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Introduction: A major difficulty in treating moyamoya disease is the lack of effective

methods to detect novel or progressive disease prior to the onset of disabling

stroke. More importantly, a tool to better stratify operative candidates and quantify

response to therapy could substantively complement existingmethods. Here, we present

proof-of-principle data supporting the use of urinary biomarkers as diagnostic adjuncts

in pediatric moyamoya patients.

Methods: Urine and cerebrospinal fluid specimens were collected from pediatric

patients with moyamoya disease and a cohort of age and sex-matched control patients.

Clinical and radiographic data were paired with measurements of a previously validated

panel of angiogenic proteins quantified by ELISA. Results were compared to age and

sex-matched controls and subjected to statistical analyses.

Results: Evaluation of a specific panel of urinary and cerebrospinal fluid biomarkers

by ELISA demonstrated significant elevations of angiogenic proteins in samples from

moyamoya patients compared to matched controls. ROC curves for individual urinary

biomarkers, including MMP-2, MMP-9, MMP-9/NGAL, and VEGF, showed excellent

discrimination. The optimal urinary biomarker was MMP-2, providing a sensitivity of 88%,

specificity of 100%, and overall accuracy of 91%. Biomarker levels changed in response

to therapy and correlated with radiographic evidence of revascularization.

Conclusions: We report, for the first time, identification of a panel of urinary biomarkers

that predicts the presence of moyamoya disease. These biomarkers correlate with

presence of disease and can be tracked from the central nervous system to urine. These

data support the hypothesis that urinary proteins are useful predictors of the presence of

moyamoya disease and may provide a basis for a novel, non-invasive method to identify

new disease and monitor known patients following treatment.
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INTRODUCTION

Moyamoya disease is an increasingly recognized cause of
pediatric stroke, found in ∼6% of cases in the United States
(1, 2). Surgical revascularization is an effective treatment, but
clinicians face challenges in successfully identifying disease prior
to disabling stroke, predicting optimal timing for operative
intervention and tailoring specific surgical approaches to a
given patient. Follow-up is important to ensure successful
engraftment and to monitor for progressive disease in other
vascular territories. These challenges are further exacerbated in
children, who may not be able to articulate symptoms clearly
or tolerate detailed imaging more easily and safely performed
in adults.

Our laboratory has had a longstanding interest in the
development of non-invasive biomarkers designed to aid in the
diagnosis, prognosis and therapy of tumors and cerebrovascular
disease, including biomarker “fingerprints” that can distinguish
between central nervous system tumors, moyamoya disease and
arteriovenous malformations (3–10). Here we present initial
proof-of-principle data demonstrating that a novel, non-invasive
panel of urinary biomarkers can identify the presence of
moyamoya disease and that the biomarkers track from the
central nervous system in cerebrospinal fluid (CSF) to urine.
Importantly, we also show that levels of these biomarkers
vary in response to therapeutic intervention and correlate with
radiographic changes post-surgery. To our knowledge, this is
the first report of this application of urinary biomarkers in this
population and we hope that these data provide a foundation for
expanded study of this approach.

MATERIALS AND METHODS

Patient Population
Specimens and records were collected as part of an institutional
review board-approved protocol at Boston Children’s Hospital
(BCH) and patients underwent sample collection and surgery
between 2009 and 2016. All moyamoya disease patients were
18 years of age or younger at time of specimen collection and
all moyamoya disease diagnoses were confirmed with MRI and
catheter angiography with independent verification by board-
certified neuroradiologists as part of routine clinical practice
and documented in the medical records. To standardize patient
populations as much as possible, all patients were pediatric, met
the diagnosis ofmoyamoya disease (not syndromic) with bilateral
disease, Suzuki grade II-V and at least 6 weeks out from any
documented acute stroke or hemorrhage at time of collection
to minimize the risk of confounding biomarker profiles from
acute stroke (11, 12). This timeline was based on previous data
that indicates that any alterations in the levels of the biomarkers
examined in this study—includingMMPs and VEGF—that could
potentially be affected by acute stroke are typically normalized
within this time window (11, 13–15). No patients had known
histories of other vascular malformations or recent surgery
(within 3 months of specimen collection).

