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A B S T R A C T

Bordetella pertussis causes whooping cough in humans that spreads directly from individual to individual mainly 
by aerosolized respiratory droplets. Nowadays, it gained the attention of scientific community because it has 
already been reemerged as one of the major public health threats despite widespread vaccination efforts. 
Moreover, the growing antibiotic resistance has made it difficult to combat this pathogen with currently avail-
able antibiotics. Consequently, screening drug targets and discovering drugs against unique proteins of the 
pathogen could be a promising alternative. With this view, 3,359 proteins of B. pertussis were screened in silico to 
identify non-duplicate proteins crucial for survival of the bacteria, non-homologous to humans, involved in 
unique metabolic pathways of the pathogen, and conserved among various bacterial strains. Among these, 
Chemotaxis protein Mota, Chromosomal replication initiator protein DnaA, Short-chain fatty acids transporter, 
[protein-PII] uridylyltransferase, Type III secretion protein V, Potassium-transporting ATPase potassium-binding 
subunit, N-acetylmuramoyl-L-alanine amidase, and RNA polymerase sigma-54 factor fulfilled these criteria. 
These proteins were further analyzed for qualitative characteristics such as virulence properties and associations 
with antibiotic resistance, etc. In addition, plant metabolites were screened against these unique proteins uti-
lizing molecular docking to discover putative drugs against them. Four metabolites exhibited superior binding 
affinity and favorable ADME (Adsorption, distribution, metabolism, and excretion) properties which can further 
be tested in vivo.

1. Introduction

Bordetella pertussis is the agent behind pertussis, or whooping cough, 
which is characterized by a ‘whooping’ sound when the person breathes 
in. Basic features of this pathogen is gram-negative, aerobic, motile 
coccobacillus that expresses a flagellum-like structure (Hoffman et al., 
2019). Airborne droplets are the means of its spreading, with an incu-
bation time that may ranges between 6 and 20 days (7-10 days on 
average) (David, 2008), and the only known reservoir for this pathogen 
is humans (Güriş et al., 1999). Children under the age of one are the 
main sufferers if they are not vaccinated or with faded immunity. 
However, people of all ages can get infected with it, and it can even be 
life-threatening, especially in young children.

Currently, vaccine for this pathogen is available in two forms that are 
acellular pertussis vaccine (aP) and whole-cell pertussis vaccine (wP). 
Vaccination of baboons with the aP provides protection only against the 

symptoms, while ineffective against colonization or transmission which 
is one of the shortcomings of current aP vaccines (Warfel et al., 2014). 
Pertussis, in any case, started to reappear during the 1990s in a few 
profoundly vaccinated populaces, and the quantity of pertussis cases is 
as yet showing the upward patterns around the world (Jakinovich and 
Sood, 2014). In spite of inclusive immunization policies, pertussis epi-
sodes have been accounted for in numerous nations, including United 
States, Australia, United Kingdom, Brazil, China, and Chile in the last 
decade (Gohari et al., 2013, Theofiles et al., 2014, Winter et al., 2012). 
In 2014, 24.1 million cases were reported in youngsters, and 160,700 
children under the age of five years died of this disease where the largest 
portion was from African locale with 7.8 million cases and 92,500 
deaths. Moreover, estimated cases in babies younger than one year were 
5.1 million and estimated death was 85,900. Potential explanations 
behind the resurgence of B. pertussis disease include expanded surveil-
lance and reporting, mutation of the bacterium, analytical diagnosis 
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enhancement, fading immunity after vaccination, and parents rejecting 
immunization of their youngsters (Yeung et al., 2017). However, 
vaccination of those children is not possible as according to CDC 
guidelines; DTaP should be given at 2, 4, and a half year, at 15 through 
year and a half and at 4 through 6 years. According to Cherry (2015), 
antibody decaying over time, erroneous antigen balance in vaccine, 
incomplete packaging of antigen, linked epitope suppression, and ge-
netic alternation of the bacteria contribute to the failure of the vaccine 
(Cherry, 2015). Findings from some studies suggested that changes in 
PRN proteins, a protein that aids in adherence of the organism to 
tracheal epithelial cells, may contribute to the resurgence of pertussis 
(Lam et al., 2014; Schmidtke et al., 2012). Around 70 % of the time, 
antibody to PRN is found to be associated with protection, so it seems 
plausible that PRN deficiency could lead to increased vaccine failures, if 
deficient mutants became widespread (Storsaeter et al., 1998, Cherry 
et al., 1998).

Antibiotics are the means of treatment that control symptoms and 
prevent infected people from spreading the disease. But the uncontrolled 
utilization of antibiotics has contributed to the growing resistance in the 
pathogens. Erythromycin and ceftriaxone resistant strain, with MIC 
range of 0⋅25 - 6 µg/ml and 1⋅5 - 256 µg/ml, respectively have been 
found in a strain of this bacterium (Torres et al., 2015). B. pertussis in 
northern China showed a strikingly high rate (91.9 %) of macrolide 
resistance (Yang et al., 2015). Again, antibiotics were not sufficient to 
treat secondary cases of whooping cough. The probable cause may be 
that they are more effective if initiated within 21 days of the onset of 
forceful coughing. Various side effects were also found with antibiotics, 
which differ based on the types of antibiotics (Altunaiji et al., 2012). So, 
dealing with this fatal pathogen with current vaccines or antibiotics in 
the near future will be a matter of great concern. Thus, it is imperative to 
discover new drugs to combat multi-drug resistant bacteria and make 
available an ideal treatment option to get rid of this deadly pathogen.

The very first step of drug discovery process is the identification of 
drug targets (Chan et al., 2010). In silico approaches employed to 
identify novel drug targets and screen metabolites could accelerate the 
drug discovery process, as the conventional ways of drug discovery 
require more time, costly experiments, and labor. Plants have been used 
as a source of medication from the beginning of time and provide the 
basis for many pharmaceutical applications. Natural compounds derived 
from plants have been the mainstay of conventional medicine for 
thousands of years (Ginsburg and Deharo, 2011). Natural products 
contain complex chemical structures that differ according to their 
various species in nature, and when the existing high technology 
methods are applied, it can lead to novel medicine development, 

Table 2 
List of acronyms, their meanings, and links of the servers.

