
Complete Genome Sequence of Lytic Oenococcus oeni
Bacteriophage OE33PA

Fety Jaomanjaka,a Olivier Claisse,a,b Cécile Philippe,a Claire Le Marreca,c

aISVV, EA4577 Oenologie, University of Bordeaux, Villenave d’Ornon, France
bINRA, ISVV, USC 1366 Oenologie, Villenave d’Ornon, France
cBordeaux INP, ISVV, EA4577 Oenologie, Villenave d’Ornon, France

ABSTRACT Oenococcus oeni is the most common species of lactic acid bacteria as-
sociated with malolactic fermentation in wine. Here, we report the genome se-
quence of the lytic phage OE33PA (vB_OeS_OE33PA). It has a morphotype similar to
that of members of the Siphoviridae family, a linear 39,866-bp double-stranded ge-
nome with cohesive ends, and 57 predicted open reading frames.

After alcoholic fermentation, most wines undergo malolactic fermentation (MLF),
driven by Oenococcus oeni, to improve their organoleptic properties and microbi-

ological stability (1). Phages infecting O. oeni have been examined, as they could delay
MLF (2–6) and open the way for less-desired indigenous populations to dominate in
wines, impairing quality (1, 7). However, so far, no free phage infecting O. oeni has been
sequenced, and our current knowledge about phage genomes is derived from the
sequencing of prophage loci recognized in prokaryotic genome sequencing proj-
ects (8, 9).

Phage OE33PA (vB_OeS_OE33PA) was recently isolated from a red wine using O.
oeni host strain IOEBS277 (10). Its apparent obligately lytic lifestyle was intriguing since
most oenophages reported to date are temperate (11). Purified DNA was sequenced
using Illumina MiSeq technology (Genome-Transcriptome facility of Bordeaux). An
average coverage of 3,855� was achieved. Reads were assembled into a single contig
using SPAdes 3.10.1 (12), and phage genome ends were determined through closure
PCR and Sanger sequencing.

Phage OE33PA has a linear double-stranded DNA genome of 39,866 bp with 13-
base-long cohesive ends (CGCACACATTGGA) and a G�C content of 37.29%. Annotation
of the open reading frames (ORFs) was performed using Prokka v1.12 (13) with a
custom database containing phage sequences from the Swiss-Prot database and
refined with the Rapid Annotation using Subsystems Technology server (14). A total of
57 ORFs were predicted from the genome, and no tRNAs were found. All ORFs translate
into proteins ranging in size from 44 to 1,613 amino acids. A total of 49 ORFs are
predicted on the forward strand, while the remaining 8 ORFs have a reverse orientation.

Sequence similarity searches were performed with the translation of each predicted
ORF against the NCBI protein database using BLASTp (15). Based on homology to
known phage proteins, 28 out of 57 ORFs were assigned a predicted function. Although
OE33PA cannot lysogenize its host (10), it is predicted to contain a typical lysogeny
module, suggesting that a temperate ancestor spontaneously gave rise to the virulent
OE33PA mutant. The lysogeny module includes six genes which are all divergently
transcribed, of which two encode hypothetical proteins with a short C-terminal (SHOCT)
domain (16). The module also encodes a repressor and an integrase which shares 99%
identity with that of oenophage �10MC (17). However, the 15-bp attP site found
directly downstream of the int gene in �10MC was not identified in OE33PA (17).

The genome of OE33PA contains functional genes related to replication (helicases,
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primase), structure proteins (several tail proteins, phage head-tail adaptor protein),
packaging (terminase and portal protein), and lysis (lysin and holin). Two extra
nonphage genes (morons) downstream of the lysis cassette specify a putative sulfite
exporter and a glycosyltransferase.

Data availability. The phage genome sequence is available at GenBank under the

accession no. MH220877.
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