Control patients were healthy, age- and sex-matched and
had undergone previous unremarkable imaging of the head and

brain as part of routine clinical care (typically negative studies
following evaluations to rule out congenital pathologies such as
Chiari I malformation or tethered spinal cord).

Urine and CSF Collection and Analysis
Urine from moyamoya disease patients was collected in the
morning before surgery (or at the 6–12 month postoperative
visit) and CSF was collected at time of surgery from the
craniotomy site. Urine and CSF of control patients was
collected from children undergoing operation for simple fatty
filum/tethered cord or collected as part of routine clinical care.
Once collected, urine and CSF were transported on ice to our
laboratory and stored frozen (−20◦C) until assay. Aliquots of
each sample were centrifuged at 4,000 rpm for 5min at 4◦C and
the supernatants were collected, as previously described by us (4).

ELISA (Quantikine kits; R&D Systems, Inc.) were used
to quantify levels of MMP-2, MMP-9, MMP-9/NGAL, and
VEGF. Specimens, standards and reagents were prepared
according to manufacturer’s instructions. Protein concentration
was determined via the Bradford method using bovine
serum albumin as the standard. Levels were determined as
nanogram per milliliter (ng/mL) for MMP-2, MMP-9, and
MMP-9/neutrophil gelatinase—associated lipocalin (NGAL) or
picogram per liter (pg/L) for VEGF.

This work is presented in accordance with reporting
recommendations for biomarker prognostic studies (16).

Statistical Analysis
Statistical analysis was performed by our biostatistician (DZ).
Patients with moyamoya disease and age-matched controls were
compared with respect to urinary MMPs (ng/mL) and VEGF
(pg/L) by the univariate Mann–Whitney U-test and presented
using medians and interquartile ranges (17). Percentages
of individuals positive for MMP-9, MMP-9/NGAL, MMP-2,
and VEGF were compared between the two groups using
Fisher’s exact test for binomial proportions. Receiver operating
characteristic (ROC) curve analysis was performed to calculate
area under the curve (AUC) for the independent predictors and
to identify threshold values (i.e., cut-off points) that provide
the optimal tradeoff between sensitivity of specificity (18). AUC
values and 95% confidence intervals (CI) were used to summarize
diagnostic performance of MMPs and VEGF.

The AUC value (maximum 1, also known as the c-index)
was used as a measure of predictive accuracy of each biomarker.
Multivariable logistic regression modeling was applied to
determine significant independent predictive biomarkers of
moyamoya disease (19). Statistical analysis was conducted using
SPSS software version 24.0 (IBM Corporation, Armon, NY).
Power analysis indicated that the sample sizes of moyamoya
disease patients and age-matched controls provided 80% power
(α= 0.05, β= 0.20) to detect differences of 50% in the proportion
of individuals with positive expression (20). Two-tailed P < 0.05
were considered statistically significant. AUC values over 0.700
were considered good and values over 0.800 were regarded to
indicate excellent predictive accuracy.
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TABLE 1 | Comparison of urinary MMPs and VEGF for moyamoya disease patients and controls.

Moyamoya group

(n = 32)

Control group

(n = 14)

Biomarker Median IQR Range Median IQR Range P-value

MMP-2 11.7 3–19.6 0–91 0 0–0 0–0 <0.001*

MMP-9 0.2 0–9.7 0–273 0 0–0 0–6.2 0.005*

MMP-9/NGAL 1.0 0.4–5.3 0.2–149 0 0–0.1 0–12.8 <0.001*

VEGF 420 163–1,112 0–4,000 0 0–113 0–391 <0.001*

Units are ng/mL for MMPs and pg/L for VEGF. IQR, interquartile range.

MMP-9/NGAL and VEGF are based on 20 moyamoya patients.

*Statistically significant.

