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Abstract

Rheumatoid arthritis (RA) is a chronic autoimmune disease that primarily attacks synovial joints. Despite the advances in
diagnosis and treatment of RA, novel molecular targets are still needed to improve the accuracy of diagnosis and the
therapeutic outcomes. Here, we present a systems approach that can effectively 1) identify core RA-associated genes
(RAGs), 2) reconstruct RA-perturbed networks, and 3) select potential targets for diagnosis and treatments of RA. By
integrating multiple gene expression datasets previously reported, we first identified 983 core RAGs that show RA dominant
differential expression, compared to osteoarthritis (OA), in the multiple datasets. Using the core RAGs, we then
reconstructed RA-perturbed networks that delineate key RA associated cellular processes and transcriptional regulation. The
networks revealed that synovial fibroblasts play major roles in defining RA-perturbed processes, anti-TNF-a therapy restored
many RA-perturbed processes, and 19 transcription factors (TFs) have major contribution to deregulation of the core RAGs
in the RA-perturbed networks. Finally, we selected a list of potential molecular targets that can act as metrics or modulators
of the RA-perturbed networks. Therefore, these network models identify a panel of potential targets that will serve as an
important resource for the discovery of therapeutic targets and diagnostic markers, as well as providing novel insights into
RA pathogenesis.
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Introduction

Rheumatoid Arthritis (RA) is a chronic autoimmune disease

that primarily attacks synovial joints. In the RA joints, various

inflammatory cells, including innate immune cells (e.g. mast cells,

macrophages, dendritic cells, and NK cells), adaptive immune cells

(T- and B-cells), and fibroblast-like synoviocytes (FLS), are

activated. These cells interact with each other via an array of

cytokines and/or cell-to-cell contacts, leading to prolonged

inflammation, abnormal proliferation of FLS, and the destruction

of cartilage and bone [1,2,3]. Despite incremental advances in the

diagnosis and treatment of RA, novel molecular targets are still

needed to improve the accuracy of diagnosis and the therapeutic

outcomes. For example, two metrics widely used to assess RA

activity, i.e., erythrocyte sedimentation rate (ESR) and C-reactive

protein (CRP), are not specific to RA because they also are

elevated in non-RA conditions including infections and trauma. In

addition, rheumatoid factor and anti-CCP antibody, well-known

diagnostic markers for RA, represent B-cell hyperactivity to self-

antigens, but are limited in reflecting the multi-cellular commu-

nication networks occurring in the RA joints.

Systems approaches to diseases postulate that diseases arise from

disease-perturbed networks. Accordingly, to understand funda-

mental mechanisms of RA pathogenesis, it is essential to identify

and analyze RA-perturbed networks in the RA synovium. Several

studies have identified RA-associated genes (RAGs) and their

associated cellular processes [4,5,6]. For example, Hurber et al. [4]

analyzed mRNA expression profiles in the synovial tissues of RA

patients and normal controls. They identified 568 RAGs that are

mainly involved in inflammation, proliferation, survival, and

angiogenesis. Van der Pouw Kraan et al. [5] and Ungethuem et al.

[6] also identified RAGs participating in similar cellular processes.

However, these studies have not attempted to reconstruct RA-

perturbed networks that delineate cellular processes associated

with RA and to identify molecular targets for diagnosis or therapy

through analyses of RA-perturbed networks.

In this study, we introduce a systems approach that can be used

to effectively 1) identify core RAGs by integrating multiple gene

expression datasets previously reported and their associated

cellular processes, 2) reconstruct RA-perturbed networks to

delineate key cellular processes and transcriptional regulation

associated with RA, and 3) identify targets for use in diagnosis and

treatments of RA. The RA-perturbed networks revealed that 1)

RA FLS act as a major player responsible for various RA-

perturbed processes, 2) anti-TNF-a therapy moves a wide

spectrum of RA-perturbed processes toward normality, and 3)

19 key transcription factors (TFs) could play critical roles in the

regulation of 55% of dysregulation encoded by the RA-perturbed

networks. Based on the RA-perturbed networks, we selected a list

of potential molecular targets that can act as metrics or modulators

of RA-perturbed networks. Therefore, our systems approach

provides RA-perturbed network models that can identify a panel
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of potential targets that will serve as an important resource for

discovery of therapeutic targets and diagnostic markers, as well as

providing novel insights into RA pathogenesis.

Materials and Methods

Identification of RA Associated Genes (RAGs)
Log2-intensities in each of three gene expression datasets

generated from synovial tissues (Table 1) were normalized using

GC-RMA method [7,8]. For each dataset, log2-fold-changes for

each probe set in m RA samples were then calculated by

subtracting the median intensity of normal synovial tissue samples

from m intensities of RA samples, resulting in a k6m fold-change

matrix where k is the number of probe sets. The same procedure is

done separately for OA samples, resulting in another k6n fold

difference matrix. Then, for each fold-change matrix, when there

are multiple probe sets for a gene, the representative fold-change

for the gene was selected as that of the probe set with the largest

log2-fold-change between RA (or OA) and normal samples.

In total, the five fold-change matrices were generated (i.e., two

from GSE1919, one from GSE7307, and two from GSE12021).

