in the cells treated with vehicle control. Results are shown as mean
± s.e.m. from three independent experiments. (E) NER deficient (D) and intact (I) cell lines from 3B were treated with
the indicated dosages of CDK9 inhibitor LDC000067 for 5 days. Each value is relative to the value in the cells treated
with vehicle control. Results are shown as mean ± s.e.m. from three independent experiments. (F) NER deficient (D) and
intact (I) cell lines from 3B were treated with the indicated dosages of Myriocin for 5 days. Each value is relative to the
value in the cells treated with vehicle control. Results are shown as mean ± s.e.m. from three independent experiments.
* p < 0.05, ** p < 0.01, *** p < 0.001.
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3. Discussion

Eukaryotic cells are involved in repairing many kinds of DNA lesions. Among the
well-known DNA repair processes in humans is NER repair, which specifically can protect
against mutations caused indirectly by environmental carcinogens, and then maintain
genomic integrity and prevent tumorigenesis. NER repair can remove various structurally
unrelated DNA damages such as UV-induced damage. Extreme cancer proneness (xe-
roderma pigmentosum) or dramatic premature aging (Cockayne syndrome) caused by
germline/hereditary NER deficiency illustrate how the importance of NER repair [25].
Owing to the complexity of NER repair, there is an enormous challenge to identify dysfunc-
tional NER repair in human tumors. Here, we established a functional network view of the
consequences of defective NER using gene expression profiling. Our studies showed that
NER repair components were not independent, but a functional network, involved in cellu-
lar integrated NER repair capability. The dNER model can allow us to dynamically monitor
the NER repair status by simultaneously considering hundreds of genes and, thereby,
allow to validate the functional NER deficiency in a given cellular state independent of an
underlying mechanism.

Cisplatin primarily causes DNA lesions by forming intra-strand crosslinks, with the
formation of guanine–platinum–guanine and guanine–platinum–adenine adducts [26].
Intra-strand crosslinks caused by cisplatin accounted for 90% of lesions, with additional
lesions rarely forming guanine–platinum–guanine inter-strand crosslinks [26]. Nucleotide
excision repair (NER) is responsible for the repair of intra-strand DNA crosslinks, while it
is considered as single-strand DNA (ssDNA) repair mechanism that is defective in clinical
patients with xeroderma pigmentosum [27]. Thus, NER defects may sensitize to cisplatin
or other chemotherapeutic modalities. Indeed, we found knockdown genes in an NER
repair pathway induced cisplatin sensitivity in our isogenic cell line models as well as cell
lines predicted to be NER deficient. Consistent with our cell line results, in gastric cancer
patients predominately treated with a platinum-containing regimen, patients with dNER
tumors showed improved prognosis compared with predicted NER intact counterparts,
with consistent results observed in breast cancer. While both NER and homologous re-
combination (HR) defects can contribute to chemosensitivity [26,28], additional functional
repair assays directly probing the ability of cells to perform NER indicate that our transcrip-
tional signature can predict functional NER defects. Moreover, by identifying drugs that
can induce our dNER signature, we found that GSK3 inhibition can sensitize to treatment
with cisplatin. We selected GSK3 from among the top candidates as it has been shown to be
activated in cancer types including bladder cancer [19], osteosarcoma [20], leukemia [21],
and glioblastoma [22], which may provide for monotherapy efficacy as well. As predicted,
we found that inhibition of GSK3 both inhibited NER repair capacity and synergized with
cisplatin treatment. This synergy is consistent with other works showing that inducing of
dNER by targeted inhibition of XPA can sensitize to cisplatin to broaden the usefulness of
this chemotherapeutic agent [16].

