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Smoking is a complex behavior with a heritability as high as 50%. Given such a large
genetic contribution, it provides an opportunity to prevent those individuals who are
susceptible to smoking dependence from ever starting to smoke by predicting their
inherited predisposition with their genomic profiles. Although previous studies have
identified many susceptibility variants for smoking, they have limited power to predict
smoking behavior. We applied the support vector machine (SVM) and random forest (RF)
methods to build prediction models for smoking behavior. We first used 1,431 smokers
and 1,503 non-smokers of African origin for model building with a 10-fold cross-validation
and then tested the prediction models on an independent dataset consisting of 213
smokers and 224 non-smokers. The SVM model with 500 top single nucleotide
polymorphisms (SNPs) selected using logistic regression (p<0.01) as the feature
selection method achieved an area under the curve (AUC) of 0.691, 0.721, and 0.720
for the training, test, and independent test samples, respectively. The RF model with 500
top SNPs selected using logistic regression (p<0.01) achieved AUCs of 0.671, 0.665, and
0.667 for the training, test, and independent test samples, respectively. Finally, we used
the combined logistic (p<0.01) and LASSO (l=10−3) regression to select features and the
SVM algorithm for model building. The SVM model with 500 top SNPs achieved AUCs of
0.756, 0.776, and 0.897 for the training, test, and independent test samples, respectively.
We conclude that machine learning methods are promising means to build predictive
models for smoking.
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INTRODUCTION

Tobacco smoking is one of the most important public health
problems throughout the world (1). According to a World
Health Organization report, the number of deaths caused by
tobacco smoking will reach 10 million worldwide annually by
2020 (2). Without significant efforts to limit tobacco smoking,
this number will rise to 8.3 million by 2030 (3). Thus, prevention
of smoking initiation has become a critical step in tobacco
control (4–7). Stopping individuals susceptible to nicotine
dependence from starting to smoke represents an effective way
to achieve tobacco control.

Tobacco smoking is a complex and multifactorial behavior
determined by both genetic and environmental factors, as well as
by gene-by-gene and gene-by-environmental interactions (8, 9).
The heritability of various smoking-related phenotypes ranges
from 21 to 84% (10–13). Thus, it is feasible to predict an
individual's inherited predisposition to smoking on the basis of
the genomic profile.

Numerous genetic investigations using various approaches
such as genome-wide linkage analysis, candidate gene-based
association, and genome-wide association studies (GWAS)
have revealed a number of variants that make persons
susceptible to tobacco smoking (14–18). However, these
variants explain only a small proportion of the known
heritability, and their individual contribution to smoking
behavior becomes almost negligible, which leads to difficulty in
predicting the phenotype from individual susceptibility
variants (17).

Some machine learning-based modeling approaches can
aggregate small effects of multiple single nucleotide
polymorphisms (SNPs) to achieve higher predictive power.
Great efforts have been made to build prediction models for
various human diseases, such as coronary artery disease, type 2
diabetes, and breast cancer, using a set of phenotype-associated
SNPs and have achieved inspiring performance (19–22). Support
vector machine and random forest (RF) are two popular machine
learning algorithms that have been applied to genomic data (23,
24). Considering that machine learning models have not been
used to predict smoking, we sought to explore their applicability
in the development of predictive models for this behavior.

We first selected candidate SNP subsets from genome-wide
imputed SNPs based on both LASSO and logistic regression. Then
we used the SVM and RF algorithms to determine the SNP subset
that has the highest classification performance in distinguishing
smokers from nonsmokers. By comparing two machine learning
algorithms and SNP subset selection methods, we aimed to build a
reliable predictive model for tobacco smoking.
MATERIALS AND METHODS

Subjects
A total of 3,371 participants of African origin were selected from
the Mid-South Tobacco Case-Control (MSTCC) study
population (25). All participants were recruited from the
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Jackson area of Mississippi during 2005–2011, and they were
biologically unrelated to each other. A more detailed description
of the recruitment criteria used for the MSTCC sample have been
published by our group (25, 26). The recruitment of subjects and
all materials used for the recruitment were approved by the
Institutional Review Boards of the University of Virginia and
University of Mississippi Medical Center, and informed written
consent was obtained from all participants.

