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Introduction
The incredible diversity of flowers is attractive to plant evolu-
tionary biologists since Darwin1 proposed the theory of natural 
selection in 1859, and, since then, floral evolution of plant species 
became one of the central topics in plant evolutionary ecology. 
Generally, floral diversity of flowering plants is strongly associ-
ated with their dominant pollinators, with aims of pollen dis-
persal from anthers and pollen receipt to stigmas.2,3 Thus, floral 
diversity could be attributed to the achievements of the maxi-
mum of male and female reproductive success of plant species. 
However, to the present, most studies measuring natural selec-
tion on floral traits are based on female reproductive success 
(seed set),4 which could result from the easy estimations of seed 
set. In contrast, examinations of natural selection are still rare on 
floral traits based on male reproductive success, although achiev-
ing maximum of male reproductive success is considered the 
primary driver to the selection of floral traits.5,6 Estimations of 
male reproductive success could be performed by tracing 
pollen flows with fluorescent powder and dying pollen grains.7 
However, the number of pollen grains that deposited on the 
stigma might not be associated with seed production.8 
Accordingly, by tracing pollen grains, male reproductive success 
could be estimated only but not be quantified. The development 
of molecular markers could help us quantify male reproductive 
success.9,10 For example, a significant stabilizing selection was 
found for corona width and flower length through male function 
based on microsatellite markers in the tristylous daffodil Narcissus 
triandrus.11 In Polemonium brandegeei, plants with more nectar 
sugar and narrow corolla tubes had high siring success via male 
fitness.12 Therefore, microsatellites are the most powerful mark-
ers to determine male reproductive success quantitatively.13

Herpetospermum pedunculosum is an annual liana native to 
Himalaya Mountains inhabiting altitudes ranging from 2300 
to 3500 m.14 This species is dioecious, and thus pollinators are 
necessary for seed production. Seeds of H pedunculosum are 
widely used in traditional Tibetan medicine. Infield popula-
tions, sex ratios are strongly male-biased (ca. 70%),15 indicating 
that male-male competition might occur in pollinating female 
flowers. In our field observations, we found that flower size 
changed significantly among different plants, indicating that 
large flowers could attract more pollinators than small flowers. 
Therefore, to measure the effects of flower size on male repro-
ductive success quantitatively in future researches, we devel-
oped microsatellite markers of H pedunculosum based on RNA 
sequencing in this research.

Materials and Methods
Materials and sample collections

Seeds of H pedunculosum were collected from Shangri-La Alpine 
Botanical Garden in 2017 and 50 of them were sowed in pots 
separately in the greenhouse of Yunnan Normal University in 
2018. Seedlings with 2 euphylla were transplanted to the experi-
mental lands in Yunnan Normal University, and frames were 
built separately for each seedling to meet their climbing habits. 
All seedlings were watered periodically to prevent drought-
induced death. When plants were in the flowering time, we col-
lected fresh leaves from 2 male plants and 2 female plants and 
kept them in liquid nitrogen separately. Besides, in each of the 2 
wild populations in Shangri-La (Yunnan) and Nyingchi (Tibet), 
respectively, fresh leaves of 10 plants (5 male and 5 female plants) 
were collected and kept in silica gel separately.

RNA of each of the 4 individuals was extracted using a 
CTAB method,16 and the integrity of RNA was measured 
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using an Agilent 2100 Bioanalyzer (Agilent Technologies, 
Santa Clara, CA, USA). RNA integrity number (RIN) of each 
of the 4 individuals ranged from 9.0 to 10.0, showing no sign 
of degradation. Total DNA of dried leaves from 20 plants was 
extracted separately using a modified CTAB method for vali-
dation of simple sequence repeat (SSR) markers.

RNA sequencing and assembly

The cDNA library of each individual was built following 
Illumina’s recommendations (San Diego, CA, USA). Random 
hexamer primers were used to synthesize the double strands, 
and the QIAquick PCR Purification kit (Qiagen Inc) was 
employed to purify the short fragments. Then paired-end reads 
were generated on the Illumina HiSeq2500 platform at the 
Biomarker Technologies Co, China.