Acronyms Full form Links

NCBI National Center for 
Biotechnology Information

https://www.ncbi.nlm.nih. 
gov/genome

DEG Database of Essential Genes www.essentialgene.org
KEGG Kyoto Encyclopedia of Genes and 

Genomes
https://www.genome. 
jp/kegg/pathway.html

KAAS KEGG Automatic Annotation 
Server

https://www.genome.jp/ 
kaas-bin/kaas_main

KO KEGG ORTHOLOGY https://www.genome.jp/kegg 
/ko.html

BLAST Basic Local Alignment Search 
Tool

https://blast.ncbi.nlm.nih.gov/ 
Blast.cgi

VFDB Virulence Factor Database http://www.mgc.ac.cn/VFs/b 
last/blast.html

ARG- 
ANNOT

Antibiotic Resistance Gene- 
ANNOTation

https://ifr48.timone.univ-mrs. 
fr/blast/arg-annot_v6.html

STRING Search Tool for the Retrieval of 
Interacting Genes/Proteins

https://string-db.org

HPIDB Host-Pathogen Interaction 
Database

https://hpidb.igbb.msstate.edu 
/sequence.html

PDB Protein Data Bank https://www.rcsb.org/

Table 2 
Unique metabolic pathway proteins.

Sl 
No

Accession 
Number

KO 
Number

Protein Name (Gene 
Name)

Pathways

01 WP_003811927.1 K02556 Chemotaxis protein 
MotA (motA)

-Bacterial 
chemotaxis 
-Two-component 
system 
-Flagellar 
assembly

02 WP_003815032.1 K07789 Multidrug efflux 
pump (mdtC)

-Two-component 
system

03 WP_003815201.1 K05515 Penicillin-binding 
protein 2 (mrdA)

- Peptidoglycan 
biosynthesis

04 WP_010929554.1 K02313 Chromosomal 
replication initiator 
protein (dnaA)

- Two-component 
system

05 WP_010929693.1 K02106 Short-chain fatty 
acids transporter 
(atoE)

- Two-component 
system

06 WP_010930030.1 K18307 Multidrug efflux 
pump (mexI)

- Quorum sensing

07 WP_010930146.1 K03412 Two-component 
system, chemotaxis 
family, protein- 
glutamate 
methylesterase/ 
glutaminase (cheB)

- Two-component 
system 
- Bacterial 
chemotaxis

08 WP_010930331.1 K05874 Methyl-accepting 
chemotaxis protein I, 
serine sensor receptor 
(tsr)

- Two-component 
system 
- Bacterial 
chemotaxis

09 WP_010930348.1 K00990 [protein-PII] 
uridylyltransferase 
(glnD)

- Two-component 
system

10 WP_010930831.1 K03230 Type III secretion 
protein V (yscV, sctV, 
hrcV, ssaV, invA)

- Bacterial 
secretion system

11 WP_010930834.1 K03406 Methyl-accepting 
chemotaxis protein 
(mcpA)

- Two-component 
system 
- Bacterial 
chemotaxis

12 WP_010930949.1 K01546 Potassium- 
transporting ATPase 
potassium-binding 
subunit (kdpAs)

- Two-component 
system

13 WP_019247543.1 K01448 N-acetylmuramoyl-L- 
alanine amidase 
(amiABC)

- Cationic 
antimicrobial 
peptideresistance

14 WP_023853393.1 K03092 RNA polymerase 
sigma-54 factor 
(rpoN)

- Two-component 
system

Table 3 
Subcellular location of unique pathway proteins.

Location Accession Number

Cytoplasmic WP_010929554.1 
WP_010930146.1 
WP_010930348.1 
WP_019247543.1 
WP_023853393.1

Inner membrane WP_003811927.1 
WP_003815032.1 
WP_003815201.1 
WP_010929693.1 
WP_010930030.1  

WP_010930331.1 
WP_010930831.1 
WP_010930834.1 
WP_010930949.1
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benefiting the entire world (Koparde et al., 2019). Because of the 
numerous phytochemical properties of plant derived products, tradi-
tional people utilized plants to cure numerous diseases (Kumar et al., 
2019). Also, the inherent affinity of natural compounds toward biolog-
ical receptors offer advantages for the development of drugs (Ginsburg 

and Deharo, 2011), while modern treatment options are associated with 
various shortcomings like devastating side effects, resistance, toxicity 
profile, and complicated medication (Cheuka et al., 2016).

In this study, the representative proteome sequence of B. pertussis 
was retrieved to carry out subtractive proteomics approaches. Essential 
genes were identified as the principal criteria for screening the best 
therapeutic targets. With a view to avoiding cross reactivity with host 
proteins and metabolism, host non-homology and metabolic pathway 
analysis was carried out, respectively. Furthermore, some qualitative 
characterizations were performed to find out the best suitable ones. To 
confront this reemerging bacterium, natural products could be utilized 
as a new remedy to avoid the unwanted outcomes of modern drugs. 
Therefore, we also aimed to find some plant metabolites as potential 
therapeutics against B. pertussis, utilizing various bioinformatics tools.

2. Materials and methods

2.1. Acquisition of the proteomic data of B. pertussis

The representative proteome of B. pertussis, strain Tohama I (as-
sembly GCA_000195715.1) was extracted from National Center for 
Biotechnology Information (NCBI) Genome database (https://www. 
ncbi.nlm.nih.gov/genome).

2.2. Exclusion of paralog and mini proteins

The whole Proteome underwent analysis utilizing the CD-HIT server 
(https://weizhong-lab.ucsd.edu/cdhit_suite/cgi-bin/index.cgi?cmd=cd 
-hit) to identify paralog proteins (Huang et al., 2010) by applying 
“sequence identity cut-off” 0.6 (60 % identity) (Dutta et al., 2006) to 
exclude redundant protein sequences. The server groups similar proteins 
into clusters based on their sequence similarities. This step was per-
formed to remove duplicate proteins from the datasets (Dutta et al., 
2006). In addition, a “length of sequence to skip” of 100 was set to 
subtract mini proteins (sequence shorter than 100 amino acids), which 
play important part in various regulatory functions and biological 

Table 4 
Proteins with higher conservancy.