Each of these five matrices was then transformed into a single

vector. The five vectors for the five matrices were normalized

using quantile normalization method [8] to avoid a bias toward

certain datasets with large fold changes. These vectors with

normalized fold-changes were transformed back into the matrices.

Finally, the five normalized fold-change matrices were combined

by matching the gene IDs in the individual matrices, resulting in a

combined fold-change matrix. NMF was then applied to the

combined fold-change matrix as described in Kim et al. [9]. The

number of clusters (k) was set to be 30. Figure S1 shows the 30

resulting clusters showing the corresponding DEPs. The genes

belonging to cluster i (i.e. the gene showing the DEP in cluster i)

were selected as the ones whose adjusted P-values values are less

than 0.05. We computed the adjusted P-values as described in

Kim et al. [9].

Selection of the Major Differential Expression Patterns
(DEPs)

We selected seven significant DEPs that are not likely to be

observed by chance using the following procedure. We first

randomly permuted the elements of the log2-fold-change matrix

and then applied NMF clustering to the randomly permuted

matrix with the number of clusters (k) = 30. This permutation

experiment results in random expression patterns, compared to

the 30 RA-associated DEPs in Figure S1. In each random

permutation experiment, we computed the cutoffs of both NMF

activation and basis values as 95th percentile values and then

counted genes and samples with the basis and activation values

larger than the cutoffs. We found that 211 genes in five samples

can show a DEP by chance (P,0.05). Thus, we selected seven

DEPs in which 1) the number of genes in a certain DEP should be

more than 211, and 2) the number of samples with the DEP is

more than five, and then identified 3742 RAGs showing these

DEPs.

Identification of Diseases and their Phenotypes
Associated with RAGs

We collected gene and disease/disease phenotype association

data from the Gendoo database [10]. For 1539 shared up-

regulated RAGs, we then counted the number of genes associated

with each disease and disease phenotype (i.e. n genes had disease

phenotype i, such as Arthritis and Rheumatoid, according to the

association information). Second, we randomly sampled 1539

genes from the whole genome and then counted randomly

sampled genes with phenotype i. We repeated this procedure

100,000 times. Third, we then generated an empirical distribution

(null hypothesis distribution) of the 100,000 counts of the

randomly sampled genes with phenotype i. Fourth, for each

association (e.g. n gene-phenotype i), we then computed the

probability (P) that the actual count of genes with phenotype i can

be observed by chance using one-tailed test with the empirical

distribution. The same procedure was repeated for all the pairs of

Table 1. 14 gene expression datasets used in this study.

Sample Origin Sample Type and Numbers
Raw Data
Source ID Reference

Synovial Tissues 5 Normal, 5 RA and 5 OA GSE1919 Ungethuem et al., Physiol Genomics., 2010.

4 Normal and 5 RA GSE7307 none

3 Normal, 12 RA and 9 OA GSE12021 Huber et al., Arthritis Res Ther., 2008.

11 RA: good, moderate, and poor responders with post-
adalimumab therapy

GSE15602 Badot et al., Arthritis Res Ther., 2009.

10 RA: good, moderate, and poor responders with pre-
or post-infliximab therapy

E-TABM-104 Lindberg et al., Arthritis Res Ther., 2006.

Peripheral T cell 8 RA and 10 Control GSE4588 none

Peripheral B cell 7 RA and 9 Control GSE4588 none

1 RA and 1 Control GSE4255 Szodoray et al., Rheumatology., 2006.

PBMC 18 RA and 15 Control GSE15573 Teixeira et al., PLoS One., 2009.

27 RA and 22 Control GSE11827 none

FLS from synovial
tissue

6 RA and 6 OA GSE7669 Pohlers et al., Arthritis Res Ther., 2007.

19 RA and 19 Control GSE4061 Kasperkovitz et al., Arthritis & Rheumatism., 2005.

6 RA (1 Control, 2 IL1B Treatment, and 3 TNF Treatment) GSE15615 Badot et al., Arthritis Res Ther., 2009.

3 RA (1 Control, 1 IL1B Treatment, and 1 TNF Treatment) none Taberner et al., Inflammation Research., 2005.

doi:10.1371/journal.pone.0051508.t001

A RA-Perturbed Network
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gene-disease/disease phenotype found for the 1539 RAGs. Finally,

we selected a list of disease/disease phenotype associations

enriched by the 1539 RAGs as the ones P,0.05. The same

procedure was done for the 983 RA-dominant up-regulated

RAGs.

Reconstruction of RA-perturbed Networks
To reconstruct an RA-perturbed network, from the 983 RA-

dominant up-regulated RAGs, we first selected 242 RAGs which

are composed of 131 RAGs that are involved in sixteen RA

associated cellular processes and their 111 interactors based on the

interaction data obtained from public databases including HPRD

[11], BioGRID [12], STRING [13], and KEGG [14]. A RA-

perturbed network model was then reconstructed using the

interactions among the 242 RAGs. The nodes in the network

were arranged such that the nodes with the same GOBPs [15] and

KEGG pathways were grouped into the same network modules,

resulting in the sixteen modules.