After filtering the adaptors and reads with >8 ambiguous 
bases and >50% of the bases (quality score ⩽ 5) in raw data of 
each individual, all clean reads of 4 individuals were pooled and 
then de novo assembled to transcripts using Trinity software.17 
To evaluate the quality of transcriptome assembly, we used 
BUSCO v418 software with plant ortholog data sets from 
OrthoDB v1019 to assess completeness. The clean sequence 
data reported in this paper have been deposited in the Genome 
Sequence Archive20 in BIG Data Center,21 Beijing Institute of 
Genomics (BIG), Chinese Academy of Sciences.

SSR locus search, primer design, and validation

Before detecting SSR loci in transcripts, we followed several cri-
teria in light of SSR’s traits. (1) There should be 5 and 3 repeats 
at least for simple and complex repeats, respectively. (2) The 
length of motif should be 2 to 10 bp, and the interruption dis-
tance between different SSRs should be a maximum of 100 bp for 
complex SSRs. (3) Only 2 to 6 nucleotide motifs were considered, 
and the minimum repeat unit was defined as 6 for di-, and 5 for 
tri-, tetra-, penta-, and hexanucleotides. Then, potential SSR loci 
were scanned in the transcripts using Micro-SAtellite (MISA).22

By using Primer 3.0,23 we designed paired primers for each 
unique SSR containing at least 5 repeats. We then performed 
polymerase chain reaction (PCR) in a 25-μL volume contain-
ing 20 to 30 ng DNA. The PCR reactions were carried out 
with the following conditions: DNA initial denaturation at 
94°C for 4 minutes, 35 cycles of 94°C for 1 minute 30 seconds, 
annealing temperature ranging from 45°C to 60°C for 50 sec-
onds, 72°C for 50 seconds, and a final extension at 72°C for 
7 minutes. By using a TIAN quick Midi Purification Kit 
(Tiangen Biotech (Beijing) Co, Ltd, China), excess primers 
and deoxynucleotide triphosphates were removed to purify the 
PCR products. We employed those paired primers that were 
successful in the PCR amplification to detect the polymor-
phism among 18 to 20 individuals from 2 populations with 
POPGEN v1.32.24 Sequencing reactions were then performed 
under the instruction of ABI Prism Sequencing Ready 
Reaction Kit with the same primers as PCRs and analyzed on 
the ABI 3730 genetic analyzer (Applied Biosystems).

Annotation for transcripts containing SSRs

We determined the objective sequences and gene names by the 
transcripts that included SSR in the National Center for 
Biotechnology Information’s (NCBI) NR protein database 
using BLASTx by setting the E-value threshold as 1e−6. We 
then conducted functional annotation of transcripts using the 
programs Blast2GO25 and KEGG,26 and classified the func-
tional categories using the program WEGO.27

Results and Discussion
RNA sequencing and assembly

After filtering, 30 598 513 and 26 227 138 clean reads were 
acquired for 2 male plants, and 30 620 799 and 29 180 298 
clean reads were obtained for 2 female plants (Table 1). 
Assembly resulted in 254 706 transcripts, and the length of 
assembled transcripts ranged from 200 to above 6000 bp, with 
an average of 848 bp (Figure 1, Table 1). The N50 value of our 
assembly is 1860 bp and is similar to those from other species 
by transcriptome sequencing (Table 1), including Veratrilla 
baillonii Franch28 and Halenia elliptica D. Don.29 The GC con-
tent is more than 45% for both male and female plants (Table 1). 
With the increase in transcripts size, the number of transcripts 
decreased, indicating a power-law-like distribution (Figure 1), 
which is a common trait of transcripts in many plant species. 
Furthermore, the transcriptome of H pedunculosum included 
350 of the 425 (82.35%) complete BUSCO genes, indicating 
the high quality of our assembly.

Table 1.  Characteristics of de novo samples and clustered transcripts.