Sl 
No

Accession 
Number

Protein Name (Gene Name)

01 WP_003811927.1 Chemotaxis protein Mota (motA)
02 WP_003815032.1 Multidrug efflux pump (mdtC)
03 WP_003815201.1 Penicillin-binding protein 2 (mrdA)
04 WP_010929554.1 Chromosomal replication initiator protein (dnaA)
05 WP_010929693.1 Short-chain fatty acids transporter (atoE)
06 WP_010930348.1 [protein-PII] uridylyltransferase (glnD)
07 WP_010930831.1 Type III secretion protein V (yscV, sctV, hrcV, ssaV, 

invA)
08 WP_010930949.1 Potassium-transporting ATPase potassium-binding 

subunit (kdpAs)
09 WP_019247543.1 N-acetylmuramoyl-L-alanine amidase (amiABC)
10 WP_023853393.1 RNA polymerase sigma-54 factor (rpoN)

Table 5 
Unique drug targets for B. pertussis.

Sl 
No

Accession 
Number

Protein Name (Gene Name)

01 WP_003811927.1 Chemotaxis protein Mota (motA)
02 WP_010929554.1 Chromosomal replication initiator protein (dnaA)
03 WP_010929693.1 Short-chain fatty acids transporter (atoE)
04 WP_010930348.1 [protein-PII] uridylyltransferase (glnD)
05 WP_010930831.1 Type III secretion protein V (yscV, sctV, hrcV, ssaV, 

invA)
06 WP_010930949.1 Potassium-transporting ATPase potassium-binding 

subunit (kdpAs)
07 WP_019247543.1 N-acetylmuramoyl-L-alanine amidase (amiABC)
08 WP_023853393.1 RNA polymerase sigma-54 factor (rpoN)

Fig. 1. Protein-Protein Interaction Network. (a) Chemotaxis protein Mota, (b) Chromosomal replication initiator protein, (c) Short-chain fatty acids transporter, (d) 
[protein-PII] uridylyltransferase, (e) Type III secretion protein, (f) Potassium-transporting ATPase potassium-binding subunit, (g) N-acetylmuramoyl-L-alanine 
amidase, (h) RNA polymerase sigma-54 factor.
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processes (Gupta et al., 2010). On the other hand, larger amino acids 
sequences are usually found to be involved in critical metabolic path-
ways (Haag et al., 2012).

2.3. Finding of essential proteins

Essential proteins are defined as proteins that are required for the 

survival of an organism or a cell. They are of particular interest, not only 
for their essential biological functions but also in practical applications, 
such as identifying effective drug targets for pathogenic bacteria and 
fungi. BLAST analysis was performed by utilizing non-paralog protein 
sequences against the DEG server database (www.essentialgene.org), 
known for identifying essential proteins. DEG server includes essential 
protein coding genes determined by genome-wide gene essentiality 
analysis and used to find essential proteins (Luo et al., 2014). A cut-off 
value of 1e-100 for the e-value and a bit score of 100 were considered.

2.4. Screening of orthologs in host

It is desirable to exclude potential targets that have human coun-
terparts to avoid potential toxicity. While toxicity studies must be per-
formed on any new compound intended for human use, comparative 
analyses of potential bacterial targets and human genome sequences can 
identify bacterial components that share homology and may thus pro-
duce undesired effects on the host (Fields et al., 2017). BLASTp was 
performed in NCBI database against the human genome for non-paralog 
essential proteins to screen ortholog in the host. Default settings were 
utilized, except for specifying Homo sapiens (taxid: 9606) in the “or-
ganisms” box. Only queries that yielded no significant hits were kept for 

Fig. 2. Interaction of pathogenic proteins with human proteins

Table 6 
Refined protein model with their ERRAT and PROCHECK value.

Accession 
Number

PDB 
Hit

TM- 
score

ERRAT 
VALUE

PROCHECK VALUE

Favored 
Region

Disallowed 
Region

WP_003811927.1 6ahoA 0.850 94.3262 94.9 % 0.0 %
WP_010929554.1 6ykmA 0.812 79.1757 84.8 % 2.6 %
WP_010929693.1 4r0cA 0.922 93.6508 91.4 % 1.3 %
WP_010930348.1 4c0oA 0.917 79.0179 82.0 % 2.2 %
WP_010930831.1 3mydA 0.487 73.9003 82.5 % 3.6 %
WP_010930949.1 5mrwA 0.937 89.1192 91.4 % 1.4 %
WP_019247543.1 4binA 0.751 86.1915 86.8 % 2.5 %
WP_023853393.1 5byhM 0.832 84.7191 85.5 % 2.2 %

Fig. 3. Chemical structures of selected metabolites. (a) Catechin, (b) Curcumin, (c) 18-beta-glycerrhetenic acid, (d) Astragalin.
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further analysis, aiming to develop pathogen-specific remedies 
(Pourhajibagher and Bahador, 2016).

2.5. Selection of unique metabolic pathway protein

Both the metabolic pathways of B. pertussis and humans were 
collected from KEGG PATHWAY database (https://www.genome. 
jp/kegg/pathway.html) utilizing their respective three-letter KEGG or-
ganism codes: ‘bpe’ for B. pertussis and ‘hsa’ for H. sapiens (Ogata et al., 
1999). After that, unique pathways specific to the bacterium were 
screened via manual comparison. BLASTp analysis through the KAAS 
server (https://www.genome.jp/kaas-bin/kaas_main) was performed to 
get the KO numbers of essential host non-homologous proteins. 

Identified KO numbers were then used to search the KO server (KEGG 
ORTHOLOGY) (https://www.genome.jp/kegg/ko.html) for the path-
ways associated with these proteins, and identified the proteins 
involving in the unique metabolic pathways of the pathogen (Damte 
et al., 2013). Proteins participating in common pathways were excluded 
from consideration.