Computation of Module Enrichment Scores
To quantitatively assess the contribution of cell types to RA

pathogenesis, we integrated gene expression datasets collected

from multiple types of cells related to RA pathogenesis into the

RA-perturbed network. We first identified up-regulated genes

(Cell Genes) in these cells and then examined how closely the up-

regulated genes in these cells overlap with the RA-dominant up-

regulated genes associated with the individual modules in the RA-

perturbed network. For each network module, we calculated a

Figure 1. RA associated genes, cellular processes and disease phenotypes. A) and B) Seven major clusters (1, 2, 3, 4, 6, 8, 12) showing the
DEPs of the RAGs in RA and OA samples: Shared (shared RAGs commonly up- or down-regulated in RA and OA samples; RA-dominant (RAGs
dominantly up- or down-regulated in RA samples). The number of RAGs in each cluster is denoted in the table. When a gene shows a mixture of the
DEPs in the multiple clusters, NMF, as a soft clustering method, assigns the gene to multiple clusters. Thus, the summation of the RA-dominant up-
regulated RAGs (1104 RAGs) could be larger than 983 presented as the number of the RA-dominant RAGs. C) GO Biological Processes (GOBPs)
enriched by the up-regulated RAGs (P,0.05). For each GOBP, a Z score was computed by N21(1-P) where N21(2) is the inverse of a standard normal
cumulative density function and P is the enrichment p-value for the GOBP. Empty and gray bars represent the GOBPs enriched by shared and RA-
dominant up-regulated RAGs, respectively. D) Five classes of RA-related diseases and their association with the RAGs. P-values were computed using
the empirical statistical testing described in supplementary methods).
doi:10.1371/journal.pone.0051508.g001

A RA-Perturbed Network
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module enrichment score (MES) defined by [(the number of Cell

Genes within a module)/(the total number of genes within the

module)]/[(the total number of genes in RA-perturbed network)/

(the total number of RA-dominant up-regulated RAGs)]. A high

MES indicates a large overlap with the genes in the corresponding

network module. We also computed the MES to assess the effect of

TNF-a inhibitors on restoration of RA-perturbed networks toward

normality and also the effects of IL1B and TNF on induction of

RA pathogenic conditions. In these cases, we used the same

equation, but the numbers of down-regulated genes by TNF-a
inhibitors and up-regulated genes by IL1B or TNF were used

instead of the number of up-regulated genes in each type of cells.

Identification of Key Transcription Factors (TFs)
To identify key TFs, we first collected 60,948 TF-target

interaction data for 259 TFs in the public databases including

TRED [16], EdgeExpressDB [17], Amadeus [18], bZIPDB [19],

and OregAnno [20]. A random sampling based empirical

statistical testing was applied to identify TFs significantly enriched

by the 983 RA-dominant up-regulated RAGs. For each TF, we

counted its targets in the 983 RAGs (e.g. n targets of TF i). Second,

we randomly sampled 983 genes from the whole genome and then

counted targets of TF i in the randomly sampled 983 genes. We

repeated this procedure 100,000 times. Third, we then generated

an empirical distribution (null hypothesis distribution) of the

100,000 counts of random targets of TFi. Fourth, for the number

of targets of TF i, we then computed the probability (P) that the

actual count of targets of TF i in the 983 RAGs can be observed by

chance using one-tailed test with the empirical distribution. The

same procedure was repeated for all TFs. Finally, we selected 19

TFs whose targets were significantly enriched by the 983 RAGs

(P,0.01).

Association of Key TFs with Network Modules
To quantitatively assess the significance of the 19 key TFs

regulating cellular processes represented by individual modules in

the network, we computed the target enrichment scores repre-

senting how significantly each module can be regulated by the key

TFs using the previously reported TF targets. In each module, for

a key TF, the target enrichment score was defined by (the number

of targets regulated by the TF within a module)/(the total number

of genes within a module). A high enrichment score in individual

modules for a key TF indicates that a large portion of molecules in

the corresponding modules are regulated by the TF.

Identification of an Initial Set of Potential Molecular
Targets

We first collected protein-protein interaction data from public

databases including HPRD [11], BioGRID [12], STRING [13],

and KEGG [14]. To identify a list of molecular targets that play

major contribution to regulation of the RA-dominant up-regulated

983 RAGs, we used a random sampling based empirical statistical

testing similar to the method described in the previous section.

Figure 2. A RA-perturbed network in the RA synovium and signatures of FLS and PBMC in the RA tissue network. A) A RA-perturbed
network describing RA associated cellular processes in which 242 up-regulated RAGs are involved and their interactions. The network nodes are
arranged into sixteen modules based on their GOBPs and the KEGG pathways that they belong to. The nodes with red boundary represent DEGs in
RA FLS. B) and C) Module enrichment scores (see text for definition) representing the significances of overlaps of the DEGs in RA FLS (B) or PBMC (C)
with the genes belonging to the sixteen network modules. See text for detailed discussion. AP = Antigen processing & presentation; TC = T-cell
activation; BC = B-cell activation; IG = Immunoglobulins; CA = Complement activation; NK = Natural killer cell mediated cytotoxicity; IC = Inflammatory
cytokines; CK = Chemokines; CMH = Cell migration & adhesion; TLR = Toll-like receptor signaling; AF = Angiogenic factors; JS = JAK-STAT signaling;
CC = Cell cycle & DNA repair; CDS = Cell death & survival; ECM = ECM organization; MR = Matrix remodeling.
doi:10.1371/journal.pone.0051508.g002