While dNER tumors have shown sensitivity to platinum agents, we next ask if dNER
tumors may have novel synthetic lethal therapeutic vulnerabilities that would not necessi-
tate such strong systemic side effects and improve patient quality of life, much as targeting
homologous recombination with PARP inhibitors has down in BRCA1/2 mutant tumors.
We identified multiple candidate compounds to target dNER, notably Myriocin/M1177
and CDK9 inhibitors. Myriocin inhibits sphingolipid biosynthesis, which is involved in
cell biological processes, including growth regulation, cell migration, adhesion, apopto-
sis, senescence, and inflammatory responses [29]. Targeting sphingolipid metabolism
to activate pro-cell death ceramide signaling and/or inhibit pro-survival sphingosine-1-
phosphate (S1P) signaling is done using genetic, molecular, immunological, or pharmaco-
logical tools [30]. Myriocin has also been shown to exacerbate consequences of proteotoxic
stress [31], which is prevalent in cancer cells [32]. Cyclin-dependent kinase 9 (CDK9), an
important regulator of transcriptional elongation, is a promising target for cancer therapy,
particularly for cancers driven by transcriptional dysregulation [33]. Previous studies
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reported that activity of CDK9 was involved in maintaining a high expression level of
MDM4 in human cells, and drugs targeting CDK9 might restore p53 tumor suppressor
function in malignancies overexpressing MDM4 [34]. Moreover, CDK9 is a promising prog-
nostic marker and therapeutic target in cancers [35], including activity castration-resistant
prostate cancers (CRPCs) models [36]. Other studies have shown a therapeutic benefit of
combined cisplatin with a CDK9 inhibition, which could be particularly potent in dNER
tumors [37]. Future studies probing these novel synthetic lethal interactions in dNER
tumors may shed further insight into NER biology.

Thus, taken together, our work identifies a novel transcriptional signature that can
predict defects in nucleotide excision repair across patients and cell lines. We leverage this
signature to identify novel compounds that may synergize with current platinum-based
chemotherapeutic regimens, as well as novel synthetic lethal interactions with loss of NER
function. These findings will have implications both for personalized cancer therapies as
well as for gleaning a further understanding of NER repair.

4. Materials and Methods
4.1. Cell Culture and Reagents

MCF10A cell lines was obtained from American type culture collection (ATCC)
and were grown in DMEM/F12 Ham’s Mixture medium supplemented with 5% Equine
Serum, 20 ng/mL epidermal growth factor, 10 µg/mL insulin, 0.5 mg/mL hydrocortisone,
100 ng/mL cholera toxin, 100 µg/mL streptomycin, and 100 units/mL penicillin. MCF7,
BT549, MDA-MB-468, MDA-MB-231, HCC1806, MDA-MB-461, MDA-MB-453, and SKRB3
cell lines were purchased from ATCC and cultured in appropriate mediums supplemented
with 10% FBS, 100 µg/mL streptomycin, and 100 units/mL penicillin according to ATCC
guidelines respectively. XPA (D9U5U) Rabbit monoclonal (CST #14607), XPC Polyclonal
Antibody (CST#12701), XPF/ERCC4 Rabbit Polyclonal Antibody (Bethyl A301-315A),
ERCC5/XPG Rabbit Polyclonal Antibody (Bethyl A301-485A), and ERCC6/CSB Rabbit
Polyclonal Antibody (Proteintech Catalog number: 24291-1-AP) were purchased from CST
and Bethyl Laboratories company. CDK9 inhibitors LDC000067 (Catalog number: S7461),
Myriocin from Mycelia sterilia (M1177) (CAS Number 35891-70-4), and SB-216763/GSK
inhibitors (Catalog number: S3442) were purchased from Sigma.

4.2. Lentiviral Infection and Plasmid Transfection

Mission shRNA lentiviral particles, namely, clones TRCN0000083196 (XPA), TRCN0000307193
(XPC), TRCN0000507788 (ERCC5), TRCN0000016774 (ERCC6), TRCN0000078583 (ERCC4), and
mission shRNA non-target control transduction particles, were purchased from Sigma Aldrich. Day
1: MCF-10A cells were counted and then seeded 5× 104 cells in a six-well plate with fresh media,
and each lentiviral construct and control groups were used in triplicate wells. Day 2: half of the old
media were replaced by fresh media and 2–15 µL individual lentiviral virus (Sigma) targeting XPA,
XPC, ERCC4, ERCC5, ERCC6 was added to each well with 8 µg/mL Hexadimethrine bromide.
Then, the six-well plate was swirled lightly to mix and incubated in a humidified 5% CO2 incubator
at 37 ◦C. Day 3: we removed the media containing lentiviral particles from the six-well plate, and
then added fresh media to a volume of 2 mL to each well. Day 4: we added fresh media with
2 µg/mL puromycin. Day 5 and on: fresh puromycin media were replaced every 3~4 days until
the formation of resistant colonies. Finally, the stable resistant cell lines were identified.