2.6. Analysis of cellular localization

Cytoplasmic proteins have the potential to be used as drug targets, 
while membrane proteins can serve as both drug targets and vaccine 
candidates (Mahmud et al., 2019). Four different servers: CELLO v.2.5 
(https://cello.life.nctu.edu.tw) (Yu et al., 2006), PSORTb v3.0.2 
(https://www.psort.org/psortb) (Yu et al., 2010), ngLOC server 
(https://genome.unmc.edu/ngLOC) (King and Guda, 2007), and 
PSLpred (https://webs.iiitd.edu.in/raghava/pslpred/submit.html) 
(Bhasin et al., 2005) were utilized for predicting the subcellular location 
of selected proteins. Different servers were utilized to increase the ac-
curacy of the prediction. The final subcellular locations of the proteins 
were determined based on the consensus of predictions from at least 
three servers. PSORTb includes new analytical modules designed to 
capitalize on new discoveries and observations in protein sorting, and 
benefits from a training dataset of over 11600 proteins of known 
localization (Yu et al., 2010). CELLO is a multi-class SVM classification 
system (Yu et al., 2006). ngLOC is a web-based interface for predicting 
the subcellular localization of the user-supplied protein sequence(s). 
ngLOC can predict a wide range of subcellular locations including 
multiple localizations of proteins, and it can be customized to work with 
a variety of datasets from prokaryotes to eukaryotes, including plant 
sequences (King and Guda, 2007). PSLpred is a hybrid approach-based 
method that integrates PSI-BLAST and three SVM modules based on 
compositions of residues, dipeptides, and physicochemical properties. 
The prediction accuracies of 90.7, 86.8, 90.3, 95.2, and 90.6 % were 
attained for cytoplasmic, extracellular, inner-membrane, out-
er-membrane, and periplasmic proteins, respectively (Bhasin et al., 
2005).

2.7. Conservancy analysis of the selected sequences with other strains

The conservancy pattern of the predicted sequences with other 
strains is essential for determining the range of drug spectrum among 
the entire homologous bacterial community. Drugs acting against a 
protein that has a higher conservancy among the strains of the pathogen 
will work against all other strains of B. pertussis (Khan et al., 2020). 
Therefore, BLASTp was done against 20 randomly chosen strains of 
B. pertussis for all the individual unique pathway protein, determining 
the percentage identity of the protein. A higher percentage identity in-
dicates greater conservancy. A minimum identity threshold of 99 % was 
considered during the analysis.

2.8. Finding of novel drug targets using drugbank database

DrugBank 5.1.7 (https://www.drugbank.ca/structures/search/b 
onds/sequence) was used to find novel drug targets (Wishart et al., 
2018). Proteins with higher conservancy were searched against this 
database. The presence of targets denotes their druggable property, 
while the absence entitles the uniqueness of the proteins, classifying 
them as “novel target” (Knox et al., 2011). Default parameters were kept 
during the action.

2.9. Analyzing virulence factors of the selected proteins

Virulence factors are bacteria-associated molecules that are required 
for a bacterium to cause disease while infecting eukaryotic hosts such as 
humans. Virulence factors help bacteria to modulate or degrade host 
defense mechanisms with the help of adhesion, colonization, and 

Table 7 
Binding sites of catechin, curcumin, 18-beta-glycerrhetenic acid, and astragalin.

Chemical Name Protein ID Global 
Binding 
Energy

Binding Sites

Catechin WP_003811927.1 -40.57 Glu 63, Arg 66, Ser 68, 
Tyr 75, Glu 233

WP_010929554.1 -40.52 Arg 11, Glu 15, Glu 379
WP_010929693.1 -45.76 Ser 108, Asn 111, Thr 

112, Leu 116, Phe 146, 
Thr 147, Asp 401

WP_010930348.1 -44.88 Arg 4, Ile 163, Leu 286, 
His 287, Asp 343,

WP_010930831.1 -40.28 Leu 462, Arg 653
WP_010930949.1 -47.02 Ser 414, Tyr 417, Ile 

457, Thr 460, Asn 501, 
Asn 502, Val 456

WP_019247543.1 -41.37 Thr 136, Ala 195, Gln 
201, Val 348,

WP_023853393.1 -40.43 Ala 189, Pro 196, Leu 
197, Gly 200, Gln 201, 
Asn 349

Curcumin WP_003811927.1 -40.20 Ser 67, Lys 121, Leu 
122, Tyr 154, Glu 157, 
Ser 234

WP_010929554.1 -45.45 Arg 11, Gln 20, Thr 377, 
Gly 432

WP_010929693.1 -50.66 Gln 62
WP_010930348.1 -40.51 Asp 299, Arg 456
WP_010930831.1 -48.58 Arg 667
WP_010930949.1 -48.27 Ser 126, Gly 381, Gly 

504, Ala 506, Asn 513
WP_019247543.1 -53.96 Gln 187, Pro 196
WP_023853393.1 -51.87 Pro 196, Leu 197

18-beta- 
glycerrhetenic 
acid

WP_003811927.1 -29.28 Arg 230
WP_010929554.1 -44.09 Arg 11, Gln 20
WP_010929693.1 -63.50 Tyr 109, Thr 303
WP_010930348.1 -39.81 Ser 419
WP_010930831.1 -48.60 Leu 462
WP_010930949.1 -47.36 Gln 120, Asn 272
WP_019247543.1 -64.75 Lys 138, Asn 349, Leu 

350
WP_023853393.1 -61.36 Asn 349, Leu 350

Astragalin WP_003811927.1 -20.25 Arg 66, Ser 67, Ser 68
WP_010929554.1 -49.98 Arg 11, Cys 8, Leu130, 

Glu 379, Asp 429,
WP_010929693.1 -59.33 Ile 66, Tyr 109, Leu 110, 

Asn 111, Trp 112, Gly 
300, Thr 303,

WP_010930348.1 -37.66 Asp 142, Asp 240, Gly 
242, Ile 244, Gly 245, 
Phe 309, Lys 338

WP_010930831.1 -41.62 Pro 463, Lys 502
WP_010930949.1 -42.72 Trp 119, Gln 120, Gly 

121, Asn 270, Gly 504,
WP_019247543.1 -58.15 Gln 133, Ala 195, Pro 

196, Leu 197, Gln 201, 
Asn 349

WP_023853393.1 -55.26 Pro 188, Ala 189, Ala 
195, Pro 196, Gly 200, 
Gln 201, Leu 350,
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invasion. The selected unique drug targets were further analyzed using 
the protein sequence database from VFDB core dataset (set A) of VFDB 
server (https://www.mgc.ac.cn/VFs/blast/blast.html) to find whether 
any of our selected proteins are associated with the virulence of 
B. pertussis (Chen et al., 2005).