A RA-Perturbed Network
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Specifically, 1) for each regulator, the first and second neighbors

using the protein-protein interaction data was counted instead of

the number of targets of TF i; 2) for the regulator, by randomly

sampling the 983 genes 100,000 times, we generated an empirical

distribution of the null hypothesis that this regulator has an

insignificant number of interactions with the RAGs; 3) for the

protein regulator, we used a one-tailed test on the empirical null

hypothesis distribution to computed P values for the observed

number of first and second neighbors; and 4) after repeating

procedures 1 to 3, we selected 108 key regulators with P-values of

the first and second neighbors with P,0.01 (Table S1).

Results and Discussion

RA Associated Genes Show Gene Expression Patterns
Unique to RA

To identify RAGs, we first collected three gene expression

datasets generated from synovial tissues of RA patients, osteoar-

thritis (OA) patients, and healthy subjects (GSE1919, GSE7307,

and GSE12021 in Table 1). These datasets include a total of 12

normal, 22 RA, and 14 OA samples for 14907 genes. We then

identified RAGs showing differential expression in RA samples by

collectively analyzing the 48 samples in the three datasets using a

non-negative matrix factorization (NMF) analysis (see Materials
and Methods). Among 30 different differential expression

pattern (DEPs) clusters of the genes resulted from the NMF

analysis, we selected seven major DEP clusters (P,0.05; see

Materials and Methods) and then identified the genes

significantly showing each DEP (P,0.05) as RAGs (Figures 1A

and 1B).

The RAGs could be divided into four groups (Figures 1A and

1B): 1) shared RAGs (clusters 2 and 8) up-regulated in both RA

and OA samples; 2) RA-dominant RAGs (clusters 4, 6, and 8)

up-regulated predominantly in RA samples; 3) shared RAGs

(cluster 1) down-regulated in both RA and OA samples; and 4)

RA-dominant RAGs (clusters 3 and 12) down-regulated

predominantly in RA samples. We included cluster 8 in both

up-regulated groups because it showed both shared and RA-

dominant DEPs. The shared RAGs indicate that both RA and

OA share certain pathological processes, consistent with

previous findings that both diseases show common characteris-

tics related to chronic inflammatory arthritis. For example,

angiocentric infiltrates of CD3 (+) T-cells are distributed in

similar patterns in the RA and OA synoviums [21]. The RA-

dominant RAGs indicate that RA can be distinguished from

OA. Hence, to understand the networks unique to, or at least

dominant in RA, we should focus on the pathological processes

associated with RA-dominant RAGs.

RA-dominant RAGs Represent Cellular Events in RA and
RA Related Diseases

RA-dominant RAGs define cellular processes predominantly

perturbed in RA. To identify these cellular processes, we

performed functional enrichment analyses of the four groups of

Figure 3. Signatures of anti-TNF inhibitors in RA-perturbed network. A) A RA-perturbed networks showing the recovery of the elevated
RAGs to normality by anti-TNF therapy. Green border colors represent the decreases in expression levels of 136 elevated RAGs. B) and C) Module
enrichment scores representing the significances of overlaps of the genes decreased by anti-TNF therapy (B) or the genes whose expression levels are
elevated by IL1B and TNF treatments (C) with the genes belonging to the network modules. AP = Antigen processing & presentation; TC = T-cell
activation; BC = B-cell activation; IG = Immunoglobulins; CA = Complement activation; NK = Natural killer cell mediated cytotoxicity; IC = Inflammatory
cytokines; CK = Chemokines; CMH = Cell migration & adhesion; TLR = Toll-like receptor signaling; AF = Angiogenic factors; JS = JAK-STAT signaling;
CC = Cell cycle & DNA repair; CDS = Cell death & survival; ECM = ECM organization; MR = Matrix remodeling.
doi:10.1371/journal.pone.0051508.g003

A RA-Perturbed Network
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RAGs above using DAVID software [22] and then compared the

results. Cellular processes enriched by the two groups of up-

regulated RAGs (P,0.05) showed that shared up-regulated RAGs

in RA and OA were mainly involved in innate and adaptive

immune-related processes (leukocyte activation, chemotaxis, T/B-

cell activation, and apoptosis; Figure 1C). These processes were

Figure 4. Gene regulatory networks activated in RA. A) Target enrichment scores representing the significances of overlaps between the
targets of each TF and the RAGs belonging to the network modules. B–D) Gene regulatory networks describing the TF-target relationships for the
three processes: T-cell activation including RUNX1 and FOXP3 (B), Matrix remodeling including AP-1 (JUN and FOS) and NFKB1 (C), and Cell
proliferation and survival including NFAT5, E2F3, and TP53 (D).
doi:10.1371/journal.pone.0051508.g004

Table 2. Known molecular target candidates for diagnosis and therapy of RA.

