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Abstract: With the development of intelligent transportation system (ITS) and vehicle to X (V2X),
the connected vehicle is capable of sensing a great deal of useful traffic information, such as
queue length at intersections. Aiming to solve the problem of existing models’ complexity and
information redundancy, this paper proposes a queue length sensing model based on V2X technology,
which consists of two sub-models based on shockwave sensing and back propagation (BP) neural
network sensing. First, the model obtains state information of the connected vehicles and analyzes
the formation process of the queue, and then it calculates the velocity of the shockwave to predict
the queue length of the subsequent unconnected vehicles. Then, the neural network is trained with
historical connected vehicle data, and a sub-model based on the BP neural network is established to
predict the real-time queue length. Finally, the final queue length at the intersection is determined by
combining the sub-models by variable weight. Simulation results show that the sensing accuracy of
the combined model is proportional to the penetration rate of connected vehicles, and sensing of queue
length can be achieved even in low penetration rate environments. In mixed traffic environments of
connected vehicles and unconnected vehicles, the queuing length sensing model proposed in this
paper has higher performance than the probability distribution (PD) model when the penetration rate
is low, and it has an almost equivalent performance with higher penetration rate while the penetration
rate is not needed. The proposed sensing model is more applicable for mixed traffic scenarios with
much looser conditions.

Keywords: connected vehicle; queue length; shockwave; BP neural network; penetration rate

1. Introduction

With the increasing traffic congestion problem, the role of adaptive traffic control systems (ATCS)
has become more and more important. The first prerequisite for a reasonable adaptive control system
is real-time—that is, the signal light can quickly and accurately reflect actual traffic conditions at
the intersection and give the phase timing scheme in time [1]. The length of the entrance lane is
an indispensable parameter for evaluating the traffic efficiency of an intersection, and it is also an
important basis for real-time optimization of signal timing [2]. Therefore, accurate evaluation of queue
length is of great significance to reducing the delay of vehicles at the intersection.

Loop and video detectors are currently the most common methods of queue length evaluation.
However, the loop detector can only detect the vehicle passing information at a fixed position and cannot
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directly obtain the vehicle’s status dates (such as position, speed, acceleration, etc.). Video detectors
can collect macro information such as traffic flow, space occupancy, and queue length [3]. The ATCS
has very high requirements for the detector, and its reliability has a great impact on the control system.
Once the detector fails, the control effect will plummet, and it has disadvantages of high installation
and maintenance costs as well as low service life.

In order to solve the above problems, the connected vehicle as an optional "mobile detector"
has been utilized [4–6]. The connected vehicle equipped with Global Positioning System (GPS) and
wireless communication equipment can obtain the position, the speed, and other information of
the vehicle, which can be used to evaluate driving time, speed, queue length, and to provide other
services in traffic [7]. The connected vehicles can use vehicle to X (V2X) technology to achieve fast,
accurate, and efficient transmission of information between vehicles and vehicles (V2V), vehicles and
infrastructure (V2I), and vehicles and road users (V2P). At the same time, in the V2X environment,
the connected vehicles or roadside units (RSU) can obtain other vehicles’ locations and speed information
in real-time and among wider areas. Moreover, since the on-board device is based on the on-board
individual, individual faults will not have a great impact on the whole [8–12]. The signal controller at
the intersection can use V2I technology to obtain queue information of the entrance lanes and adjust
green time in real-time. Moreover, the V2V communication and intelligent control technology can
assure the vehicles cross the intersection safely without traffic signals [13]. In smart cities, a vehicle’s
location prediction based on vehicle communication is utilized to get more timely and appropriate
services [14]. The connectivity and performance of vehicular networks is studied in [15], which makes
the V2X more available. The intrusion detection of V2X is also investigated to assure the security of
V2X and traffic, including network perspective [16,17] and sensor perspective [18].

Despite these preparations done by the aforementioned works, the popularization of connected
vehicles has been a gradual process. Although the penetration rate of connected vehicles will increase
in the future, the proportion is still very small in the context of huge vehicle ownership. Therefore,
how to use the information provided by a small number of connected vehicles to accurately predict the
queue length becomes the key to adaptive signal timing optimization. In view of the non-linearity,
the complexity, and the uncertainty of urban traffic systems, it is difficult to obtain accurate sensing
results in the time period with large flow fluctuations relying on only one sensing model. The artificial
neural network is an information processing technology based on the structure and the function of the
brain’s neural network. It is composed of a large number of simple components connected to each other.
It has a high degree of non-linearity and can perform complex logic operations [19]. By combining
V2X technology and the neural network, the sensing model of queue length is established, which will
further improve the sensing accuracy and provide convenience for signal control at intersections.
With the development of fog computing, cloud computing, and Internet of Vehicle (IoV), machine
learning algorithms can be implemented in the fog and the cloud server [20]. A data-driven intelligent
framework for IoV is proposed in [21], and a game-based framework for service provision in a vehicular
cloud for various types of users is studied in [22].