RESULTS

Demographics
A total of 32 patients with moyamoya disease (17 females, 15
males) and 14 healthy controls (7 females, 7 males) from 1 to 18
years of age were included in this study.Median age (interquartile
range) of patients and controls were 8 (7–14) years and 7 (4–13)
years, respectively (P = 0.20). Gender distribution did not differ
between the two groups analyzed for urinary biomarkers (P =

0.85) (Table 1). The CSF subset of this cohort was smaller (n= 19
patients, n= 5 controls) and were also age and sex-matched (P=

0.49 and 0.90, respectively). Of the 32moyamoya disease patients,
22 had experienced previous radiographic stroke (69%) and 26
(81%) had experienced transient ischemic attacks (TIAs), but no
patients had new strokes within 6 weeks of sample collection (as
documented by diffusion weighted imaging on MRI).

Urinary Biomarkers Are Elevated in
Moyamoya Disease Patients
Median levels of urinary MMPs and VEGF were significantly
higher among moyamoya disease patients (all P < 0.001, except
MMP-9, P = 0.005, Mann–Whitney U-tests). As shown in
Table 1, median levels of MMP-2 were 11.7 ng/mL (IQR: 3.0–
19.6) for patients and 0 ng/mL (IQR: 0–0) for controls. Median
VEGF levels were 420 pg/L (IQR: 163–1,112) and 0 pg/L (IQR:
0–113) for patients and controls, respectively. As illustrated in
Figure 1, a significantly higher percentage of moyamoya disease
patients (17 of 32 = 53%) were positive for MMP-9 compared to
controls (1/14= 7%) (P = 0.003). Similarly, whereas only 2 of 14
controls were positive forMMP-9/NGAL, all 20 of themoyamoya
disease patients tested were positive (P < 0.001). A total of 88%
of moyamoya disease patients were positive for MMP-2 (28 of
32) compared to 0 of 14 controls (P < 0.001). For VEGF, 95%
of patients (19 of 20) were positive compared to 43% (6 of 14)
controls (P < 0.01).

Receiver-operating characteristic (ROC) curve analysis
indicated that all urinary MMPs and VEGF were significant
in differentiating moyamoya disease patients from healthy
controls as indicated by the area under the curve (AUC) values
(Table 2). AUC for MMP-2, indicating diagnostic performance,
was excellent (AUC = 0.938, 95% CI: 0.870–1.000, P < 0.001).
ROC analysis revealed the optimal cut-off value for MMP-2
as 1.5 ng/mL, which is associated with a sensitivity of 0.88 or

FIGURE 1 | Comparison of the percentage of moyamoya disease patients

and controls with positive expression for urinary MMPs and VEGF. Significantly

higher positive expression rates were observed for each biomarker as denoted

by asterisks. The most useful biomarker according to both multivariable

logistic regression and ROC analysis was MMP-2 demonstrating excellent

predictive accuracy.

88% (28 of 32 moyamoya disease patients correctly classified), a
specificity of 1.00 or 100% (all 14 controls correctly classified),
and an accuracy of 91% (42/46). Any non-zero cut-off value
or criterion for MMP-2 would have produced false negatives
since four moyamoya disease patients did not have measurable
MMP-2 in their urine. Figure 2 depicts the ROC curve and
shows the relationship between the true-positive rate and the
false-positive rate with the optimal urinary MMP-2 cut point of
>1.5 ng/mL.

Multiple stepwise logistic regression revealed that,
independent of age and gender, urinary MMP-2 was the
only independent biomarker that significantly differentiates
moyamoya disease patients from controls (c-index = 0.938, P <

0.001). Although MMP-9 and MMP-9/NGAL also demonstrate
significant diagnostic performance, as indicated by the statistics
in Table 2, the results of the ROC analysis and logistic regression
modeling clearly showed that MMP-2 prevailed as the most
accurate urinary biomarker in differentiating moyamoya disease
from normal healthy controls.
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TABLE 2 | ROC Analysis of urinary biomarkers in predicting moyamoya disease.