Item Clean reads Q30 GC 
content, 
%

Female plant 1 30 620 799 95.33 46.13

Female plant 2 29 180 298 95.50 46.22

Male plant 1 30 598 513 95.65 46.53

Male plant 2 26 227 138 95.52 45.73

N50 1860

No. of transcripts after 
assembly

254 706

Mean length of transcripts 848.39

Total identified SSRs 18 510

Sequences containing more 
than 1 SSR

2434

SSR-containing sequences 
with BLASTx hit

12 516

SSR-containing sequences 
with GO annotation

9183

SSR-containing sequences 
with KEGG annotation

924

Abbreviation: SSR, simple sequence repeat.
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Distribution and annotation of SSRs

In total, 18 510 potential SSRs were identified, and 95% of 
them were trinucleotide and dinucleotide as we did not consider 
mononucleotide in SSR searching (Tables 1 and 2). Generally, 
all potential SSR loci could be classified into 2 categories in 
light of the size of genetic markers. Those with length more 

than 20 bp were hypervariable markers and could be considered 
as class I. Those with a length between 12 and 20 bp might be 
variable markers potentially and could be considered as class II. 
SSRs of class I could be more variable than those of class II and 
thus might be with high polymorphism. In the potential SSRs 
of H pedunculosum, 32.6% belonged to class I.

Results of BLAST2GO suggested that 9183 transcripts 
containing SSRs of H pedunculosum could be annotated against 
the GO database (Table 1, Figure 2) and classified them into 3 
categories: cellular components, molecular functions, and 
biological process. Specifically, of the cellular components, cell, 
cell part and organelle part were 3 highly represented classes. 
Catalytic activity and binding were the most matched among 6 
molecular functions. In contrast, cell and metabolic processes 
were the most matched 2 classes of biological processes (Figure 3). 
However, results of KEGG annotation suggested that only  
924 transcripts including SSRs of H pedunculosum could be  
annotated. In the top 20 KEGG pathways, genes including 
SSRs associated with metabolic pathways (10.63%) were 
most representative, followed by biosynthesis of secondary  

Figure 1.  Length distribution of all transcripts in Herpetospermum 

pedunculosum.

Table 2.  Characteristics of SSR.

Type of 
repeat

Main 
repeat 
motif

No. Total Frequency, 
%

Dinucleotide AC/GT 227 4780 25.8

AG/CT 2485  

AT/AT 2063  

CG/CG 5  

Trinucleotide AAC/GTT 888 12 777 69.0

AAG/CTT 5735  

AAT/ATT 1820  

ACC/GGT 742  

ACG/CGT 335  

ACT/AGT 146  

AGC/CTG 739  

AGG/CCT 855  

ATC/ATG 829  

CCG/
CGG

688  

Tetranucleotide 534 2.9

Pentanucleotide 198 1.1

Hexanucleotide 221 1.2

Total 18 510  

Abbreviation: SSR, simple sequence repeat.

Figure 2.  Matching results by BLASTx for Herpetospermum 

pedunculosum.

Figure 3.  GO classification of SSRs for Herpetospermum 

pedunculosum. SSRs indicate simple sequence repeat.
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metabolites (5.26%) and biosynthesis of antibiotics (2.30%) 
(Figure 4A). Besides, several genes containing SSRs partici-
pated in ethylene and jasmonic acid signal transduction path-
ways, which may involve in flower sex determination of H 
pedunculosum30-32(Figure 4B).

Polymorphism of microsatellites

To validate the polymorphism of screened SSRs using tran-
scriptome sequencing, we designed 131 paired primers of H 
pedunculosum and performed PCR in 20 plants from 2 distinct 

Figure 4.  The KEGG pathway of Herpetospermum pedunculosum: (A) frequency distribution of the KEGG pathway functions functions and (B) the plant 

hormone signal transduction pathway.
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populations (Supplementary Table 1). We then sequenced the 
PCR products and found that 15 paired primers were poly-
morphic. The expected heterozygosity per locus varied between 
0.280 and 0.767 in total, with a range between 0 and 0.621 for 
the Yunnan population and a range between 0 and 0.574 for 
the Tibet population, respectively. We also identified 58 geno-
types in 20 plants from the 2 populations (Table 3).

Conclusions
Microsatellites have increasingly been used in population 
genetics analysis and mating system estimation for their 
abundance in genomes, genetic codominance, high reproduc-
ibility and polymorphism,22 and rapid development of next-
generation sequencing advance the wide uses of SSRs. Here, 
we developed 15 paired SSR primers using transcriptome 
sequencing that showed polymorphic in 2 populations of  
H pedunculosum. There SSR primers could be useful in future 
quantification of male reproductive success and paternity 
analysis of this dioecious plant.
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