Based on the above advantages of V2X technology and the artificial neural network, this paper
proposes a novel queue length sensing model, which includes two sub-models—the sensing model,
based on shockwave and the sensing model based on the back propagation (BP) neural network.
The first model uses real-time queue information of connected vehicles to determine the speed of
shockwave and predict the length of subsequent unconnected vehicles. In order to consider the
influence of vehicle arrival rate change on sensing results, the correction coefficient of queue length is
proposed, which is determined by the flow of upstream intersection exits. The second model analyzes
the historical queue length and connected vehicles distribution information and uses the nonlinear
mapping characteristics of the BP neural network to establish a functional model. In view of the
uncertainty of advantages and disadvantages of the two sensing models, the sensing results of the
two models are weighted to obtain the predicted final queue length. VISSIM and MATLAB are used
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to verify the model and analyze the influence of different penetration rates on the sensing results.
Absolute error and relative error are used to test the reliability of the model.

This paper is organized as follows. In Section 2, a short literature review on queue length
estimation based on connected vehicles data is presented. Section 3 introduces the combined model
including the shockwave-based and the BP neural network-based models. The simulation and result
analysis are reported in Section 4. Finally, Section 5 presents the conclusions of this paper and
suggestions of future work on this particular topic.

2. Literature Review

With the development of V2X technology, the connected vehicle as a "mobile sensor" to collect
traffic information has become the key to traffic management. More and more people are devoted
to researching the processing and the application of connected vehicle data, looking for a method
that can accurately reflect the real-time state of traffic with little connected vehicle data. For example,
Zheng et al. [23] use GPS trajectory data of a small number of connected vehicles or other navigation
devices to predict the traffic volume at the intersection, and the model regarded vehicle arrival
as the Poisson distribution to establish the maximum likelihood problem solving flow evaluation.
Wang et al. [24] propose a new topological framework based on connected vehicle data, which is used
to model road networks and present the propagation patterns of traffic flow; the study designs a graph
recurrent neural network as an online predictor to learn the propagation patterns in the road networks.
The diversification of traffic information makes the application of connected vehicle data more and
more extensive.

Large amounts of connected vehicle data are collected, processed, and analyzed for traffic state
evaluation [25]. Firstly, accurate traffic flow prediction in an intelligent transport system using
connected vehicles is significant. EI-Sayed et al. [26] propose a new supervised learning model to
capture knowledge on all possible traffic patterns. This model is a refinement of the support vector
machine (SVM) kernels with a radial basis function. Goudarzi et al. [27] present a novel approach by
using traffic data in a self-organizing vehicular network. The results show that the proposed model
achieves high performance accuracy for predicting traffic flow. Secondly, vehicle speed prediction
is important information for many applications, including electric vehicles’ power management and
emission or speed limit regulation [28]. In [29], the real-time traffic information of adjacent roads is
accessible and utilized for vehicle speed prediction. Thirdly, density prediction is also an important
work in real-time road network state evaluation. Several other traffic measures, such as traffic speed or
volume, can act as surrogate indicators for a congested situation, but density has been identified as the
most important parameter to identify traffic congestion [30]. Various infrastructure-based mechanisms
are proposed in [31] to estimate traffic density relying on vehicle detection devices. Furthermore,
C.B. et al. [32] discuss the evaluation of a traffic congestion detection system that can detect traffic
congestion in a precise way by means of a series of algorithms that reduces localized vehicular emission
by rerouting vehicles. The analysis based on connected vehicle data will become the most important
means of urban traffic state evaluation.

Queue length sensing based on connected vehicles is one of the applications. Vehicle arrival
is often seen as a probability problem. In [33–35], mathematical statistics are used to calculate
conditional probability distribution of queue length and the expected queue length, taking the position
of the last connected vehicle in the motorcade, the queue time, and the total number of connected
vehicles as inputs. Meanwhile, the calculation methods of penetration rate and arrival rate are given.
The relationship between sensing error and penetration rate is analyzed in [36], and the calculation
formula of sensing error is proposed. The sensing model requires that the probability functions of
penetration rate and queue length of the motorcade should be determined in advance and are only
suitable for unsaturated isolated intersections. The theory of shockwave describes the formation and
dissipation process of queue by analyzing the changes of traffic flow density [37], which have a critical
state in time and space. An and Ban et al. [38–41] determine the maximum queue length of the entrance
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lane based on the critical points of the changes in density and travel time. Feng et al. [42] propose
an estimation of location and speed (EVLS) algorithm to determine the speed and the position of
unconnected vehicles on the road by using the status information of connected vehicles. The sensing
model divides the intersection entrance road into three areas: queuing area, deceleration area, and free
driving area. Although the influence of arrival rate change is taken into account in this method,
no specific method for determining correction parameters is given. The model is verified with a high
penetration rate, which needs to be further verified if it can be applied to the transition phase of the
vehicle infrastructure cooperative environment.