Biomarker AUC 95%

Confidence Interval

P-value

MMP-2 0.938 0.870–1.000 <0.001*

MMP-9 0.731 0.587–0.877 0.013*

MMP-9/NGAL 0.933 0.818–1.000 <0.001*

VEGF 0.875 0.756–0.994 <0.001*

ROC, receiver operating characteristic; AUC, area under the curve.

*Statistically significant.

FIGURE 2 | Receiver-operating characteristic (ROC) curve analysis indicating

the optimal urinary MMP-2 cut-off value (>1.5 ng/mL) for differentiating

moyamoya disease patients and controls. The 45◦ line represents the line of

nondiscrimination which would be equivalent to a coin toss. The area under

the ROC curve for MMP-2 indicates excellent diagnostic predictive accuracy

(AUC = 0.938, 95% CI: 0.870–1.000, P < 0.0001). Sensitivity was 88% and

specificity was 100% using the optimal cut-off value of 1.5 ng/mL.

CSF Biomarkers Are Elevated in
Moyamoya Disease Patients
CSF analysis was carried out in a similar fashion to that done
on the urine and was collected from the same individuals. CSF
analysis was constrained by both the number of patients available
for the study and the volume of useable CSF per patient (due to
fewer controls and the limitations in getting adequate volumes
of non-bloody CSF for collection per individual, both controls
and moyamoya disease). These limitations meant that we had a
smaller “n” of patients, and the volume of CSF per patient meant
that we had to limit our CSF biomarker analysis. Consequently,
we focused on the MMP species identified as most promising
from the urinary studies and were forced to exclude VEGF from
CSF analysis.

We applied ROC analysis to evaluate the diagnostic
performance of MMPs in CSF (Table 3). Of the three MMPs
studied, only MMP-9 was predictive (AUC = 1.000, P = 0.002),
although MMP-2 and MMP-9/NGAL also had strong trends
toward significance. The optimal cut-off value for MMP-9 in

TABLE 3 | ROC analysis of markers in cerebral spinal fluid for differentiating

patients with moyamoya disease from controls.

CSF marker AUC 95% CI P-value

MMP-2 0.274 0.000–0.600 0.126

MMP-9 1.000 1.000–1.000 0.002*

MMP-9/NGAL 0.776 0.569–0.984 0.066

ROC, receiver operating characteristic; AUC, area under the curve; CI, confidence interval.

*Significant multivariable predictor.

Optimal cut-off value for MMP-9 is 2.6 ng/mL or greater. This cut-off value provides a

sensitivity of 100%, specificity of 100%, and accuracy of 100%.

CSF was 2.6 ng/mL which was associated with a sensitivity and
specificity of 100%. All 5 controls had MMP-9 levels <2.6 ng/mL
(three had no detectable levels of MMP-9, one was 0.2 ng/mL,
and one subject had a value of 2.2 ng/mL). Of the 19 moyamoya
disease patients with MMP-9 measurements in CSF, levels in all
patients ranged from 2.9 to 27.0 ng/mL.Multiple stepwise logistic
regression confirmed that, controlling for age and gender, MMP-
9 was independently predictive of moyamoya disease (P= 0.003).

Urinary Biomarkers Change and Correlate
With Postoperative Radiographic
Response
Urine was collected at 6–12 months postoperatively in patients
within this group. A total of 7/32 patients had urine available
for analysis. Biomarker levels were compared to preoperative
samples (MMP-9/NGAL ELISA kits were no longer unavailable
at the time of this delayed analysis, so MMP-2, MMP-9, and
VEGF were performed). Pre- and post-operative angiograms
were assessed for surgical collaterals (asmeasured byMatsushima
grade) and pre- and post-operative axial FLAIRMRI images were
compared for changes in ivy sign (a marker of slow cortical
blood flow). All patients had Matsushima A or B collaterals
and had reductions in global ivy sign as independently read by
neuroradiologists as part of routine clinical care. MMP-2 levels
decreased in 6/7 (86%) patients, MMP-9 and VEGF decreased
in 5/7 (71%) patients. Representative data from a patient is
presented in Figure 3.