In the current study, 2,934 subjects (1,431 smokers and 1,503
non-smokers) recruited during 2007–2011 were randomly
divided into training and test datasets, where the training
dataset consisted of 70% of the subjects (N = 2,054) and the
remaining 880 were the test dataset. In addition, 437 subjects
(213 smokers and 224 non-smokers) recruited during 2007–2008
were used as an independent test dataset. Detailed characteristics
of the datasets are presented in Table 1. Based on the definition
of smoking commonly used in the field, all smokers had smoked
at least 100 cigarettes in their lifetimes, whereas nonsmokers
were required to have smoked 1–99 cigarettes but had no tobacco
use in the past year (27–29).

Genotyping, Imputation, and
Quality Control
For all subjects, genomic DNA was extracted from
ethylenediaminetetraacetic acid (EDTA)-treated peripheral
venous blood cells using the Qiagen DNA purification kit. All
DNA samples were treated with RNase A to remove any
contaminating RNA, and DNA quality and the concentration
of each sample were determined by the A260/A280 absorbance
ratio. Genotyping was conducted with the Illumina Infinium
Human Exome BeadChip (Illumina Inc., San Diego, CA, US)
according to the manufacturer's instructions. This chip was
intended to detect association of rare variants with a larger
effect size, which was developed from functional exonic
variants (>90%) and disease-associated tag markers found at
least three times in more than two datasets from the whole-
exome sequencing of more than 12,000 individuals (www.
illumina.com).

After genotyping of 242,901 SNPs from each DNA sample, we
conducted a genome-wide imputation using IMPUTE2 (30) in 5-
Mb chunks after pre-phasing with SHAPEIT2 (31), which
yielded a total of 21,329,694 imputed SNPs. The 1000
Genomes Project (phase 3) was used as the reference panel for
haplotypes (32). Following imputation, we employed a series of
procedures in our SNP data quality control, which included
individual-level missingness, SNP-level missingness, Hardy-
Weinberg equilibrium (HWE), minor allele frequency, and
population stratification (33–35). Briefly, the following quality
TABLE 1 | Characteristics of datasets used for machine learning.

Characteristic Training and test samples
(N = 2,934)

Independent test
sample (N = 437)

Mean age (years) 42.8 ± 13.5 39.8 ± 13.3
Females (%) 1,590 (54.2) 218 (49.9)
No. smokers (%) 1,431 (48.8) 213 (48.7)
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control criteria were used to screen all SNPs: 1) a cutoff of 0.6 for
the “info” metric to filter out poorly imputed variation; 2)
exclusion of any SNP with a minor allele frequency (MAF) of
<5% and a call rate of <95%; and 3) removal of any SNP that was
not in HWE at a P value of <1.0 × 10−5. Finally, a total of 282,279
common SNPs with a MAF of >0.05 was included. Because of the
requirement of the machine learning algorithms, any missing
genotype of a sample was filled in with BEAGLE (v. 4.1)
program (33).

We also implemented strict and rigorous quality control of
each sample in both selection and population substructure
assessments. The samples with incomplete phenotypic
information were removed. Meanwhile, to evaluate the
population structure and identify potential outliers, we
performed principal components analysis (PCA) using
EIGENSTRAT (36).

Feature Selection and Risk Prediction
To be consistent with reports by others (21, 37), a straightforward
approach for the numerical encoding of a genotype was assigned
to 0, 1, or 2 based on the number of minor alleles. With the
intention of detecting the most informative variants, we applied
logistic regression with a P value of 0.01 or 0.05 and LASSO
regression with a l value of 10−3, 10−5, or 10−7 to filter out variants
with less important genetic effect. After filtering, each sample was
Frontiers in Psychiatry | www.frontiersin.org 3
randomly assigned to either the training or test dataset, which
then was used for final evaluation of the predictive power of the
machine learning models.