Based on V2X technology, trajectory information of connected vehicles is not difficult to obtain.
In [43,44], the trajectory reconstruction model is established based on location and time information of
connected vehicles, and queue length evaluation and trajectory optimization are completed. However,
when the penetration rate is low, the sensing results produce large errors. Similar to the idea of
mathematical statistics in [33], Xu et al. [9] convert the sensing problem of queue length into the
estimation problem of the number of vehicles and propose an improved interpolation algorithm to
analyze the sensing results at different penetration rates. This method has a large sensing error when
penetration rate is low. It assumes that the vehicle arrives with Poisson distribution but does not
consider the impact of uneven distribution on the sensing results. As mentioned in [45], an estimation
algorithm based on convex optimization extends the widely used linear back of queue (BoQ) curve
to segment linear BoQ curve and uses the convex optimization model to estimate the segment curve
in order to consider more practical situations. The effects of low penetration rate, low sampling rate,
and traffic disturbance on the model are considered, and the vehicle departure information from an
upstream intersection is used to improve evaluation accuracy. However, the model is too complicated
and requires high data processing capability for the roadside unit.

In addition, it is more difficult to predict the queue length by relying only on the information
of intelligent vehicles. Therefore, many scholars use multi-source information fusion technology to
improve the accuracy of sensing. In [46,47], the data fusion of loop detectors and connected vehicles is
used to build the sensing model. In [48], the data fusion of upstream and downstream detectors is
used to build the discriminant models based on time occupancy rates and impulse memories. In [49],
the data collected by the distributed video network are integrated to monitor and track the changes
of shockwaves in real-time. Data fusion greatly improves the accuracy of sensing but also increases
the complexity and the economic cost of implementation. Therefore, under the premise of low cost
and low penetration rate, the evaluation model that can guarantee high sensing accuracy will have
larger application scenarios. In [50] and [51], a calculation method of the minimum penetration
rate is proposed, and experiments confirm that the minimum penetration rate meeting the accuracy
requirement is 1%. If the expected model is more in line with the actual situation, more factors need to
be considered, such as vehicle type, lane transformation, etc. This paper does not involve the influence
of such factors in the results.

The contributions of the proposed method are mainly as follows: (1) a new shockwave sensing
model is defined, which takes into account the influence of upstream intersection flow change on
downstream queue length and gives specific correction parameters and calculation formulas; (2) the
sensing method in this paper does not need to determine penetration rate in advance, which makes
up for the assumption in [3,24,34,35] and is applicable to different penetration rate environments;
(3) the sub-models in this paper have different application conditions. According to the comprehensive
analysis of the proposed weight calculation method, the combined model is more robust than a single
model. The above characteristics allow this method to have wider application scenarios and lower
application costs.
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3. Queue Length Sensing Model

3.1. Basic Conditions

The queue length sensing method proposed in this paper needs to meet some following
basic conditions:

(1) Connected vehicles must be equipped with GPS and wireless transmission equipment;
(2) It is assumed that roadside units (such as signal controller) can accurately obtain information

such as connected vehicle’s ID and location;
(3) The motorcade in each entrance lane must contain at least one connected vehicle;
(4) This paper assumes that all participating vehicles (including connected vehicles and unconnected

vehicles) are standard vehicles.

The first condition requires the GPS to accurately locate the lane of a vehicle, and it requires
the wireless transmission device to formulate an emergency treatment plan to ensure the timely
transmission of information to the roadside unit in case of equipment failure. The second condition
requires the roadside unit to receive information sent by connected vehicles in real-time and to
accurately process the data effectively and feed back to vehicles in time. The third condition requires
each motorcade to include at least one connected vehicle, because the method studied in this paper is
applicable to the vehicle infrastructure cooperative environment. This paper does not consider the
queue sensing of all unconnected vehicles. Some literature refers to the use of traditional detection
methods (such as loop detector) to deal with this situation and the use of information fusion technology
to achieve the sensing work. The fourth condition assumes that all vehicles are standard vehicles,
which means a vehicle’s type is not considered. However, in the actual situation, different vehicle
types need to be converted according to the vehicle conversion coefficient. The above basic conditions
can reduce difficulty and complexity of problem research to a large extent. In the future, we hope to
reduce the limitation of hypothesis conditions and expand this method to a larger scope of application.

The four basic conditions above imply that the queue length sensing model has some limitations.
Firstly, the sensing scene must be the signalized intersections. Secondly, the model is only applicable
to mixed traffic environments, where both connected and unconnected vehicles exist in the motorcade,
or traffic environments where all connected vehicles exist. Finally, because the model assumes that
vehicles pass through the intersection in the form of waves, the model is suitable for predicting the
length of the queue formed in the entrance lane.

Based on the above preconditions and limitations, this paper proposes a real-time sensing model
for queue length. The overall structure of this model is shown in Figure 1. The shockwave-based
sensing and the BP neural network-based sensing respectively estimate the queue length and combine
the advantages of two sub-models in different penetration rates to construct the combined sensing
model, which has higher accuracy.
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Figure 1. The overall structure of the sensing model.