4.3. Western Blot Analysis

Cells were lysed in urea buffer (8 M urea, 150 mM β-mercaptoethanol, and 50 mM
Tris/HCl, pH 7.5), and cleared by centrifugation (14,000× g rcf for 15 min at 4 ◦C). Protein
concentration was determined using the bicinchoninic acid assay (BCA). Proteins were
separated by gel electrophoresis and transferred to polyvinylidene difluoride membranes,
and then probed with the desired antibodies.
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4.4. NER Repair Analysis

We tested NER repair capacity using fluorescence-based multiplex flow-cytometric
host cell reactivation assay (FM-HCR) [14]. In brief, EGFP-C1 (Addgene plasmid # 46956)
was irradiated with the indicated dosage of UV light (400–1200 J/m2), introducing DNA
lesions that block the ability for the plasmid to be transcribed. In NER proficient cells, the
UV-induced lesions in EGFP-C1 can be repaired, restoring EGFP expression. Cells were
co-transfected with irradiated EGFP-C1 to monitor NER repair and non-irradiated pCMV-
tdTomato (Addgene plasmid #30530) as an endogenous transfection control. Transfections
were performed using Lipofectamine 3000 per the manufacturer’s instructions. After 72 h,
cells were analyzed by flow cytometry. NER repair was determined as the percentage of
tdTomato+ cells with restored EGFP expression using FlowJo.

4.5. Colony Formation Assay

Cells were seeded into six-well plates with fresh media overnight at an appropriate
density; the following day, the cells were treated with 30 J UV or the indicated concen-
trations of drugs. The media was replaced with fresh media every 3~4 days to allow
colonies to form. Then, cells were fixed in cold methanol and stained with 0.25% crys-
tal violet at room temperature for 30 min. After washing three times with wash buffer
(phosphate-buffered saline, PBS), colonies were counted manually or quantified by ImageJ.

4.6. Cell Proliferation Assay

Cells were seeded into a 96-well plate containing 100 µL/well of cell culture medium
and incubated overnight before initiation of drug treatment. Seven days later, we added
20 ul of PrestoBlue substrate (2 mg/mL) to each well and incubated them at 37 ◦C incubator
for 2~4 h; viability was detected using a fluorescent plate reader with 560 nm excitation.
After subtraction of background, the cell viability was calculated relative to vehicle control
(DMSO) cells.

4.7. Drug Combination Studies

For drug combination studies, the results were gained using the PrestoBlue™ Cell
Viability assays in triplicate. The combination index (CI) was analyzed following the User’s
Guide of the CompuSyn software using the combination index (CI)-isobologram equa-
tion, which indicated the all dose–effect curve [38]. The equation allowed researchers to
quantitatively define drug interactions, where CI < 1 indicated synergism, CI = 1 indicated
additive, and CI > 1 indicated antagonism.

4.8. RNAseq Analysis and Signature Generation

RNA was isolated from three independent biological replicates using a QIAgen
RNeasy kit and sequenced by NovoGene. The sequencing samples were performed 20 M
raw reads/sample. Library type: 250~300 bp was inserted into cDNA library, and we
performed double-stranded cDNA sequencing and rRNA depletion. RNAseq FASTQ files
were quantified using kallisto v0.44.0 [39] and are available in Table S1. The dNER gene
expression signature (Table S2) was taken as genes with FDR <0.05 (as assessed by Storey
method) and absolute fold change values >1.5. Coefficients were determined as the average
fold change value from all five cell lines. Signature score was calculated by summing over
the product of the gene coefficient and z-normalized log-transformed gene expression
value, normalized to the sum of the absolute value of the gene coefficients. Hierarchical
clustering was performed using Ward linkage.