Initially, two machine learning methods with 10-fold cross-
validation were implemented to develop predictive models:
support vector machine and random forest (RF) (Figure 1). A
ranked list of all SNPs was generated at each iteration of cross-
validation with SVM-recursive feature elimination (RFE) (38) or
RF-RFE (39). The RFE was used to build the model with the
feature selected according to the size of the eigenvalue for each
SNP. Such a process was repeated over the rest of the features
until all the features had been traversed. Then a list of SNPs was
obtained according to the ranked mean from 10-fold cross-
validations. In accordance with the rank list, the machine
learning models with different numbers of top SNPs were
constructed by SVM or RF. Furthermore, the test set was
entered into the machine learning models to assess their
performances. Finally, the independent dataset was employed
to estimate the generation ability of the models using receiver
operating characteristic (ROC) curves (40).

Logistic Regression
For the remaining 282,279 SNPs, we carried out association
analysis of each SNP with smoking status using a logistic
regression model implemented in PLINK (v. 1.07) (41). An
FIGURE 1 | Flowchart of machine learning process used in the study.
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additive genetic model was used for association analysis for each
SNP in the sample, adjusted for sex and age.

Least Absolute Shrinkage and Selection
Operator Regression
Further, we carried out association analysis of each SNP with
smoking status using the least absolute shrinkage and selection
operator (LASSO) (42), which minimizes the squared error with
constraints on the L1 norm of b:

min
b

y − Xbð ÞT y − Xbð Þ + lo
p

j=1
b j

�� ��,

where l >0 is the tuning parameter controlling the amount of
penalty (43). It shrinks the regression coefficients of some
redundant features to 0 and intends to retain those features
with important genetic roles in the model (42). With the large
number of features we commonly face in a genomic study, we
aimed to select a subset of features that exhibits a large genetic
effect on the phenotype of interest (42). In the current study, we
used LASSO regression with a l value of 10−3, 10−5, or 10−7 to
filter out variants with less important genetic effects and to retain
those promising features that have non-zero coefficients using R
package glmnet (44).

Support Vector Machine
Support vector machine is a data mining method for regression,
classification, and other pattern recognition tasks that has been
used for handwritten digital recognition (45), object recognition
(46), speaker identification (47), face detection (48), and
bioinformatics (49). Intuitively, the method intends to find a
hyperplane to separate cases from two different classes with the
largest margin. The optimal separating hyperplane can be
expressed formally as to minimize the functional (50):

1
2
‖W ‖2 +Co

l

i=1
xi

subject to constraints:

wTxi + b
� �

≥ 1 − xi,     i = 1,…, l,

xi ≥ 0,        i = 1,  …,   l,

Where w is the weights of the hyperplane, C is a constant, x is
a non-negative slack variable, x and yi are the features and label
of the cases, and b is the bias. This optimization process is based
on large margin separation and kernel functions. The linear
kernel was used to build the model:

K x1, x2ð Þ = xT1 x2

The R package used was e1071 (https://CRAN.R-project.org/
package=e1071). We used linear kernels by treating smokers as
positive samples, nonsmokers as negative samples, and SNP
genotypes as categorical features.
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Random Forest
Random forest (51) is an ensemble of decision tree features
generated by bagging predictors (52). In addition to
constructing each tree using a different bootstrap sample of the
data, RF can determine how the classification or regression trees
are constructed (53). In standard trees, each node is split using the
best split among all variables (53). In an RF, each node is split
using the best among a subset of predictors randomly chosen at
that node (53). Each tree is a classifier and casts a unit vote for the
most popular class at the input. A random selection of a subset of
features governs the growth of each tree in the ensemble. For
feature selection, RF models generate Mean Decrease Gini as the
importance score of each feature. Any feature with a higher
importance score makes a larger contribution to the model for
the prediction. The “Gini importance” describes the improvement
of the individual tree in the “Gini gain” splitting criterion
produced by each variable (54). The randomForest package
developed by Breiman and Cutler (https://www.stat.berkeley.
edu/~breiman/RandomForests/) was used in this study.