2.10. Resistance Protein Analysis

Detection of proteins associated with antibiotic resistance mecha-
nisms in the bacteria can be done with the help of ARG-ANNOT server 
(https://ifr48.timone.univ-mrs.fr/blast/arg-annot_v6.html) (Gupta 
et al., 2014). All of eight selected proteins were analyzed considering an 
E-value of 10-4 and a bit score of 100.

Fig. 4. Binding sites of catechin. (a) Chemotaxis protein Mota, (b) Chromosomal replication initiator protein, (c) Short-chain fatty acids transporter, (d) [protein-PII] 
uridylyltransferase, (e) Type III secretion protein, (f) Potassium-transporting ATPase potassium-binding subunit, (g) N-acetylmuramoyl-L-alanine amidase, (h) RNA 
polymerase sigma-54 factor.

Fig. 5. Binding sites of curcumin. (a) Chemotaxis protein Mota, (b) Chromosomal replication initiator protein, (c) Short-chain fatty acids transporter, (d) [protein- 
PII] uridylyltransferase, (e) Type III secretion protein, (f) Potassium-transporting ATPase potassium-binding subunit, (g) N-acetylmuramoyl-L-alanine amidase, (h) 
RNA polymerase sigma-54 factor.
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2.11. Interactome Analysis

STRING 11.0 server (https://string-db.org) was utilized to analyze 
the protein-protein interaction network for the individual selected tar-
gets (Szklarczyk et al., 2019). In STRING, one protein interacts with a 
number of proteins and showed the strength of interaction as score. The 
interacting score depends on neighborhood in the genome, gene fusions, 
co-occurrence across genomes, co-expression, association in curated 
databases and text mining (Jensen et al., 2009). The protein network 
encompasses high confidence interactors with scores ≥ 0.700 to avoid 
false negative and false positive. Protein sequences were submitted, and 

the required score was set at “High confidence (0.700)’’. The signifi-
cance of the query protein in the bacterial metabolic system was figured 
based on the quantity of interacting proteins (nodes) and interactions 
(edges) interrupted upon its removal (Kushwaha and Shakya, 2010).

2.12. Host-pathogen protein-protein interactions

With a view to exploring the molecular mechanism of pathogenicity 
and identify pathogenic proteins that interact with host proteins, we 
analyzed host-pathogen protein-protein interactions (HP-PPIs) (Kumar 
et al., 2016). HP-PPIs of selected proteins with host proteins were 

Fig. 6. Binding sites of 18-beta-glycrrhetenic acid. (a) Chemotaxis protein Mota, (b) Chromosomal replication initiator protein, (c) Short-chain fatty acids trans-
porter, (d) [protein-PII] uridylyltransferase, (e) Type III secretion protein, (f) Potassium-transporting ATPase potassium-binding subunit, (g) N-acetylmuramoyl-L- 
alanine amidase, (h) RNA polymerase sigma-54 factor.

Fig. 7. Binding sites of astragalin. (a) Chemotaxis protein Mota, (b) Chromosomal replication initiator protein, (c) Short-chain fatty acids transporter, (d) [protein- 
PII] uridylyltransferase, (e) Type III secretion protein, (f) Potassium-transporting aATPase potassium-binding subunit, (g) N-acetylmuramoyl-L-alanine amidase, (h) 
RNA polymerase sigma-54 factor.
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identified using the Host-Pathogen Interaction Database (HPIDB) (https 
://hpidb.igbb.msstate.edu/sequence.html). Selected unique protein se-
quences were submitted, and the predicted network was then analyzed.

2.13. Prediction of 3D structures of the proteins

The structures of the selected proteins did not exist in Protein Data 
Bank (RCSB PDB). So I-TASSER server was used for predicting the ho-
mologous molecular models of the unique proteins (Roy et al., 2010), 
which were further refined via GalaxyWEB server (http://galaxy.seokla 
b.org/cgi-bin/submit.cgi?type=REFINE) (Ko et al., 2012). The best 
model for each protein was then chosen according to their quality at 
ERRAT server (https://servicesn.mbi.ucla.edu/ERRAT) (Colovos and 
Yeates, 1993) and Ramachandran plot analysis at PROCHECK server 
(https://servicesn.mbi.ucla.edu/PROCHECK) (Laskowski et al., 1996).

2.14. Collection of metabolites structure

Currently, different plants are used to treat whopping cough in 
different regions of the world as home remedies without proven scien-
tific data. By searching literature, active metabolites with antibacterial 
properties from these plants were identified to check their potency to be 
acted as drug. The 3D structures of these metabolites were collected 
from PubChem server (https://pubchem.ncbi.nlm.nih.gov) in SDF (3D) 
format (Kim et al., 2016), and then converted to PDB format using Open 
Babel v2.3 software (O’Boyle et al., 2011).

2.15. Docking analysis

In drug discovery, the interaction between small ligands and mac-
romolecules can be modeled by molecular docking (Kitchen et al., 
2004). PatchDock Server (https://bioinfo3d.cs.tau.ac.il/PatchDock/ph 
p.php) was utilized for docking purposes (Schneidman-Duhovny et al., 
2005), as docking provides interactions between drug targets and po-
tential therapeutics (Meng et al., 2011). Here, the proteins were set as 
the receptor and the chemicals as the ligand. Erythromycin was 
considered as the standard metabolite for docking analysis, as it is 
currently used as the treatment of B. pertussis (Halperin et al., 1997). 
FireDock refinement tool (Mashiach et al., 2008) was then used to refine 
the docked complexes (Mashiach et al., 2008). Finally, PyMOL v2.0 tool 
was used for visualization and binding site analysis (Wang et al., 2015).

2.16. Pharmacoinformatics studies

Adsorption, distribution, metabolism, and excretion (ADME) prop-
erties are mainly associated with the kinetics of drugs exposure to the 
tissue. Again, analysis of ADME properties during discovery phase will 
reduce the risk of pharmacokinetics related failure in the clinical phase 
(Hay et al., 2014). SwissADME server was utilized to assess the ADME 
properties of top four metabolites (Daina et al., 2017). SDF format of the 
drugs was uploaded in the server and converted to SMILES, and then run 
to get the predictions. Additionally, the blood-brain barrier (BBB) 
permeability of the studied compounds was calculated by the 

Table 8 
SwissADME properties of top metabolites.