4.9. TCGA Analysis

All TCGA data were downloaded using the TCGA data portal (https://portal.gdc.
cancer.gov/) from the Pan-Caner Atlas release (April 2018). Mutation signature scores
were acquired from Knijnenburg et al. [40]. The optimal threshold to stratify tumors by

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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NER status was determined by Youden’s index with bootstrapped confidence intervals.
Survival was assessed by log-rank test.

4.10. Prediction of Drugs to Inhibit NER and Novel dNER-Targeting Drugs

To identify drugs that may inhibit NER, we utilized the LINCS ConnectivityMap
data to evaluate if any of over 80,000 perturbagens evaluated may induce our dNER
signature. All analysis was performed on clue.io using default parameters. We used our
previously established algorithm to predict novel therapeutic vulnerabilities in dNER
tumor cells [23,24]. In brief, breast cancer cell lines were divided by gene expression-
predicted NER status by dNER score, classifying dNER as the upper quartile of dNER
scores. Matched drug sensitivity data acquired from either CTRPv2 [41] or GDSC [42] were
then used to predict drugs that preferentially killed dNER tumor cells. Gene expression
data were acquired from the Cancer Cell Line Encyclopedia [43].

4.11. Statistics

Unless otherwise noted, all experiments were performed in biological triplicates and
statistical significance assessed by Student’s t-test. Survival was assessed by log-rank test.

5. Conclusions

In this work, we used isogenic model cell lines to identify a gene expression signature
for nucleotide excision repair defects (dNER) from core transcriptional changes associated
with loss of NER function. We validated that our dNER signature can functionally predict
NER defects both in cell lines using functional assays, as well as in patient samples using
known mutations in NER genes and survival readouts. Critically, the dNER cell lines
we identified lacked mutations in NER genes, suggesting the prevalence of NER may
be underestimated in cancer. We further leverage this signature to identify and validate
novel synthetic lethal drugs with NER deficiency, as well as potential agents to synergize
with current chemotherapeutic treatment strategies by inducing NER defects. We feel the
implications of this work, for both the fundamental study of NER as well as advancing
personalized medicine approaches.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22095008/s1.

Author Contributions: R.W. and D.J.M.: performed the experiments, manuscript writing, and
editing; H.D., J.Z., D.J.H.S., Y.L., and P.X.: performed manuscript writing and editing; D.J.M. and
S.-Y.L.: conception and design, manuscript writing and editing, final approval of the manuscript. All
authors have read and agreed to the published version of the manuscript.

Funding: The work was supported by Susan G. Komen PDF17483544 to D.J.M. Additional support
was provided by MD Anderson Cancer Center core facilities funded by grant CA016672 for FACS
assistance.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data are available in Supplementary Tables or are previously
published and publically accessible. The RNAseq data were deposited in GEO database and accession
numbers is GSE168861.

Acknowledgments: We thank MD Anderson Cancer Center core facilities for performing FACS. We
are also grateful to the contributions from the TCGA Research Network Analysis Working Group.

Conflicts of Interest: The authors declare that they have no competing financial interest.

References
1. Hanahan, D.; Robert, A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. [CrossRef]

https://www.mdpi.com/article/10.3390/ijms22095008/s1
https://www.mdpi.com/article/10.3390/ijms22095008/s1
http://doi.org/10.1016/j.cell.2011.02.013


Int. J. Mol. Sci. 2021, 22, 5008 14 of 15

2. Marteijn, J.A.; Lans, H.; Vermeulen, W.; Hoeijmakers, J.H.J. Understanding Nucleotide Excision Repair and Its Roles in Cancer
and Ageing. Nat. Rev. Mol. Cell Biol. 2014, 15, 465–481. [CrossRef] [PubMed]

3. Hanawalt, P.C.; Spivak, G. Transcription-coupled DNA repair: Two decades of progress and surprises. Nat. Rev. Mol. Cell Biol.
2008, 9, 958–970. [CrossRef] [PubMed]

4. Hoeijmakers, J.H.J. DNA Damage, Aging, and Cancer. N. Engl. J. Med. 2009, 361, 1475–1485. [CrossRef] [PubMed]
5. DeSantis, C.E.; Jiemin, M.; Gaudet, M.M.; Newman, L.A.; Kimberly, D.M.; Sauer, A.G.; Jemal, A.; Rebecca, L. Breast Cancer