Category Symbol P Value Chemical RA association Associated Modules

PPI PTPRC ,0.00001 O O T cell activation

JAK1 ,0.00001 O O JAK-STAT signaling

CD19 ,0.00001 O O B cell activation

TNF ,0.00001 O O Inflammatory cytokines

CXCR4 ,0.00001 O O Cell migration and adhesion, Chemokines

TLR4 ,0.00001 O O Toll-like receptor signaling

CD247 ,0.00001 O O T cell activation, NK cell mediated cytotoxicity

CCR3 0.00001 O O Chemokines

THBS1 0.00027 O O Matrix remodeling

TF NFKB1 ,0.00001 O O Matrix remodeling, NK cell mediated cytotoxicity, Cell
death and survival, Chemokines

TP53 ,0.00001 O O Cell death and survival

JUN 0.00001 O O Matrix remodeling, ECM organization

FOXP3 0.00009 O O T cell activation

POU2F1 0.00028 O O B cell activation

ETS2 0.00377 O O Angiogenic factors, Chemokines

doi:10.1371/journal.pone.0051508.t002

A RA-Perturbed Network
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also enriched by RA-dominant up-regulated RAGs. However, the

enrichment scores (Z-scores) of these processes tended to be higher

than those for the shared up-regulated RAGs (e.g. leukocyte

activation [23] and T-cell activation [24]). This result implies that

these processes, although commonly perturbed by RA and OA,

may become further intensified in RA by the RA-dominant RAGs,

consistent with the previous finding that several cytochemokines

and growth factors are detected in both RA and OA synoviums,

but their expression levels are higher in RA synoviums [25].

Cellular processes enriched by the two groups of down-regulated

RAGs (P,0.05) revealed that shared down-regulated RAGs in RA

and OA were mainly involved in RNA processing, regulation of

cell death, angiogenesis, and regulation of cell migration (Figure

S2A). Both cell adhesion and insulin receptor signaling pathways

were enriched by both shared and RA-dominant down-regulated

RAGs. On the other hand, RA-dominant down-regulated RAGs

were specifically involved in lipid metabolic process and regulation

of cell growth.

Furthermore, we investigated diseases enriched by the four

groups of the RAGs using the gene-disease association data

obtained from Gendoo database [10]. Various diseases exhibited

close association with the RAGs (P,0.05; see Materials and
Methods). Five classes of diseases involving some of the cellular

processes were enriched by the shared and RA-dominant up-

regulated RAGs (Figure 1D); 1) arthritis diseases (juvenile chronic

arthritis and reactive arthritis, in addition to RA and OA), 2)

autoimmune and connective tissue disorders, including lupus and

Sjögren’s syndrome, 3) diseases employing clonal expansion of

lymphocytes (e.g. diffuse large cell lymphoma), 4) viral infectious

diseases including EBV and HTLV-1 infection, and 5) fibrotic

diseases including systemic sclerosis. Similar to the data on cellular

processes, these five classes of diseases were strongly enriched by

the RA-dominant RAGs, but only partially and weakly by the

shared RAGs (Figure 1D). However, the analysis of the down-

regulated RAGs (Figure S2B) showed that none of these RA-

related diseases was enriched by the down-regulated RAGs. This

indicates that association of the down-regulated RAGs with these

diseases has not been well-studied yet or they could contribute to

pathogenesis of the diseases less than the up-regulated RAGs.

The pathology of RA is characterized by synoviocyte prolifer-

ation and angiogenesis, ‘pannus formation’, as well as cartilage

and bone destruction by activated cells [26,27]. The analysis of

disease association showed that the up-regulated RAGs were more

closely associated with RA pathology than the down-regulated

RAGs (Figure 1D and Figure S2B). Among the up-regulated

RAGs, the functional enrichment analysis further indicated that

the processes enriched by the RA-dominant up-regulated RAGs

account better for RA pathology than those by the shared up-

regulated RAGs. For example, the pannus formation related

processes, such as cell cycle (synoviocyte proliferation) and

angiogenesis, were specifically enriched in the RA-dominant up-

regulated RAGs (Figure 1C). Also, processes related to cartilage

and bone destruction, such as extracellular matrix (ECM)

remodeling and cell migration, were significantly enriched by

the RA-dominant up-regulated RAGs, but not by the shared

RAGs (Figure 1C). Hence, we defined the 983 RA-dominant up-

regulated RAGs as core RAGs and focused on them to effectively

delineate RA-perturbed networks.

A RA-perturbed Network Reveals Key Cell Players in RA
Synovium

Using the core RAGs, we reconstructed an RA-perturbed

network describing RA-associated cellular processes and their

interactions (Figure 2A; see Materials and Methods). The

nodes in the network were grouped into the sixteen modules.

These modules include the innate and adaptive immune response

related modules, the inflammatory cytokine and chemokine

related modules, the cell proliferation and survival related

modules, the immune complex deposition related modules, and

the joint destruction related modules. These modules collectively

explain much of the pathophysiology of RA.