3.2. Sensing Model Based on Shockwave

The queue length sensing based on shockwave uses V2X technology to determine total queue
length of each entrance lane during the red-light period, which is used as the basis for signal
optimization. Queuing vehicles are defined as vehicles that arrive at the intersection entrance load with
the speed reduced to zero and wait for the green light to pass. The connected vehicle needs to send the
following information to the roadside unit: vehicle’s ID, location, queue time, and speed. Assuming
that the vehicle arrives in a Poisson distribution, forms a queue with the corresponding arrival rate,
and passes back in the form of a wave during the red light, the wave is defined as a shockwave. The key
is to determine the velocity of the shockwave using connected vehicles’ information. Based on the
number of connected vehicles in the motorcade, this paper takes the single-lane scenario as an example
for simplified analysis.

Scenario 1: There is only one connected vehicle in the motorcade (n = 1).
Figure 2 shows the schematic diagram of only one connected vehicle in the motorcade; the solid

rectangle is the connected vehicle p, and n represents the number of connected vehicle. Penetration
rate is defined as the ratio of the number of connected vehicles in a motorcade to the total number of
vehicles. The predicted time period is the red light period of each signal cycle, i.e., (tr, t f ). tr represents
the start time of the red light, t f represents the end time of the red light. In Figure 2, lp represents the
queue length in front of the connected vehicle, which is determined by the difference between the
position of the connected vehicle and the stop line. ln represents the queue length of the unconnected
vehicle behind the connected vehicle. The velocity of the shockwave can be determined by Equation (1):

v1 =
lp

t1 − tr
. (1)

where t1 is the stop time of the connected vehicle. The total queue length is equal to the sum of the
queue length of all vehicles in front of the connected vehicle (including the connected vehicle) and the
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queue length of the unconnected vehicles arriving at the rest red light time, which can be calculated by
Equations (2) and (3):

ln = v1
(
t f − t1

)
. (2)

l = lp + v1(t f − t1). (3)

where l represents the total queue length of the lane. Since there is only one connected vehicle in
Scenario 1, it is prone to a large deviation of the sensing results.
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Scenario 2: There are at least two connected vehicles in the motorcade (n ≥ 2).
There are n connected vehicles in the motorcade as shown in Figure 3 and the velocity of the

shockwave is determined by Equation (4):

vn =
1

n− 1

n−1∑
i=1

lnp − lip
tn − ti

(i = 1, 2, · · · , n− 1). (4)

where i is the connected vehicle, lnp is the queue length of the last connected vehicle, lip is the queue
length before the i connected vehicle, which is determined by the difference between the position of
the last connected vehicle and the stop line, tn is the stop time of the nth connected vehicle, and ti is the
stop time of the i connected vehicle. The queue length of unconnected vehicles after the nth connected
vehicle is determined by Equation (5):

ln = vn
(
t f − tn

)
. (5)
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The total queue length of the entrance lane is determined by Equation (6):

l = lnp + vn
(
t f − tn

)
. (6)

However, vehicle arrival is random and non-uniform in the actual traffic environment. When the
last connected vehicle enters the motorcade, the subsequent unconnected vehicles may form a queue
with different arrival rates. If the original arrival rate is still used to predict the queue length of
subsequent vehicles, the results may be overestimated or underestimated. For example, when the
arrival rate decreases, the predicted value of queue length will be larger, and vice versa. Therefore,
a modified parameter r is proposed in this paper to modify the predicted values of Equations (3)
and (6).
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In urban roads, the distance between upstream and downstream intersections is relatively close,
and the arrival rate of vehicles at the downstream intersection has a great relationship with traffic flow
of an upstream intersection. As shown in Figure 4, the queue length of a downstream lane changes with
upstream traffic flow. The predictive value of queue length can be corrected by using the connected
vehicle’s information received by the roadside units at the upstream intersection. The schematic
diagram of upstream and downstream traffic flow is shown in Figure 5.
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In Figure 5, the blue rectangle represents the loop detector, which is arranged in the exit lane at the
intersection. It is worth noting that the loop does not need to be reinstalled in practical applications—the
existing loop detector, such as the loop used to detect whether a vehicle is running a red light, can be
used. When the connected vehicle passes through the loop detector, the roadside unit will receive the
ID and the time (the time passing through the loop) information sent by this vehicle and will record
the number of unconnected vehicles between two connected vehicles. The formula for calculating
correction parameter r is as shown in Equation (7):

Remark 1: Since the actual traffic arrival is stochastic and generally nonhomogeneous, it is possible that the last
connected vehicles join the queue in a relatively short time, but the arrival rate of unconnected vehicles drops
significantly afterwards. In this case, if the velocity of the shockwave is multiplied by the difference between the
arrival time of the last connected vehicle and the end time of the red light, the queue length can be overestimated.
Therefore, it is significant to consider the correction parameter r.
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r =

qk,k+1
tk+1−tk
qk−1,k

tk−tk−1

. (7)

where k is the connected vehicle passing the loop detector, qk,k+1 is the number of unconnected vehicles
between k and k + 1 connected vehicles, and tk is the time when the k connected vehicle passes through
the loop detector. It can be seen from Equation (7) that, when the upstream flow increases, the rate
r > 1, and the downstream arrival rate increases. When the upstream flow decreases, r < 1, and the
downstream arrival rate decreases. Therefore, the modified formula for calculating the total queue
length is shown in Equation (8):

l1 =

 lp + v1r
(
t f − t1

)
, (n = 1);

lnp + vnr
(
t f − tn

)
, (n ≥ 2).