Parameter Metabolites

Catechin Curcumin 18-beta-glycirrhetenic acid Astragalin

Physicochemical 
parameters

Formula C15H14O6 C21H20O6 C30H46O4 C21H20O11

Molecular weight 290.27 g/mol 368.38 g/mol 470.68 g/mol 448.38 g/mol
Num. heavy atoms 21 27 34 32
Num. H-bond 
acceptors

6 6 4 11

Num. H-bond 
donors

5 2 2 7

Molar Refractivity 74.33 102.80 136.85 108.13
TPSA 110.38 Å2 93.06 Å2 74.60 Å2 190.28 Å2

Lipophilicity Log Po/w (iLOGP) 1.33 3.27 3.47 1.29
Log Po/w (XLOGP3) 0.36 3.20 5.49 0.72
Log Po/w (WLOGP) 1.22 3.15 6.41 -0.24
Log Po/w (MLOGP) 0.24 1.47 4.87 -2.10
Log Po/w (SILICOS- 
IT)

0.98 4.04 5.55 -0.12

Consensus Log Po/w 0.83 3.03 5.16 -0.09
Pharmacokinetics GI absorption High High High Low

BBB permeant No No No No
P-gp substrate Yes No Yes No
CYP1A2 inhibitor No No No No
CYP2C19 inhibitor No No No No
CYP2C9 inhibitor No Yes No No
CYP2D6 inhibitor No No No No
CYP3A4 inhibitor No Yes No No
Log Kp (skin 
permeation)

-7.82 cm/s -6.28 cm/s -5.27 cm/s -8.52 cm/s

Water solubility Log S (ESOL) -2.22 -3.94 -6.15 -3.18
Solubility 1.74e+00 mg/ml; 

5.98e-03 mol/l
4.22e-02 mg/ml; 1.15e-04 mol/l 3.32e-04 mg/ml; 7.06e-07 

mol/l
2.97e-01 mg/ml; 6.61e- 
04 mol/l

Class Soluble Soluble Poorly soluble Soluble
Log S (SILICOS-IT) -2.14 -4.45 -6.00 -2.10
Solubility 2.09e+00 mg/ml; 

7.19e-03 mol/l
1.31e-02 mg/ml; 3.56e-05 mol/l 4.75e-04 mg/ml; 1.01e-06 

mol/l
3.55e+00 mg/ml; 
7.91e-03 mol/l

Class Soluble Moderately soluble Moderately soluble Soluble
Medicinal chemistry PAINS 1 alert: catechol_A 0 alert 0 alert 0 alert

Brenk 1 alert: catechol 2 alerts: beta_keto_anhydride, 
michael_acceptor_1

0 alert 0 alert

Leadlikeness Yes No; 2 violations: MW>350, Rotors>7 No; 2 violations: MW>350, 
XLOGP3>3.5

No; 1 violation: 
MW>350

Synthetic 
accessibility

3.50 2.97 6.08 5.29
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BOILED-Egg model (Daina and Zoete, 2016).

2.17. Toxicity analysis

pkCSM, an online tool, was utilized to predict the comparative toxic 
effects of top drugs (Pires et al., 2015). Moreover, admetSAR was used to 
analyze the carcinogenicity of these selected drugs (Cheng et al., 2012). 
Both of these servers require SMILES that were collected from PubChem 
for the top four metabolites. Table 1 represents acronyms stated above 
with their meanings and links of the servers.

3. Results

3.1. Removal of duplicate proteins

NCBI contains 889 genomes for B. pertussis in total. From these, we 
collected the proteome of Tohama I strain, which contains a total of 
3,359 proteins. At 60 % identity, CD-HIT server found 3054 clusters 
among which 34 groups contained paralogous proteins that are greater 
than 100 amino acids (Supplementary file 1). The paralogous sequences 
were eliminated leaving 3054 non-duplicate large proteins.

Fig. 8. ADME properties of selected metabolites. (a) Catechin, (b) Curcumin, (c) 18-beta-glycirrhetenic acid, (d) Astragalin.

Table 9 
Toxicity parameter of selected chemicals.

Toxicity Parameter Chemical Name

Catechin Curcumin 18-beta- 
glycirrhetenic 
acid

Astragalin

AMES Toxicity No No No No
Max. Tolerated Dose 

(log mg/kg/day)
0.438 0.081 0.196 0.582

hERG I inhibitor No No No No
hERG II inhibitors No No No No
Oral Rat Acute 

Toxicity, LD50 
(mol/kg)

2.428 1.833 2.735 2.546

Oral Rat Chronic 
Toxicity, LOAEL (log 
mg/kg_bw/day)

2.5 2.228 1.664 4.53

Hepatotoxicity No No No No
Carcinogen No No No No
Skin Sensitization No No No No
Minnow Toxicity (log 

mM)
3.585 -0.081 1.026 6.735
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3.2. Screening of essential proteins

After BLAST analysis against the DEG server, proteins for which 
significant hit was found under the selected conditions were considered 
as essential proteins for B. pertussis. Among 3,054 non-paralog proteins, 
509 proteins were identified as essential for the organism, and these 
were selected for further analysis (Supplementary file 2). These proteins 
were kept for further analysis as blocking those proteins will kill or 
weekend the bacteria and the non-essential ones were eliminated as 
blocking those proteins will not affect the pathogen significantly.

3.3. Removal of orthologs in host

Drugs and therapeutic compounds should be such that they don’t 
cause the unintentional blocking of host proteins. This step is done for 
diminishing undesirable binding of the drugs to the active sites of the 
host homologous proteins (Sarkar et al., 2012). Therefore, orthologs 
were excluded from the list. In this step, 159 non-paralog essential 
proteins showed no hits with human proteins during BLASTp analysis in 
NCBI database (Supplementary file 3). That’s why these proteins were 
considered as non-ortholog to the host. These proteins were considered 
for further analysis as the drugs targeting these proteins will not block 
the human proteins.

3.4. Finding of unique metabolic pathway proteins

The KEGG server contained 115 B. pertussis metabolic pathways, 
alongside 337 human metabolic pathways, among which 38 metabolic 
pathways were found to be unique for B. pertussis (Supplementary file 4). 
Proteins within these unique pathways could be potential targets for 
therapeutics. After BLASTp analysis at KAAS server, 143 out of 159 non- 
homolog essential proteins were found to have KO orthology and 
participate in metabolic pathways. These 143 proteins play key roles in 
metabolism for bacterial survival, among which 14 proteins were 
exclusively associated with B. pertussis unique pathways (Table 2). 
Targeting these proteins will ensure that the provided drug may not 
affect the human metabolic pathway as the listed pathways in Table 4 is 
absent in human.