The different types of immune cells related to RA pathology

interact in a complex manner. This complexity presents challenges

in determining the specific roles of various types of cells in the

progression of RA. Elucidation of the major and minor roles of the

participating cells is a key question in understanding RA

pathogenesis. RA FLS have been considered as sentinel cells,

albeit without direct evidence, which actively participate in joint

destruction in RA [28,29,30,31]. Therefore, we determined how

many modules reflect the gene signatures of RA FLS. We first

identified 111 up-regulated genes in RA FLS, compared to

controls (i.e. OA FLS or reference mRNA samples; see Table 1), as

described in Lee et al. [32]. We then denoted these genes in the

RA-perturbed network. They overlapped with 46% of the 242

RAGs in the network, indicating that the RA FLS signature

overlapped significantly with the RA tissue signature. To

quantitatively assess the contribution of RA FLS to the RA-

perturbed network, we calculated a module enrichment score

Table 3. Novel molecular target candidates for diagnosis and therapy of RA.

Category Symbol P Value Chemical Associated Diseases Associated Modules

PPI CSF3R ,0.00001 – Multiple Sclerosis Inflammatory cytokines

DOK1 ,0.00001 – Epstein-Barr Virus Infections Cell death and survival

KHDRBS1 ,0.00001 O HTLV-I Infections Cell cycle

AXL ,0.00001 O – Angiogenic factors

PDGFB ,0.00001 O Liver Cirrhosis, Non-Hodgkin Lymphoma,
Multiple Sclerosis, Systemic Scleroderma

Chemokines

RELN ,0.00001 O Liver Cirrhosis ECM organization

PTK2B 0.00001 O Lymphoma, B-Cell; Pulmonary Fibrosis NK cell mediated cytotoxicity

TF NFAT5 ,0.00001 – – Cell cycle, Cell death and
survival, Angiogenic factors

E2F3 ,0.00001 O Lymphoma, Large B-Cell, Diffuse Cell cycle

doi:10.1371/journal.pone.0051508.t003
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(MES; see Materials and Methods). Many modules in the RA

tissue network had high MES values, except for the modules of T/

B-cell activation, immunoglobulin, and NK cell mediated cyto-

toxicity (Figure 2B), indicating that the FLS signature strongly

contributes to the tissue pathology. In fact, this is the first evidence

in human samples supporting the previous idea that FLS play

central roles as a major component of invasive pannus in many

molecular events occurring in the RA joints.

Peripheral blood mononuclear cells (PBMCs) can also contrib-

ute to RA progression when recruited to and activated in the

joints. To investigate whether PBMCs, like RA FLS, also reflect

pathological signatures in RA joints, we integrated five gene

expression datasets obtained from peripheral T, B, and mononu-

clear cells (Table 1 and Figure S3A). We identified the up-

regulated genes in each PBMC dataset, compared to those of

healthy individuals, and then combined all up-regulated genes in

the five datasets. We denoted these genes in the RA-perturbed

network and then recomputed the MES values for the individual

modules. Interestingly, the PBMCs signature showed no overlap

with the RA tissue signature as indicated by the low MES values

(Figure 2C), consistent with a previous finding that there was no

correlation between the fold-changes of the genes in PBMCs and

inflammatory status of synovial tissues in RA joints [33].

Meanwhile, the up-regulated genes in PBMCs were involved in

cell proliferation and immune response related processes (Figure

S3B). Although these processes as a whole were shared between

RA synovial tissues and PBMCs, the genes themselves were not

shared. These results demonstrated that the PBMCs signatures

show little reflection of joint pathology, a finding that might be

explained by the exposure of PBMCs to a micro-environment

different from that of the joints.

The RA-perturbed Network is Restored by TNF-a
Inhibitors

Biologic agents, including TNF-a inhibitors and B-cell ablating

agents (e.g. anti-CD 20 antibody), have been widely used for the

treatment of RA. An interesting question is whether the RA-

perturbed networks can serve as a basis for understanding of the

therapeutic effects of these drugs. To answer this question, we first

identified a set of genes that are down-regulated by TNF-a
inhibitors in synovial tissues of RA patients after treatments with

anti-TNF-a antibodies (Table 1) and then denoted these genes in

the RA-perturbed network. The result showed that 136 (56%) of

the 242 up-regulated RAGs in the network were significantly

decreased (P,0.05) in their expression levels by anti-TNF-a
therapy (Figure 3A). Moreover, the majority of anti-TNF-a-

regulated modules had high MES values (Figure 3B), supporting

why TNF-a inhibitors are effective for most RA patients. As

expected, innate immunity-related modules, including natural

killer cell mediated cytotoxicity and the inflammatory cytokines

module, were significantly affected by anti-TNF-a therapy

(Figure 3B). Of note, the ‘pannus’-related modules, including cell

migration and adhesion, cell cycle, and ECM organization, were

most significantly reduced by anti-TNF-a antibody treatment,

implying that the elevated TNF-a may be necessary for the

formation of invasive pannus. However, B-cell-related modules,

such as the B-cell activation and the immunoglobulin modules,

were only modestly changed by anti-TNF-a therapy (Figure 3B),

suggesting that B-cell-targeted therapy may be effective for the

anti-TNF-a resistant cases. Indeed, rituximab, anti-CD20 mono-

clonal antibody, has been approved for the treatment of RA

patients who are refractory to TNF-a inhibitors [34,35,36].