(8)

In the simulation and in actual operation, this parameter needs to be properly adjusted by
considering the distance and the average speed of upstream and downstream intersections.

3.3. Sensing Model Based on BP Neural Network

The queue length of the intersection is affected by many factors and has great randomness. A neural
network is composed of many simple information processing elements of neurons or nodes, which can
automatically adjust the connection weight between internal neurons to match the input–output
response relationship and has the advantage of nonlinear mapping.

The BP neural network is composed of two parts, the forward transmission of information and
the back propagation of error. Figure 6 is a simplified BP neural network diagram. In the figure, i is the
input layer neuron, with a total of r; j is the hidden layer neuron, with a total number of s1; k is the
output layer neuron, with a total number of s2; pi is the sample input, tk is the sample output, wi j is the
weight between input layer and hidden layer, and w jk is the weight between hidden layer and output
layer. The specific process of the BP neural network is as follows.

Step 1: Forward transmission of information. It is known that the weight between neurons is w,
the deviation is b, and the neuron output value is a. Then, the output of the j neuron in the hidden
layer is:

a j = f 1(
r∑

i=1

wi jpi + b j)( j = 1, 2, · · · , s1). (9)

The output of the k neuron in the output layer is:

ak = f 2(
s1∑

j=1

w jka j + bk)(k = 1, 2, · · · , s2). (10)

where f 1 is the activation function between input and hidden layer, and f 2 is the activation function
between hidden and output layer.

Step 2: Back propagation of the error. If the desired output value is not obtained at the output layer,
the network calculates the error variation value of the output layer and propagates back. The error is
transmitted back along the original connection through the network to adjust the weight of each layer
of neurons until the desired value is reached. The error function is:

E(w, b) =
1
2

s2∑
k=1

(tk − ak)
2. (11)
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The gradient descent method is used to calculate the weight change and the back propagation of
error. For the weight from j input to k output:

∆w jk = −η
∂E
∂w jk

= η · δ jk · a j. (12)

where,
δ jk = (tk − ak) · f 2′. (13)

thus,

∆bk = −η
∂E
∂bk

= η · δ jk. (14)

For the weight from i input to j output:

∆wi j = −η
∂E
∂wi j

= η · δi j · pi. (15)

where,

δi j = e j · f 1′, e j =
s2∑

k=1

δ jkw jk, δ jk = (tk − ak) · f 2′. (16)

thus,
∆b j = ηδi j. (17)

Thus, the queue length l2 of the sub-model based on the BP neural network is given as Equation (18).

l2 = ak. (18)

This paper assumes that the queue length sensing model has three inputs, p1, p2, and p3. They are
the distance between the last connected vehicle and the stop line, the stop time of the last connected
vehicle, and the number of connected vehicles in the motorcade. The queue length is the only output
t1, and the number of neurons in the hidden layer can be determined by experiment or experience.
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3.4. Weight Calculation and Reliability Test of Combined Model

Combining the advantages of the two sub-models, the weight of the sub-model is determined by
the ratio of the stop time of the last connected vehicle to the red light time. The formula is as follows:

L = αl1 + (1− α)l2. (19)

α =
t− tr

t f − tr
. (20)
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where L is the final queue length, l1 is the predicted value based on the shockwave, l2 is the predicted
value based on the BP neural network, α is the weight of the shockwave model, and t is the stop time
of the last connected vehicle.

The accuracy of the combined sensing model is tested by two error indices, namely absolute error
AE and relative error RE. The specific calculation formula is as follows:

AE =
∣∣∣y j − ŷ j

∣∣∣. (21)

RE =

∣∣∣y j − ŷ j
∣∣∣

y j
× 100%. (22)

where y j represents the actual value of queue length in j cycle and ŷ j represents the predictive value of
queue length in j cycle.

3.5. Analysis of Model’s Time Complexity

Based on the description of the shockwave and the BP network combined sensing model, the
queue length algorithm at signalized intersections is shown as Algorithm 1.

Algorithm: Queue Length Sensing Algorithm at Signalized Intersection

Input: l1, the predicted queue length based on shockwave; l2, the predictive queue length from BP neural
network; α, the weight of shockwave model; vn, velocity of shockwave; n is the number of connected
vehicles in the queue; lp, the queue length in front of the last connected vehicle; t f , the end time of red
light; tr,the start time of red light; t1, the stop time of connected vehicle; p1, the distance between the last
connected vehicle and the stop line; p2, stop time of the last connected vehicle; p3, the number of
connected vehicles in the motorcade.