Statistics. CA Cancer J. Clin. 2019, 69, 438–451. [CrossRef] [PubMed]
6. GGoldhirsch, A.; Winer, E.P.; Coates, A.S.; Gelber, R.D.; Piccart-Gebhart, M.; Thürlimann, B.; Senn, H.-J.; Albain, K.S.; André, F.;

Bergh, J.; et al. Personalizing the Treatment of Women with Early Breast Cancer: Highlights of the St Gallen International Expert
Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann. Oncol. 2013, 24, 2206–2223. [CrossRef]

7. Dowsett, M.; Dunbier, A.K. Emerging Biomarkers and New Understanding of Traditional Markers in Personalized Therapy for
Breast Cancer. Clin. Cancer Res. 2008, 14, 8019–8026. [CrossRef]

8. Nik-Zainal, S.; Alexandrov, L.B.; Wedge, D.C.; Van Loo, P.; Greenman, C.D.; Raine, K.; Jones, D.; Hinton, J.; Marshall, J.; Stebbings,
L.A.; et al. Mutational Processes Molding the Genomes of 21 Breast Cancers. Cell 2012, 149, 979–993. [CrossRef]

9. Ciccia, A.; Elledge, S.J. The DNA Damage Response: Making It Safe to Play with Knives. Mol. Cell 2010, 40, 179–204. [CrossRef]
10. Masutani, C.; Sugasawa, K.; Yanagisawa, J.; Sonoyama, T.; Ui, M.; Enomoto, T.; Takio, K.; Tanaka, K.; van der Spek, P.J.; Bootsma,

D. Purification and Cloning of a Nucleotide Excision Repair Complex Involving the Xeroderma Pigmentosum Group C Protein
and a Human Homologue of Yeast Rad23. EMBO J. 1994, 13, 1831–1843. [CrossRef]

11. Nishi, R.; Okuda, Y.; Watanabe, E.; Mori, T.; Iwai, S.; Masutani, C.; Sugasawa, K.; Hanaoka, F. Centrin 2 Stimulates Nucleotide
Excision Repair by Interacting with Xeroderma Pigmentosum Group C Protein. Mol. Cell. Biol. 2005, 25, 5664–5674. [CrossRef]

12. Sugasawa, K.; Ng, J.M.; Masutani, C.; Iwai, S.; van der Spek, P.J.; Eker, A.P.; Hanaoka, F.; Bootsma, D.; Hoeijmakers, J.H.
Xeroderma Pigmentosum Group C Protein Complex Is the Initiator of Global Genome Nucleotide Excision Repair. Mol. Cell 1998,
2, 223–232. [CrossRef]

13. Fousteri, M.; Vermeulen, W.; van Zeeland, A.A.; Mullenders, L.H. Cockayne Syndrome a and B Proteins Differentially Regulate
Recruitment of Chromatin Remodeling and Repair Factors to Stalled Rna Polymerase Ii in Vivo. Mol. Cell 2006, 23, 471–482.
[CrossRef] [PubMed]

14. Nagel, Z.D.; Margulies, C.M.; Chaim, I.A.; McRee, S.K.; Mazzucato, P.; Ahmad, A.; Abo, R.P.; Butty, V.L.; Forget, A.L.; Samson,
L.D. Multiplexed DNA Repair Assays for Multiple Lesions and Multiple Doses Via Transcription Inhibition and Transcriptional
Mutagenesis. Proc. Natl. Acad. Sci. USA 2014, 111, E1823–E1832. [CrossRef] [PubMed]

15. Bohr, V.A.; Okumoto, D.S.; Hanawalt, P.C. Survival of Uv-Irradiated Mammalian Cells Correlates with Efficient DNA Repair in
an Essential Gene. Proc. Natl. Acad. Sci. USA 1986, 83, 3830–3833. [CrossRef]

16. Köberle, B.; Masters, J.R.; Hartley, J.A.; Wood, R.D. Defective Repair of Cisplatin-Induced DNA Damage Caused by Reduced Xpa
Protein in Testicular Germ Cell Tumours. Curr. Biol. 1999, 9, 273–278. [CrossRef]