DISCUSSION

Rationale for Urinary Biomarkers: Why

urine?
There is ample precedence for the successful use of urinary
biomarkers to identify physiologic states such as pregnancy and
to monitor disease, such as diabetes. Use of urinary biomarkers
offers advantages particularly relevant to moyamoya disease.
Current methods of diagnosis and follow-up rely on infrequent
clinical examinations and expensive radiographic studies (such
as MRI and angiograms) that also often require sedation or
anesthesia in children (2, 21). In contrast, urine collection can be
done frequently, without sedation and is relatively inexpensive.
Collection of urine is easy and non-invasive, avoiding the
difficulties and risk inherent to biomarkers studied in spinal fluid
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FIGURE 3 | Representative patient demonstrating correlation between radiographic changes and biomarker levels. (A) Preoperative angiogram with lateral and AP

views of internal carotid artery injection showing Suzuki II-III moyamoya, (B) 1 year postoperative angiogram with lateral and AP views of external carotid injection

showing Matsushima A surgical collaterals, (C) preoperative axial FLAIR MRI images demonstrating hyperintense sulcal signal—ivy sign, (red arrows) and (D)

postoperative images showing marked resolution of ivy sign (blue arrows). (E) Reduction in postoperative levels of urinary biomarkers MMP-2, MMP-9, and VEGF,

correlating with radiographic evidence of successful revascularization.

or blood, which require lumbar punctures and venipuncture.
Urine collection can be done locally and mailed, saving families
travel to hospitals (10). Most importantly, biomarkers provide
a method of diagnosis that relies on biological activity; a novel,
quantifiable—and complementary—approach to the current
method of evaluation with imaging studies.

Selection of Moyamoya Disease Biomarker
Panel: Why choose these proteins?
Background
Our laboratory has extensive experience with the identification
and validation of urinary biomarkers in cerebrovascular disease,
cancer and the central nervous system (CNS), including the
first report of successfully applying this novel methodology
specifically to brain tumors in a multicenter trial (3–10).
Current data from our lab and others supports the hypothesis
of angiogenesis and extracellular matrix (ECM) remodeling
as essential processes in many CNS disorders, including
moyamoya disease, involving vascular endothelial growth factor
(VEGF), matrix metalloproteinases (MMPs), a multigene family
of degradative enzymes and neutrophil gelatinase associated
lipocalin (NGAL), an enzyme that binds withMMP-9 to protect it
from degradation—and elevated levels of MMPs and VEGF have
been reported in the serum of moyamoya disease patients (2, 4,
5, 22–30). Our group was the first to demonstrate that human
urinary MMP levels are sensitive biomarkers of various systemic

disorders, including cancer and vascular anomalies (4, 5, 21, 31–
40). Recent studies from our laboratory, now confirmed by
others, support the utility of urinary levels of growth factors and
MMPs as markers of disease, including our work first describing
the use of this technique specifically in the CNS (4, 5, 11, 21, 26,
37, 40–48).

Rationale
In the study presented here, we focused on MMPs, NGAL, and
VEGF as proteins known to be involved in the pathogenesis
of moyamoya disease and easily detectable in urine with
commercially available methods (in contrast to more complex
techniques, such as mass spectrometry). It is important to
note that these are useful as general markers of ischemia/ECM
remodeling—and therefore potentially directly applicable to
monitoring clinical factors relevant to moyamoya disease status
and progression—but are not unique to this condition. In
addition, some markers—like the ones in this study—may
be elevated immediately after stroke, but typically normalize
after a short window of a few weeks, making the timing of
biomarker sampling important and which we have addressed
in the selection of our patient cohort to minimize confounding
(11, 13–15). Diagnostic specificity can be improved by looking at
a broader range of molecules and multiplexing several proteins
in combination to create a biomarker “fingerprint” that is unique
to a given disease, and we have done this for other CNS vascular
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and tumor cohorts, including moyamoya disease (3–5, 10, 49). In
particular, we anticipate that molecules that regulate mechanisms
of vascular morphogenesis and arteriogenesis (including, but not
limited to, axon guidance factors, for example), may be useful
as future areas of investigation to enhance the functionality of
biomarker profiling in moyamoya disease.