Output:
1: L, queue length estimate by combined sensing model.
2: Algorithm begin:
3: Computing the queue length estimate l1 based on shockwave,
4: if n == 1 then
5: l1 = lp + v1r(t f − t1)

6: where v1 =
lp

t1−tr
;

7: r =
qk,k+1

tk+1−tk
qk−1,k

tk−tk−1

8: else
9: l1 = lnp + vnr(t f − tn)

10: where vn = 1
n−1

n−1∑
i=1

lnp−lip
tn−ti

(i = 1, 2, · · · , n− 1)

11: end if
12: BP neural network utilized to sensing the queue length based on learning of history records,

13: ak = f 2(
s1∑

j=1
w jka j + bk)(k = 1, 2, · · · , s2). where a j is the output of hidden layer,

a j = f 1(
r∑

i=1
wi jpi + b j)( j = 1, 2, · · · , s1). f 1 and f 2 is activation function among the input, hidden and output

layers.
14: compute the combined sensing queue length,
15: L = αl1 + (1− α)l2.
16: where α = t−tr

t f−tr
and l2 = ak

17: return L
18: Algorithm end
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The information used in the sensing algorithm is given at the beginning, which can be collected by
the road side unit (RSU) via V2X. The sensing algorithm is running on the central processing unit (CPU)
of the RSU. To evaluate the proposed algorithm’s performance, the storage and the time complexity
are analyzed. Moreover, the storage and the time complexity of a probability distribution (PD) model
proposed in [3x] is utilized to compare with the algorithm proposed in this manuscript.

The time complexity of the combined sensing model can be calculated partly according to
Equation (19). The time complexity of the shockwave model is as follows:

O(l) = O
(
lnp
)
+ O(vn) ×O(r) ×O

(
t f − tn

)
(23)

where O
(
lnp
)
= O(1), O(vn) = O(n), O(r) = O(2n), and O

(
t f − tn

)
= O(1), thus the time complexity

of the shockwave model is O
(
n2

)
. n is the number of connected vehicles collected at the RSU.

Then, the time complexity of the BP sensing model is O(l2) = O(r× s1× s2), where r is the number
of the input layer neuron, s1 is the number of the hidden layer neuron, and s2 is the number of the
output layer neuron. Thus, the time complexity of the combined sensing model can be expressed by
the following equation:

O(L) = O(1) + O(n) ×O(2n) ×O(1) + O(r× s1× s2) (24)

The second part is related to the structure of the BP network. The time complexity will not increase
with the number of vehicles. Once the structure of the BP network is determined, the time complexity
of this sub-model is a constant. From this point of view, the time complexity of the combined sensing
model is O

(
n2

)
.

Remark 2: The number of connected vehicles is not very large because the penetration rate keeps in a relatively
low level for a long period. Additionally, the detection area before the stop line in the intersection is limited, and
the number of vehicles is not very large since the penetration rate becomes high in the far future.

4. Simulation and Result Analysis

To verify the effectiveness of the model proposed in this paper, a vehicle infrastructure cooperative
environment is built in VISSIM to obtain real-time vehicle status information, signal transformation
information, and upstream exit traffic volume information. MATLAB programmable environment is
used to verify the two sub-models, and the influence of the model on sensing results of queue length
under different penetration rates (ρ) of connected vehicles is analyzed. In order to better illustrate the
performance of the method proposed in this paper, a comparative analysis is made between this model
and the PD model [3]. The results show that the proposed sensing model is more suitable for mixed
traffic environments with low penetration rates.

4.1. Model Validation Based on Shockwave

A road network is built in VISSIM in which the distance between upstream and downstream
intersections is 500 m, and a loop detector is set at the upstream exit. The time interval for the connected
vehicle to send information is 0.2 s. The simulation duration is 1 h, the cycle length is 70 s, and the
vehicle data of 10 cycles are taken as the basis for verification analysis.

Remark 3: The connected vehicles broadcast information periodically, including ID, location, time, and speed,
via basic safety message (BSM), which is defined in SAE J2735. In many investigations, vehicles typically
broadcast BSMs at an interval of 100 to 300 ms [52,53]. Without loss of generality, the time interval for the
connected vehicle to send information is set as 0.2 s (200 ms) in our simulation.
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One of the major contributions of this paper is the sensing of queue length with appreciable
estimation accuracy, even when the penetration rate is low and the traffic flow changes greatly.
A correction is introduced in the sensing model to remedy these cases. The effect of correction is
studied in the simulation. Figure 7 shows the comparison of predicted values before and after the
correction parameter. It reveals that the prediction accuracy is significantly improved after considering
the modified parameters when the penetration rate is lower than 50%. However, when the penetration
rate is greater than 50%, the influence of the modified parameters on the predicted value is not obvious,
even worse than before the modification (see Figure 7c,d). This is because when the penetration rate is
large, the position of the last connected vehicle in the motorcade is close to the actual queue length, and
the change of vehicle arrival rate has little influence on the prediction result. Even when the change
of arrival rate is taken into account, the queue length of unconnected vehicles arriving during the
remaining red light period is estimated to be too high or too low, resulting in a larger error. Therefore,
it is necessary to state here that the modified parameter r proposed in this paper needs to be considered
when the penetration rate is less than 50% but not when the penetration rate is higher than 50%.