K-Fold Cross-Validation
In k-fold cross-validation (sometimes called rotation
estimation), the dataset D is randomly split into k mutually
exclusive subsets D1;D2;…;Dk of approximately equal size (55).
The model is trained and tested k times, and for each time tϵ{1,2,
∙∙∙,k}, it is trained on all subsets except D1, and then it is tested on
D1. The cross-validation estimate of accuracy is the overall
number of correct classifications divided by the number of
instances in the dataset (55). Specifically, 10-fold cross-
validation was used in this study by randomly dividing 70% of
the whole sample into 10 equal-size subsamples. Of the 10
subsamples, a single 1 was retained as the validation data for
testing the model, and the remaining 9 were used as the training
dataset. The cross-validation process was repeated 10 times, with
each subsample being used exactly once as the validation data.

Prediction Performance Assessment
A ROC curve was used to analyze the prediction model. Such a
curve captures the trade-off between sensitivity and specificity at
thresholds over a continuous range (40). The full area under the
curve (AUC) measures the performance of the model. A perfect
test has an AUC of 1.0, whereas random chance gives an AUC of
0.5 (40). A higher score (closer to 1) represents better
discriminatory power.
RESULTS

We first evaluated the performance of SVM and RF with different
feature (SNP) selection methods. After feature selection, the
AUC of each prediction algorithm was measured by increasing
the number of features from 10 to 2,000 under the consideration
of clinical application for prediction. The evaluation of
predictability for each machine learning model was based on
the results from 10-fold cross-validation. Each SNP dataset was
May 2020 | Volume 11 | Article 416
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calculated 10 times, and the average value of AUC was used as
the result of model training. Further, we exploited an
independent dataset for further validating the performance of
each machine learning model.

Feature Selection
After genotyping, imputation, and quality control, 282,279 SNPs
were retained as a candidate SNP set for machine learning. Both
logistic and LASSO regression were used for SNP selection. We
also selected a candidate SNP dataset by combining LASSO and
logistic regression. The number of SNPs obtained from the
feature selection with different methods and parameters is
shown in Table 2.

Performance of Support Vector
Machine Models
Figure 2 shows the predictive performance of the SVM model
with logistic and LASSO regression at different thresholds for
feature selection by changing the number of SNPs included in the
development of a predictive model for smoking. Figure 2A is the
performance of the model determined by measuring the AUC in
the training sample with the mean and standard deviation (SD)
of the AUCs being calculated from a 10-fold cross-validation.

In comparing LASSO regression with logistic regression for
feature selection, the performance of LASSO regression with a l
value of 10−3 and 10−5 had an advantage when more than 500
SNPs were included in the model for both the training and test
samples (Figures 2A, B). In contrast, for the independent test
sample (Figure 2C), the predictability of the SVM model
performed less well with LASSO regression than with logistic
regression for all significant thresholds and numbers of SNPs
included in each model. Based on these results, we concluded
that the SVM model with LASSO regression had a weak
generalization ability, whereas the logistic regression worked
well on both the test and independent datasets as a better
feature selection method.

Regarding the SVM model with logistic regression, although
an increasing trend of performance was achieved with the
number of top SNPs included, there appeared to be a
decreasing tendency in their performance when more than 500
SNPs were included (see Figures 2A–C). Taken together, the
SVMmodel with logistic regression at a P value of <0.01 achieved
AUCs of 0.691, 0.721, and 0.720 for the training, test, and
Frontiers in Psychiatry | www.frontiersin.org 5
independent test samples, respectively, on the top 500 SNPs
selected for the prediction model.

Performance of Random Forest Models
As shown in Figures 3A, B, the RF models with l = 10−3 had an
advantage over the models with other parameters when more
than 500 SNPs were included for both the training and test
datasets. However, for the independent test dataset, the RF model
with l = 10−3 had weaker predictability than those models based
on logistic regression (Figure 3C). This indicated that the RF
model with LASSO regression as a feature selection method faced
the same generalization problem as the SVM model did. The RF
model using logistic regression with a P value of <0.01
outperformed the other models (see Figures 3A–C). With the
top 500 SNPs selected by logistic regression for inclusion, the
AUC score of the model achieved 0.671, 0.665, and 0.667 for the
training, test, and independent test, respectively.