Correlation of Urine to CNS Disease
Another key point of this study is the ability to link the levels
of these putative biomarkers with the disease. A unique problem
with moyamoya disease is the inability to harvest source tissue
for analysis, distinct from other pathologies such as tumor
and AVM, that afford primary lesional tissue for confirmation
with biomarker staining. We addressed this challenge with
three strategies. First, we subjected the urinary data to rigorous
statistical analysis, performed by a biostatistician, in order to
ensure the robustness of our results. Second, we obtained
matched CSF samples from the same patients, in order to
establish that the biomarker profile in the CNS matched the
same pattern seen in the urine, a technique validated in the
literature and—to our knowledge—unique in its application to
moyamoya disease as described here (3–5). Third, we provide
longitudinal data that demonstrates that the urinary biomarker
profile changes in direct response to changes in disease status
after treatment, as corroborated by radiographic studies and also
with precedent in the literature (3–6, 10, 49).

Potential Applications to Moyamoya
Disease: How might this approach be

used?
Currently there are no methods available that can accurately
predict how a given child’s disease will progress or how that child
may respond to surgical intervention (2). While the precedent of
prognostic biomarkers has proven immensely valuable in other
fields of medicine to predict outcomes or response to therapy,
nothing like this exists for moyamoya disease (50–52). While in
need of validation, the diagnostic potential of this panel could
be expanded to incorporate a prognostic function by correlating
high pre-operative levels of biomarker with good potential for
revascularization and concomitant reduction in post-operative
stroke risk. Development of a prognostic biomarker panel
as outlined in this proposal would bring something entirely
new—and needed—to the armamentarium of clinicians treating
patients with moyamoya disease.

This study fulfills the necessary initial criteria in clinical
biomarker development; statistical validation of a panel of
markers that can be accurately measured with widely available
techniques and associated with a biologically relevant pathway
that connects the biomarkers to the disease process (9, 16). In
addition, this work is unique in linking these markers from
CSF to urine and also presenting their utility in a “real-world”
clinical scenario of longitudinal follow-up. Ultimately, we would
anticipate a panel of biomarkers for moyamoya disease (not a
single protein), with distinct combinations employed based on
the clinical need. For example, one fingerprint might be applied
for screening, while a different group of biomarkers might help
to stratify ischemia and follow response to surgery.

There is precedent to use biomarkers as tools to monitor
response to therapy. Specifically, in moyamoya disease and
other vascular diseases, evidence exists that levels of MMPs and
VEGF are elevated in the setting of chronic ischemia and—
once successful revascularization occurs and the ischemia is
reduced—the ischemic stimulus driving the upregulation of
MMP and VEGF is decreased, with a concomitant reduction
in the levels of these markers (27, 30, 49, 53–55). As
documented in previous work from our lab and others, the
CNS levels of these molecules are directly related to urinary
levels, with previous reports linking source tissue, CSF, serum
and urine (3–6, 21, 37, 56). The working model is that
the end-organ (brain) experiences chronic ischemia from the
moyamoya arteriopathy and is elaborating these angiogenic
factors at baseline in order to develop compensatory collateral
development. Once surgical revascularization occurs, transient
elevations in these factors enhance surgical collateral growth
until the ischemia is corrected (a process well-documented
by postoperative imaging studies, showing improved perfusion
and surgical collaterals on angiogram), at which point the
ischemic stimulus no longer exists, and the production of pro-
angiogenic molecules decreases. While we do not have sampling
from the immediate postoperative period (days to weeks),
we would hypothesize that we would see marked elevations
in pro-angiogenic biomarkers (such as VEGF and MMPs)
within this window until enough revascularization occurred
to normalize perfusion (usually several weeks to months after
indirect revascularization). In support of this hypothesis, our
data shows that these biomarkers are elevated pre-surgery and
decrease post-operatively in concordance with radiographic
evidence of effective surgical revascularization on angiogram and
improved hemodynamic perfusion onMRI with reduced ivy sign
(Figure 3).