The heterogeneous responses of RA patients to anti-TNF-a
therapy raise the possibility that other cytokines such as IL-1b may

dominate joint inflammation over TNF-a in certain circumstanc-

es. We thus analyzed the up-regulated genes in TNF-a or IL-1b-

stimulated RA FLS, compared to un-stimulated RA FLS (Table 1).

We then integrated these genes into the RA-perturbed network.

The effect of TNF-a in the RA-perturbed network is very similar

to that of IL-1b (Figure 3C), implying that IL-1b and TNF-a
appear to play similar pathological roles in RA. Thus, it is not

surprising that anakinra, an IL-1 receptor antagonist, shows no

therapeutic benefit in RA patients resistant to TNF blockades [37].

Taken together, our data suggest that molecular signatures in the

RA synovium could provide important metrics to decide which

kinds of biologic agents should be administered to diverse

subgroups of RA patients.

A Transcriptional Regulatory Network Reveals Key TFs
Governing Regulation of RA-dominant RAGs

To elucidate key TFs that control many 983 RA-dominant

RAGs and thus presumably regulate RA, we also reconstructed

transcriptional regulatory networks (TRNs). We first identified 19

key TFs governing regulation of the 983 RA-dominant RAGs

using previously reported TF-target interaction data (P,0.01; see

Materials and Methods). The targets of 19 key TFs accounted

for 55% of the 242 RAGs in the RA-perturbed network.

Using the TF-target interaction data previously reported, we

then counted the numbers of targets of key TFs in the individual

network modules (Figure 4A) to understand how significantly the

TFs regulate the cellular functions represented by the network

modules (see Materials and Methods). First, FOXP3 and

RUNX1 act as major regulators of T-cell activation (Figure 4B),

directing the expression of CD3E, CD3G, TRAT1, LCP1, LEF1,

and/or ETS1. FOXP3 was shown to regulate key genes during T-

cell stimulation and maturation [38,39]. Especially, regulatory T

cells expressing FOXP3 play critical roles in regulation of

immune-mediated inflammation and autoimmune disorders [40].

RUNX1 was also known to modulate the differentiation of naive

CD4-positive T cells [41,42]. Second, both AP-1 (JUN and FOS)

and NF-kB complexes (NF-kB1, NF-kB2, RELA, RELB, and

REL) were found to regulate most significantly several network

modules, including angiogenic factors, matrix remodeling, cell

death and survival, and chemokines module (Figure 4A), as

previously reported [43]. For example, AP-1 and NF-kB

collectively regulate the genes involved in matrix remodeling

(Figure 4C), including the MMP-9, MMP13, TIMP1, and P4HA1.

JUN and FOS are highly expressed in RA synovial tissues [44].

Moreover, the AP-1 decoy oligonucleotides suppressed collagen-

induced arthritis and inhibited production of IL-1, IL-6, TNF-a,

matrix metalloproteinase (MMP)-3, and MMP-9 in RA synovial

tissues [45]. NF-kB is also activated in the RA synovium and

induces a battery of inflammatory genes, including TNF-a, IL-6,

IL-8, and inducible nitric oxide synthase (iNOS) [43,46]. Also,

NF-kB inhibitors relieved arthritis symptoms and prevented the

radiographic progression of RA patients [47,48]. Third, NFAT5,

E2F3, and TP53 can regulate the genes associated with cell cycle,

cell death, and survival (Figure 4D), including CCNB1/2, CDK1,

RB1, PCNA, PTTG1, BCL2, FAS, and TNFRSF10A. Mutations

of TP53 tumor suppressor have been frequently noted in RA

synovial tissues and synoviocytes [49,50,51]. Micro-dissection of

RA synovium can localize islands of TP53 mutant cells to the

intimal lining that exhibit higher expression of IL-6 than wild-type

regions [52]. These data indicate that the 19 key TFs could be

activated in RA, and the TRNs highlight further regulation of

their target RAGs and cellular processes. In addition, the

transcriptional regulation of the target genes in the network

modules (Figure 4A) may be useful when we attempt to design
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drugs that can control specific modules in the RA-perturbed

network.

Potential Molecular Targets that can Modulate Activities
of RA-perturbed Networks

Based on the RA-perturbed networks (Figures 2 and 4), we

sought to identify candidates for molecular targets that can be used

for diagnosis and therapy. They should be metrics (and

modulators) of the RA-perturbed network activities. In this search,

we hypothesized that a network node with a larger number of

protein-protein and/or protein-DNA interactions could serve

more effectively as a metric of network activation, and that its

perturbation may more significantly modulate the activities of the

RAGs and the RA-perturbed networks. After counting the

number of interactions for every up-regulated RAG, we identified

an initial set of 108 candidates with the numbers of interactions

being significantly higher than those observed by chance from

100,000 random sampling experiments (P,0.01; see Materials
and Methods).