The results of the model validation are shown in Figure 8. The sensing results of the model under
different penetration rates are analyzed, and the penetration rates of Figure 8a–d are 10%, 30%, 50%,
and 70%, respectively. It can be seen from the figure that the predicted queue length is obviously closer
to actual queue length at a higher penetration rate, and the sensing accuracy of the model is higher.Sensors 2019, 19, x FOR PEER REVIEW 14 of 22 
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It can be found from the analysis of Figure 8a,b that the sensing accuracy is higher in the fifth and
the sixth cycle when penetration rate is lower. This is because in cycles five and six, the last connected
vehicle in Figure 8a is closer to the end of the motorcade, while the last connected vehicle in Figure 8b is
closer to the front of the motorcade. Therefore, the sensing model based on the shockwave mainly relies
on the information provided by the last connected vehicle in the motorcade. When the penetration
rate is low and the connected vehicle is located in the front of motorcade, the sensing accuracy will be
reduced. Thus, this model is more suitable for the sensing of queue length when the penetration rate is
high. In order to make up for the shortcomings of this model, a queue length sensing model based on
a neural network is proposed to balance the sensing error caused by the shockwave model.

The simulation results in Figure 8 show that the sensing accuracy changes in different cycles
when the penetration rate is determined. The reason is that the location of the last connected vehicle
is different in every cycle. The location of connected vehicles is random in the simulation. Thus,
the subsequent length evaluation of the unconnected vehicle is greatly affected by the arrival rate.
More specifically, when the upstream traffic flow rate changes greatly, the downstream queue length
estimation will be overestimated or underestimated, which may lead to bigger deviation in the actual
queue length. In our sensing model, the location of connected vehicles is unknown in advance and is
distributed randomly, which is close to the real traffic situation.
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4.2. Model Validation Based on BP Neural Network

The BP neural network is a widely used network model. In order to ensure the robustness of the
model and the comprehensiveness of queuing information, one-week historical data of connected
vehicles and queues are collected to build and train the model; the first 70% is used as the training data,
15% as the test data, and 15% as the verification data. In addition, the model is updated once a week to
accommodate dynamically changing traffic flow. The single hidden layer network structure is adopted
in the sensing model, with three nodes in the input layer and one node in the output layer. In this
paper, the number of neurons in the hidden layer is set as 10 by the experimental method, which has
a great impact on the network performance. If the number is too small, the accuracy of the sensing
model will be reduced; if the number is too large, the training time of the network will be increased,
and the sensing accuracy will be affected.

In addition, the selection of the training function and the transfer function also affects the
performance. In this paper, tansig and logsig functions are selected as the transfer functions between
the input layer and the hidden layer and between the hidden layer and the output layer, respectively.
Trainlm is selected as the training function. After the network is trained, the predicted output queue
length is obtained based on real-time connected vehicles data.

Figure 9 shows the sensing results of the sensing model based on the BP neural network at
different penetration rates. With the increase of penetration rate, the accuracy is improved. Although
the sensing error of some cycles is large in Figure 9c,d, the sensing result of more cycles is almost
equal to actual queue length. The sensing model based on the BP neural network is completely
dependent on the information sent by connected vehicles, especially the state information of the last
connected vehicle, thus the model can achieve high sensing accuracy in the traffic environments with
low penetration rates.

Sensors 2019, 19, x FOR PEER REVIEW 16 of 22 

 

Figure 9 shows the sensing results of the sensing model based on the BP neural network at 
different penetration rates. With the increase of penetration rate, the accuracy is improved. Although 
the sensing error of some cycles is large in Figure 9c,d, the sensing result of more cycles is almost 
equal to actual queue length. The sensing model based on the BP neural network is completely 
dependent on the information sent by connected vehicles, especially the state information of the last 
connected vehicle, thus the model can achieve high sensing accuracy in the traffic environments 
with low penetration rates. 

 

(a)  

 

(b)  

 

(c)  

 

(d)  

Figure 9. Queue length at 10% penetration rate (a) and queue length at 30% penetration rate (b) and queue 
length at 50% penetration rate (c) and queue length at 70% penetration rate (d). 

4.3. Accuracy Analysis of Combined Sensing Model 

The sensing model based on the shockwave is suitable for the connected vehicles when the 
distribution is later in the motorcade or the penetration rate is higher, because the shockwave at this 
time can better reflect the formation process of the queue state of the entrance lane. The BP neural 
network model with characteristics of nonlinear mapping can more accurately predict the queue 
length of mixed traffic flow when the connected vehicle is in the front of the motorcade and the 
penetration rate is low. In view of the uncertainty of the sensing environment, the final sensing 
results are obtained by weighting the sensing results of the two sub-models. The sensing results can 
give full play to the advantages of the two sub-models and can balance the sensing errors of the 
sub-models to a certain extent. The combined model is very suitable for intersections with large 
dynamic change of traffic flow in urban roads and can provide more convenience for traffic signal 
management and control. 

Figure 9. Queue length at 10% penetration rate (a) and queue length at 30% penetration rate (b) and
queue length at 50% penetration rate (c) and queue length at 70% penetration rate (d).