3.5. Identification of subcellular location

All unique pathway proteins (14) identified were found to be located 
either in the cytoplasm or the inner membrane (Supplementary file 5). 
More specifically, five proteins were located in the cytoplasm, while the 
rest were located in the inner membrane (Table 3). We kept all of them 
for analysis in the next steps, as both cytoplasmic and membrane pro-
teins can act as a putative drug target.

3.6. Conservancy among the species

Ten out of the fourteen unique pathway proteins showed identity 
over 99 % across all selected strains, indicating a higher conservancy 
(Supplementary file 6). Therefore, they were nominated for the suc-
ceeding steps. The designed drugs targeting these proteins will be 
effective against broad ranges of B. pertussis strains. On the other hand, 
four proteins were excluded from further analysis, as they showed 
identity lower than 99 % against any of the selected strains. If the drugs 
are designed against these proteins, the drugs may not work against all 
strains as the target proteins evolve fast. Proteins showing higher 
conservancy is provided in Table 4.

3.7. Druggability analysis

Among our selected proteins, two proteins showed similarity with 
approved, investigational, and experimental drug targets listed in the 
Drugbank Database (Supplementary file 7). These proteins were 

eliminated from the list, as we aimed to find novel targets. However, 
eight proteins didn’t show any similarity to known drugs targets, 
allowing them to be marked as a novel drug target. Therefore, they were 
finally selected for further analysis (Table 5).

3.8. Analyzing virulence factors and resistance protein

Our analysis showed that Type III secretion protein V 
(WP_010930831.1) was associated with the virulence of the pathogen. 
Designing drugs against this protein offers some extra facilities over the 
other selected proteins, as blocking this protein will disarm the bacte-
rium instead of killing (Totsika, 2017). On contrary, results of analysis 
via ARG-ANNOT server confirmed that none of the selected proteins 
were associated with antibiotic resistance mechanism.

3.9. Protein-protein interaction network analysis

Proteins that interact with more proteins are considered metaboli-
cally active and they are suitable to be considered as drug target (Cui 
et al., 2009, Kushwaha and Shakya, 2010). STRING analysis revealed 
that chemotaxis protein MotA, chromosomal replication initiator pro-
tein, short-chain fatty acids transporter, [protein-PII] uridylyltransfer-
ase, type III secretion protein V, potassium-transporting ATPase 
potassium-binding subunit, N-acetylmuramoyl-L-alanine amidase, and 
RNA polymerase sigma-54 factor (rpoN), exhibits interactions with 10, 
7, 3, 5, 10, 4, 5, and 5 proteins, respectively (Fig. 1). The result indicated 
that blocking these proteins will interrupt the interacting proteins 
indirectly and will hamper the associated pathways of the pathogen.

3.10. Host-pathogen protein-protein interactions

Among the eight unique drug targets, only chromosomal replication 
initiator protein (WP_010929554.1) and Type III secretion protein V 
(WP_010930831.1) were found to interact with human proteins (Fig. 2). 
The chromosomal replication initiator protein interacts with Laminin 
subunit alpha-5 (LAMA5) and Tubulointerstitial nephritis antigen-like 
(TINAGL1) proteins. On the other hand, Type III secretion protein V 
interacts with fMet-Leu-Phe receptor (FPR1), Proteasome activator 
complex subunit 1 (PSME1), SNW domain-containing protein 1 (SNW1), 
and BTB/POZ domain-containing protein KCTD5 (KCTD5) proteins.

3.11. Molecular modeling and quality assessment

The I-TASSER server provided five models for each protein. I- 
TASSER modeling started from the structure templates identification by 
LOMETS from the PDB library, using the templates of the highest sig-
nificance in threading alignments. TM-score (template modeling score), 
and accession no of the PDB hits are listed in Table 6. After initial 
modeling, the ERRAT values and Ramachandan plots were considered 
for selecting the best model. Then, the refinement was done via Galax-
yWEB server, resulting in ten refined models for each protein. Finally, 
the best model was selected by analyzing ERRAT quality scores and 
Ramachandran plots from the PROCHECK server. The ERRAT and 
PROCHECK scores are provided in Table 6.

3.12. Molecular docking and binding site analysis

The list of selected plant metabolites is provided in supplementary 
file 8. All of our selected unique proteins (macromolecules) were docked 
against these plant metabolites (ligands) (Supplementary file 9). Among 
them, catechin, curcumin, 18-beta-glycrrhetenic acid, and astragalin 
(Fig. 3) showed superior or nearly equal global binding energy 
compared to erythromycin across all selected proteins. Consequently, 
we further analyzed the binding residues of these metabolites using 
Pymol tool.

To elucidate the drug surface hotspots of the targeted unique 
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proteins, the structural conformations of the docked complexes was 
investigated. The ligand binding patterns and interacting residues along 
with their respective positions were examined (Table 7, Figs. 4, 5, 6, and 
7). It has been found that amino acids spanning positions 63-75, 121- 
157, and 230-234 were vital for the binding interactions of the 
chemotaxis protein MotA. Similarly, residues at positions 8-15, 377-379, 
and 429-432 were identified as binding residues for the chromosomal 
replication initiator protein. Furthermore, the ligands exhibited 
maximum binding affinity for regions spanning positions 108-116 and 
303-306 of the short-chain fatty acids transporter. Similarly, all the 
binding residues of RNA polymerase sigma-54 factor were located be-
tween positions 188-201 and 349-350. Amino acids spanning positions 
133-201 were the hotspot for N-acetylmuramoyl-L-alanine amidase.

3.13. Pharmacoinformatics study

The ADME properties of top drugs were evaluated to characterize 
drug profiles of top antibacterial drugs (Table 8, Fig. 8). All metabolites 
except astragalin showed robust gastrointestinal absorption, while none 
showed BBB permeability among the selected top drugs. They did not 
show interaction probability with cytochromes P450 isoforms when 
their inhibitory effects were analyzed with different CYP isoforms, and 
all drugs showed poor to high-level water solubility. Furthermore, only 
catechin showed a single alert related to potential pain (Table 8).