17. Alexandrov, L.B.; Nik-Zainal, S.; Wedge, D.C.; Aparicio, S.A.; Behjati, S.; Biankin, A.V.; Bignell, G.R.; Bolli, N.; Borg, A.;
Børresen-Dale, A.L.; et al. Signatures of Mutational Processes in Human Cancer. Nature 2013, 500, 415–421. [CrossRef]

18. Lamb, J.; Crawford, E.D.; Peck, D.; Modell, J.W.; Blat, I.C.; Wrobel, M.J.; Lerner, J.; Brunet, J.-P.; Subramanian, A.; Ross, K.N.; et al.
The Connectivity Map: Using Gene-Expression Signatures to Connect Small Molecules, Genes, and Disease. Science 2006, 313,
1929–1935. [CrossRef]

19. Naito, S.; Bilim, V.; Yuuki, K.; Ugolkov, A.; Motoyama, T.; Nagaoka, A.; Kato, T.; Tomita, Y. Glycogen Synthase Kinase-3β: A
Prognostic Marker and a Potential Therapeutic Target in Human Bladder Cancer. Clin. Cancer Res. 2010, 16, 5124–5132. [CrossRef]
[PubMed]

20. Tang, Q.-L.; Xie, X.-B.; Wang, J.; Chen, Q.; Han, A.-J.; Zou, C.-Y.; Yin, J.-Q.; Liu, D.-W.; Liang, Y.; Zhao, Z.-Q. Glycogen Synthase
Kinase-3β, Nf-Kb Signaling, and Tumorigenesis of Human Osteosarcoma. J. Natl. Cancer Inst. 2012, 104, 749–763. [CrossRef]
[PubMed]

21. Wang, Z.; Iwasaki, M.; Ficara, F.; Lin, C.; Matheny, C.; Wong, S.H.K.; Smith, K.S.; Cleary, M.L. Gsk-3 Promotes Conditional
Association of Creb and Its Coactivators with Meis1 to Facilitate Hox-Mediated Transcription and Oncogenesis. Cancer Cell 2010,
17, 597–608. [CrossRef] [PubMed]

22. Miyashita, K.; Kawakami, K.; Nakada, M.; Mai, W.; Shakoori, A.; Fujisawa, H.; Hayashi, Y.; Hamada, J.-I.; Minamoto, T. Potential
Therapeutic Effect of Glycogen Synthase Kinase 3β Inhibition against Human Glioblastoma. Clin. Cancer Res. 2009, 15, 887–897.
[CrossRef]

23. McGrail, D.J.; Garnett, J.; Yin, J.; Dai, H.; Shih, D.J.; Lam, T.N.A.; Li, Y.; Sun, C.; Li, Y.; Schmandt, R.; et al. Proteome Instability Is a
Therapeutic Vulnerability in Mismatch Repair-Deficient Cancer. Cancer Cell 2020, 37, 371–386.e12. [CrossRef]

24. McGrail, D.J.; Lin, C.C.-J.; Garnett, J.; Liu, Q.; Mo, W.; Dai, H.; Lu, Y.; Yu, Q.; Ju, Z.; Yin, J.; et al. Improved Prediction of Parp
Inhibitor Response and Identification of Synergizing Agents through Use of a Novel Gene Expression Signature Generation
Algorithm. NPJ Syst. Biol. Appl. 2017, 3, 8. [CrossRef] [PubMed]

25. Kodym, E.; Kodym, R.; Reis, A.E.; Habib, A.A.; Story, M.D.; Saha, D. The Small-Molecule Cdk Inhibitor, Sns-032, Enhances
Cellular Radiosensitivity in Quiescent and Hypoxic Non-Small Cell Lung Cancer Cells. Lung Cancer 2009, 66, 37–47. [CrossRef]
[PubMed]