To be clear, the rarity of moyamoya disease suggests that
widespread screening of the general population to identify de
novo cases is not a realistic goal. Utility would be greater in
screening a defined, at-risk population, such as Down syndrome
(which has a 26-fold higher incidence of moyamoya syndrome),
sickle cell disease or patients with known family histories
of moyamoya (1, 2, 9, 57–59). This targeted approach could
reduce risk of scanning, cost of screening and aid in better
detection of disease. Another important role for biomarkers
in moyamoya disease may be aiding in stratification of risk
and operative strategy in already identified moyamoya patients,
with biomarker-based risk reassessment on an ongoing basis.
Longitudinal data from this study suggest that these biomarkers
change in response to ischemia, and further work may allow
clinicians to better select operative candidates by adding
biomarker profiling to complement image analysis. This could
be especially useful in the growing number of asymptomatic or
early-stage moyamoya disease cases that are presently without a
clear clinical equipoise.

Finally, the role of urinary biomarkers may extend beyond
diagnostic or prognostic adjuncts and actually inform the
development of novel, biologically-based therapies. This
approach of combining a specific therapy with immediate
feedback on efficacy—theranostics—has rapidly expanded in
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medicine. Our lab has started to merge the fields of diagnostic
biomarkers with targeted therapeutics in brain tumors (60, 61). It
is tempting to consider that a similar approach with moyamoya
disease, using biomarker-informed delivery of pro-angiogenic
therapeutics, then following response to therapy, as shown in
this paper.

Limitations and Future Directions
Although much of the data revealed by this work is promising,
there are clearly a number of limitations inherent to this study.
First, a challenge is the rarity of the disease, making it difficult to
collect CSF and urine from the same patient in great numbers.
For example, while only one of the CSF markers in this study
reached significance, the others clearly trended as expected and
we anticipate that validation would have been achieved with
larger datasets. It will be important in future work to substantially
increase the CSF sampling if it is to be as robust as urinary
data. Also relevant to the rarity of patients is expanding the
number of post-operative urine samples to validate this approach,
as minimizing variation related to timing and recovery from
surgery will be important. To address this issue, it would be ideal
to validate these findings in much larger populations, ideally as
multi-center effort. Second, there is potential heterogeneity in
moyamoya, with both disease and syndromic populations (2).
While we have tried to minimize this variability by standardizing
age, disease status and linked specimens, it would be helpful
to expand this study to examine defined cohorts of moyamoya
(RNF213, Down syndrome, post-radiation, etc.) and determine
if there are unique biomarker signatures across populations.
Third, expanding the number of molecules to evaluate as putative
biomarkers for specific clinical applications could be done with
larger numbers—and this has been successfully achieved in
multiple diseases, by our group and others. For example, a panel
of biomarkers designed specifically to quantify ischemia could be
developed in conjunction with radiographic data.

CONCLUSIONS

We report a novel panel of urinary and CSF biomarkers that
can identify the presence of moyamoya disease with a high
degree of sensitivity and accuracy. Urinary MMP-2 emerged
as the optimal marker, with a sensitivity of 87.5%, specificity

of 100%, and accuracy of 91.3%. We demonstrate that these

biomarkers track from CSF to urine and correlate with response
to therapeutic interventions, including evidence of radiographic
revascularization. These proteins can be assessed non-invasively,
offering unique advantages in safety, ease of monitoring and
reduced cost, along with a new quantifiable, biological approach
that complements existing clinical and radiographic practice.
Together, these proof-of-principle data support the ongoing
investigation of urinary biomarkers as tools that may have utility
in the diagnosis, prognosis, and treatment of moyamoya disease.
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