Sensors 2019, 19, 2059 16 of 22

4.3. Accuracy Analysis of Combined Sensing Model

The sensing model based on the shockwave is suitable for the connected vehicles when the
distribution is later in the motorcade or the penetration rate is higher, because the shockwave at this
time can better reflect the formation process of the queue state of the entrance lane. The BP neural
network model with characteristics of nonlinear mapping can more accurately predict the queue length
of mixed traffic flow when the connected vehicle is in the front of the motorcade and the penetration
rate is low. In view of the uncertainty of the sensing environment, the final sensing results are obtained
by weighting the sensing results of the two sub-models. The sensing results can give full play to the
advantages of the two sub-models and can balance the sensing errors of the sub-models to a certain
extent. The combined model is very suitable for intersections with large dynamic change of traffic flow
in urban roads and can provide more convenience for traffic signal management and control.

Figure 10 is the error analysis diagram of the combined model. Figure 10a is the absolute error,
and Figure 10b is the relative error. The sensing effect of the combined model may be worse than that
of one of the sub-models in the partial period, but the sensing effect of the model in the large range and
in multiple stages is better than that of either of the sub-models. The sensing results under different
penetration rates are analyzed experimentally. According to Figure 10, when the penetration rate
increases, the sensing error significantly decreases. When the penetration rate is 70%, the predicted
result is almost equal to the actual queue length. If the road driving vehicles reach a higher penetration
rate, the sensing accuracy will be higher.
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Figure 10. Absolute error of combined sensing model (a) and relative error of combined sensing
model (b).

It can be seen from the relative error diagram that the accuracy of the combined sensing model
can reach 95% at a high penetration rate, except for individual cycles. Even when the penetration rate
is very low, the accuracy can reach 85%. This feature of the model is very suitable for the gradual
popularization of connected vehicles. In the transition stage from unconnected vehicles to connected
vehicles, this model is of great significance for signal processing at intersections.
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4.4. Comparison and Analysis with PD Model

In order to prove the universality of the method proposed in this paper, connected vehicle data of
100 cycles are collected for analysis. At the same time, the proposed model is compared with the PD
model to illustrate sensing performance. The PD model establishes the probability density function
of the connected vehicle and determines the expected queue length by calculating the conditional
probability distribution of the queuing vehicle. A discrete wavelet transform (DWT) is applied
to enhance the proposed queue estimation to be more accurate and consistent, regardless of the
randomness in the penetration rate. The comparison results are shown in the figure below.

Figure 11 analyzes the comparison results of the combined sensing model with the PD model at
different penetration rates. It can be seen from Figure 11c,d that when the penetration rate is high,
the predicted value of the combined model and the PD model in this paper is basically equal to the
actual queue length. However, when the penetration rate is low (as shown in Figure 11a,b), both the
combined model and the PD model have certain errors, but the PD model has a worse effect, which is
particularly obvious in Figure 11a. On the one hand, this is because when the penetration rate is low,
no moving connected vehicle is detected in the PD model, thus queue length is underestimated. On the
other hand, compared with the PD model, the combined model considers the impact of upstream flow
rate change on downstream queue length in low penetration rates, which is necessary for real-time
length evaluation. Furthermore, it is expected that the combined sensing model in this paper can
comprehensively analyze two sub-models and integrate the multi-source traffic information to achieve
higher evaluation accuracy. In addition, the PD model assumes that the penetration rate of connected
vehicles is known, and the prediction result relies too much on this value. If penetration rate changes
greatly with time, the prediction value of this model will produce a large error.

In general, the combined model can sense the queue length with high accuracy in mixed traffic
environments. Even at low penetration rates (e.g., 10%), the model can achieve a sensing accuracy of
85%. However, this model is subject to certain limitations, such as the inclusion of connected vehicles
in the motorcade. When the last connected vehicle in the motorcade is in front, the sensing accuracy of
this model will be affected to some extent. Even so, the sensing model in this paper is still of great
application value in flow prediction and signal management based on connected vehicles.
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5. Conclusions

In this paper, we propose a queue length sensing model suitable for mixed traffic environments.
Simulation results show that the model has a high sensing accuracy in traffic environments with
low penetration rates and variable traffic flow, benefiting from the correction of the shockwave and
from learning history records. The simulation reveals that the sensing accuracy is proportional to the
penetration rate. Compared with most existing queue estimations from connected vehicle technology
for pre-timed signals, the proposed sensing model in our manuscript can be applied to adaptive signal
control in the intersection, which will promote the traffic throughput and efficiency. The proposed
sensing model has higher performance than the PD model when the penetration rate is low and
almost equivalent performance with higher penetration rates. While the penetration rate is not needed
in the proposed model, the combined sensing model is more applicable for mixed traffic scenarios
(both under-saturated and saturated conditions) with much looser conditions.

It requires that there is at least one connected vehicle in a cycle. Moreover, the estimate accuracy
may be affected by the locations of the connected vehicles, especially when all of the vehicles stop
in the front part of the queue. It is interesting and valuable to investigate an algorithm that is not
susceptible to the location of connected vehicles even when the penetration rate is low.
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