Among these 108 candidates (Table S1) and the 19 TFs selected

above (Table S2), we further selected two sets of molecular

candidates. The first set of 15 known candidates were identified as

the ones (Table 2); 1) that are currently being used as therapeutic

targets in RA treatments or whose efficacy has been previously

reported in RA, and 2) for which the agents modulating their

activities are available. If there were multiple candidates in the

same module, the candidate with the smallest P value was chosen

with a high priority. The list includes TNF-a whose inhibition is

highly efficacious, as well as CXCR4, PTPRC, and CD19 that

have been previously proposed as promising drug targets

[53,54,55]. Interestingly, PTPRC mutations have been reported

to be associated with responses to anti-TNF-a therapy in RA [55].

Although the listed candidates are known as potential therapeutic

targets, most of their inhibitors have neither been tested nor

proven effective by a clinical study. Our network analysis further

indicates that the inhibitors of these targets could be tested singly

or in combination with other drugs. We further identified the

second set of candidates (Table 3) that have never been reported as

diagnostic markers or therapeutic targets of RA though they

represent RA-associated cellular processes (Figure 1C). We showed

above that ‘pannus formation’ related processes (cell cycle, cell

migration and adhesion, angiogenesis, and ECM organization)

were specifically enriched by RA-dominant RAGs (Figure 1C).

Thus, we selected nine candidates representing these processes.

The candidates have been implicated in RA-related diseases, such

as multiple sclerosis and lymphoma, (Figure 1D), but their roles in

RA have never been reported and thus should be confirmed in vitro

and in vivo.

Among the candidates, we have previously reported experi-

mental testing on the role of NFAT5, known as an osmoprotective

TF activated by hypertonicity, in RA pathogenesis using human

RA FLS and also in heterozygous NFAT5+/2 mice [56]. The

results showed that NFAT5 was highly expressed in RA

synoviums, and its activity was increased by proinflammatory

cytokines. Further, we found that the heterozygous NFAT5+/2

mice exhibited a nearly complete suppression of experimentally-

induced arthritis. Gene expression profiling and in vitro assays also

revealed that NFAT5 knock-down RA FLS and endothelial cells

showed the significant decreases in proliferation/survival and cell

migration, respectively. This example demonstrates that the

candidates in Table 2B may offer new options for diagnosis and

the treatment of RA.

Therapeutic options are limited for the RA patients who are

refractory to biologics and combinatory treatment with disease-

modifying anti-rheumatic drugs (DMARDs). Moreover, conven-

tional DMARDs must be discontinued within one year for many

RA patients because of drug toxicity or therapy-independent

relapse [57]. Thus, we require new target molecules for the

treatment of RA. We expect that the above molecular candidates

may offer new therapeutic options through 1) suppression of

unrecognized critical pathways involved in RA, 2) additional

inhibition of known pathologic pathways when used together with

current drugs, and/or 3) prevention of the resistance pathway to

the previous drugs. In addition, as potential diagnostic markers,

these candidates can provide fundamental information on the

disease state. Furthermore, some of these molecules that are

secreted into blood could serve as serum diagnostic markers.

Therefore, these candidates are worthy of further investigation on

a large scale in that they may overcome some of the current

limitations to diagnosis and treatment of RA.

Conclusion
Several molecules have been used for diagnosis and treatment of

RA. However, novel molecular targets are still needed to improve

the accuracy of diagnosis and the therapeutic outcomes. In this

study, we introduced a systems approach for the identification a

panel of potential targets that can be used for diagnosis and

treatment of RA. This approach first provided a comprehensive

list of potential molecular targets as RA-dominant RAGs

associated with the activation of immune-related processes and

‘pannus formation’ related processes. The approach further

provided the RA-perturbed networks showing the relationships

among the RA-dominant RAGs. These networks shed novel

insights into RA pathogenesis; in this study, we showed that RA

FLS act as a major player in ‘pannus formation’, and that anti-

TNF-a therapy moves many RA-perturbed processes toward

normality. Finally, among the RA-dominant RAGs, the approach

provided a panel of potential molecules selected by analyzing the

RA-perturbed networks, which could serves as an important

resource for discovery of therapeutic targets and diagnostic

markers. We expect that this approach should be applicable to

other complex autoimmune diseases, such as autoimmune

hepatitis and lupus nephritis, for which the core networks are

not known and for which new options for diagnosis and therapy

are needed. In conclusion, our approach offers new opportunities

for enhancing our understanding of complex diseases and also

provides a panel of molecular targets that significantly affect

activities of disease-perturbed networks.

Supporting Information

Figure S1 NMF clustering results.

(TIF)

Figure S2 Functional enrichment analysis and disease
association analysis for the down-regulated RAGs. A)

GOBPs enriched by the shared and RA-dominant down-regulated

RAGs (P,0.05). B) Association of five classes of RA-related

diseases with the down-regulated RAGs.

(TIF)

Figure S3 Gene expression signatures and their en-
riched cellular processes in PBMCs. A) A Venn diagram of

DEGs depicting the overlap among the DEGs identified from T-

cell, B-cell, and PBMCs microarray data. B) GO Biological

Processes (GOBPs) enriched by the union of PBMCs signatures

(P,0.05).

(TIF)
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Table S1 108 molecular target candidates categorized
by their associated modules in RA-perturbed network.

(DOC)

Table S2 19 key transcription factors categorized by
their associated modules in RA-perturbed network.

(DOC)
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