3.14. Toxicity prediction

Several toxicity criteria of top metabolites are outlined in Table 9. 
The negative results from the AMES test revealed that all drugs were 
non-mutagenic, and none of them were identified as hERG I and hERG II 
inhibitor. In addition, the LD50 values for these top drugs ranged from 
1.833 to 2.735 mol/kg, with negative results observed for skin sensiti-
zation and oral rat acute toxicity. Minnow Toxicity values of all drugs 
were more than -0.3 log mM, except curcumin, proving them non-toxic. 
Besides, these drugs were non-carcinogenic as they provided negative 
results on admetSAR carcinogenicity prediction. Additionally, negative 
hepatotoxicity results of all drugs indicate that the normal function of 
the liver will not be disrupted through these drugs.

4. Discussion

In many developed and developing countries throughout the world, 
whopping cough still considered as a significant public health concern. 
Shortcomings of available aP vaccine as well as the development of 
rapid antibiotic resistance making it difficult to combat this pathogen. 
Therefore, discovering new drugs is becoming an essential task to fight 
with it. Here, we explored the proteome of B. pertussis, Tohama I strain 
through subtractive proteomics approach to identify novel drug targets, 
and molecular docking was performed to screen probable drugs against 
the essential non homologous unique pathway proteins of B. pertussis.

Essential proteins are considered as most suitable antimicrobial 
therapeutic targets, as most drugs tend to dock with these essential gene 
products. Our target pathogen has 509 such essential proteins, indi-
cating that drugs could act against these proteins to kill the bacteria. 
Subtracting host homolog proteins is a crucial step in the in silico se-
lection of drug targets (Anishetty et al., 2005, Sarkar et al., 2012). After 
analysis, 159 such non-orthologous proteins were found, against which 
drugs could be designed without risking cross reactivity (Sarkar et al., 
2012). Among these non-orthologs, 143 proteins were predicted to be 
associated with the metabolism of the bacteria, but only fourteen of 
them were found to be involved with the unique metabolic pathways of 
B. pertussis. Proteins localized in either cytoplasm or membrane are 
considered as the best drug targets (Michael et al., 2014). Interestingly, 
all of the unique pathway proteins were located either in the cytoplasm 
or membrane, indicating their potential as drug targets. Although the 
research was started with the proteome analysis of a specific strain, 

Tohama I, ultimately conservancy of all unique proteins among other 
strains was checked with rigid criteria of 99 % similarity to find out 
universal targets applicable to all strains. Subsequently, ten proteins 
meeting these criteria were shortlisted, and DrugBank databases were 
screened for avoiding mutational changes and to inhibit the develop-
ment of resistant bacteria by the broad-spectrum drugs. Two out of ten 
highly conserved proteins were druggable, and potentially susceptible to 
already approved and available drugs. Therefore, the remaining eight 
proteins were selected as the novel drug targets.

Virulence factors and proteins associated with antibiotic resistance 
provide extra facilities if they are targeted for drug action. Following 
advantages can be gained by targeting virulence factors: 1) antimicro-
bial development with novel working mechanisms 2) diminished se-
lective pressure will cause reduced resistance emergence, and 3) 
potential preservation of intestinal biomass (Heras et al., 2015). 
Importantly, a ‘disarm-don’t kill’ strategy enables the delivery of anti-
microbials which can replace the available failing antibiotics, while 
avoiding two main shortcomings: destruction of gut micro biota and 
antibiotic resistance (Totsika, 2017). Only type III secretion protein V 
was found to be associated with the virulence of the pathogen, but none 
were associated with the development of antibiotic resistance in 
B. pertussis. Protein-protein interactions (PPIs) for all unique proteins 
were revealed, as it allows us to understand the role of a protein in a 
particular pathway and alterations in the protein-protein network 
disrupt the natural flow of events of the cell (Genengnews, 2005, March 
5). Overall, Type III secretion protein V could be considered as the best 
as it is associated with the virulence of the pathogen, which interacts 
with the highest number of proteins and also interacts with the host 
proteins.

Metabolites from plants play an important role by being a lead 
molecule in finding suitable drug candidates (Joseph et al., 2017). 
Therefore, we assessed some inhibitory plant metabolites for B. pertussis 
based on their affinity of binding to the selected unique drug targets. The 
Docking result revealed that four drug molecules i.e. curcumin, cate-
chin, 18-beta-glycrrhetenic acid, and astragalin showed high affinity for 
each of the eight proteins with the lowest global binding energy. Both 
curcumin and 18-beta-glycrrhetenic acid had maximum binding affinity 
with N-acetylmuramoyl-L-alanine amidase (-53.96 kcal/mol and -64.75 
kcal/mol, respectively). Catechin had the highest interacting affinity 
with potassium-transporting ATPase potassium-binding subunit (-47.02 
kcal/mol), whereas astragalin showed a peak with short-chain fatty 
acids transporter (-59.33 kcal/mol).

Poor ADME data is often associated with failure of clinical trials 
during many of the drug development projects (Shin et al., 2016). 
Therefore, ADME analysis is critical for such projects which can be 
performed by in vitro, in vivo, or in silico methods. The top four drug 
candidates displayed no undesirable consequences in ADME study, 
which could reduce the drug related properties. All the potential drugs 
exhibited water solubility and absorption in GI, while catechin showed 
highest solubility in water. As whooping cough caused by B. pertussis is 
associated with the respiratory system, the four drugs would not create 
any problem despite of their non-permeate nature to BBB. Toxicity 
prediction showed that all four drug candidates are non-carcinogenic, 
non-mutagenic, and insensitive to skin and non-hepatotoxic. Overall, 
the toxicity analysis revealed that the predicted drugs are safe to 
administer and can be used as therapeutics to treat B. pertussis.

5. Conclusion

Availability of numerous bioinformatics tools has helped to revolu-
tionize the drug discovery process by subtractive proteomics analysis. 
Our findings from this research could aid in developing suitable thera-
peutics with less trials and error repeats of assays. Furthermore, this 
research may also help to save time and money for in vitro research in 
future, and thus will help to decrease the morbidity and mortality 
associated with B. pertussis. However, in vivo studies are highly 
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recommended to validate the predicted results in model organisms.
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