http://doi.org/10.1038/nrm3822
http://www.ncbi.nlm.nih.gov/pubmed/24954209
http://doi.org/10.1038/nrm2549
http://www.ncbi.nlm.nih.gov/pubmed/19023283
http://doi.org/10.1056/NEJMra0804615
http://www.ncbi.nlm.nih.gov/pubmed/19812404
http://doi.org/10.3322/caac.21583
http://www.ncbi.nlm.nih.gov/pubmed/31577379
http://doi.org/10.1093/annonc/mdt303
http://doi.org/10.1158/1078-0432.CCR-08-0974
http://doi.org/10.1016/j.cell.2012.04.024
http://doi.org/10.1016/j.molcel.2010.09.019
http://doi.org/10.1002/j.1460-2075.1994.tb06452.x
http://doi.org/10.1128/MCB.25.13.5664-5674.2005
http://doi.org/10.1016/S1097-2765(00)80132-X
http://doi.org/10.1016/j.molcel.2006.06.029
http://www.ncbi.nlm.nih.gov/pubmed/16916636
http://doi.org/10.1073/pnas.1401182111
http://www.ncbi.nlm.nih.gov/pubmed/24757057
http://doi.org/10.1073/pnas.83.11.3830
http://doi.org/10.1016/S0960-9822(99)80118-3
http://doi.org/10.1038/nature12477
http://doi.org/10.1126/science.1132939
http://doi.org/10.1158/1078-0432.CCR-10-0275
http://www.ncbi.nlm.nih.gov/pubmed/20889919
http://doi.org/10.1093/jnci/djs210
http://www.ncbi.nlm.nih.gov/pubmed/22534782
http://doi.org/10.1016/j.ccr.2010.04.024
http://www.ncbi.nlm.nih.gov/pubmed/20541704
http://doi.org/10.1158/1078-0432.CCR-08-0760
http://doi.org/10.1016/j.ccell.2020.01.011
http://doi.org/10.1038/s41540-017-0011-6
http://www.ncbi.nlm.nih.gov/pubmed/28649435
http://doi.org/10.1016/j.lungcan.2008.12.026
http://www.ncbi.nlm.nih.gov/pubmed/19193471


Int. J. Mol. Sci. 2021, 22, 5008 15 of 15

26. Rocha, C.R.R.; Silva, M.M.; Quinet, A.; Cabral-Neto, J.B.; Menck, C.F.M. DNA Repair Pathways and Cisplatin Resistance: An
Intimate Relationship. Clinics 2018, 73. [CrossRef] [PubMed]

27. Schärer, O.D. Nucleotide Excision Repair in Eukaryotes. Cold Spring Harb. Perspect. Biol. 2013, 5, a012609. [CrossRef] [PubMed]
28. Damia, G.; Broggini, M. Platinum Resistance in Ovarian Cancer: Role of DNA Repair. Cancers 2019, 11, 119. [CrossRef] [PubMed]
29. Hannun, Y.A.; Obeid, L.M. Sphingolipids and Their Metabolism in Physiology and Disease. Nat. Rev. Mol. Cell Biol. 2018, 19,

175–191. [CrossRef] [PubMed]
30. Ogretmen, B. Sphingolipid Metabolism in Cancer Signalling and Therapy. Nat. Rev. Cancer 2018, 18, 33–50. [CrossRef] [PubMed]
31. Lee, Y.J.; Wang, S.; Slone, S.R.; Yacoubian, T.A.; Witt, S.N. Defects in Very Long Chain Fatty Acid Synthesis Enhance Alpha-

Synuclein Toxicity in a Yeast Model of Parkinson’s Disease. PLoS ONE 2011, 6, e15946. [CrossRef] [PubMed]
32. Dai, C.; Dai, S.; Cao, J. Proteotoxic Stress of Cancer: Implication of the Heat-Shock Response in Oncogenesis. J. Cell. Physiol. 2011,

227, 2982–2987. [CrossRef] [PubMed]
33. Olson, C.M.; Jiang, B.; Erb, M.A.; Liang, Y.; Doctor, Z.M.; Zhang, Z.; Zhang, T.; Kwiatkowski, N.; Boukhali, M.; Green, J.L.; et al.

Pharmacological Perturbation of Cdk9 Using Selective Cdk9 Inhibition or Degradation. Nat. Chem. Biol. 2018, 14, 163. [CrossRef]
[PubMed]
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