Comparison of Support Vector Machine
With Random Forest Models
Based on the feature selection methods with both logistic and
LASSO regression, we developed several machine learning
models among five significant thresholds for feature selection.
The logistic regression with a significance threshold of P <0.01
performed well in both the SVM and RF models, which
represents the best parameter for smoking status prediction in
this study. The SVM models outperformed RF models across
various numbers of SNPs from 10 to 2,000 for the prediction of
smoking status on both the test and independent datasets (Table
3; Supplementary Tables 4 and 5).

Performance of Support Vector Machine
Models With Combined Feature Selection
Methods
Based on above-mentioned results, we finally developed an SVM
model using a combined feature selection approach of logistic
and LASSO regression. During the feature selection process, we
first used logistic regression to select those SNPs with a P value of
<0.01 and then used LASSO regression with a l value of <10−3 to
complete the second stage. After completing all machine learning
processes, we found that the SVM model with the combined
feature selection approach of both logistic regression and LASSO
regression appeared to be better than the models using only one
method for both the test and independent test samples regardless
of the number of SNPs (from 10 to 1,000) included in each model
(Table 4). More importantly, we found that the AUC values did
not improve significantly when the number of SNPs included in
each model reached 500 (Figure 4).

Given the results obtained from this series of parameter
selections and machine learning methods, we concluded that
the SVM model with the combined logistic regression (P < 0.01)
and LASSO regression (l = 10−3) as the feature selection method
represented the best approach of developing our prediction
model for the datasets used in this study. Under such
condition, we achieved AUCs of 0.756, 0.776, and 0.897 for the
training, test, and independent test samples, respectively.
TABLE 2 | Number of single nucleotide polymorphisms (SNPs) selected from
logistic regression, least absolute shrinkage and selection operator (LASSO)
regression, and the combined logistic regression and LASSO regression under
different significance thresholds.

Method Significance thresholds Selected SNP dataset

Logistic P < 0.05 18,078
P < 0.01 3,808

LASSO l = 10−3 3,518
l = 10−5 9,034
l = 10−7 46,321

Logistic + LASSO P < 0.01 and l = 10−3 1,149
May 2020 | Volume 11 | Article 416
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DISCUSSION

Along with technological advances, experimental approaches for
genetic studies on complex diseases/traits have evolved rapidly
from genome-wide linkage study to candidate gene association
study and from GWAS to targeted sequencing (17). Even though
previous studies on tobacco smoking have revealed numerous
genetic factors, the estimated heritability explained by these
identified factors has been relatively small (14–18). Recent
studies have indicated that machine learning approaches
employed in modeling performed well in the prediction of
various human diseases, such as cancer, heart disease, and
Alzheimer's disease (56–58). In this study, we employed both
SVM and RF approaches to develop predictive models for
smoking status with both logistic and LASSO regression used
for feature selection.

Although LASSO regression had an advantage in the results
of training and test samples, it performed less well on the
independent dataset, indicating poor generalizability. On the
other hand, the machine learning models with logistic regression
performed well on the independent test sample. Further, as the
number of top SNPs included in the models increased from 10 to
500, the performance of the models improved under all
Frontiers in Psychiatry | www.frontiersin.org 6
conditions. However, such improvement attained a plateau
when the top number of SNPs reached about 500. Taking all
these findings together, we found that both machine learning
approaches performed well on the datasets used in this study, but
the SVM method appears to be superior.

Another key issue in this type of research is how many SNPs
should be included in the prediction model. Although we
generally believe more SNPs are better, larger numbers
increase the cost of genotyping and data analysis. How to
reduce the cost associated with genotyping and shorten the
time required to analyze genotyped genetic data have been
major concerns from the clinical point of view. This issue has
become more important in today's genetic research on complex
human traits, as we can easily get hundreds of thousands of SNPs
genotyped for a subject of interest. To reduce the number of
SNPs included in each model, both logistic and LASSO
regression were used to filter out those variants with less
important genetic effects on the phenotype of interest. Under
these considerations, we compared the performances of all
models with different numbers of top SNPs included in each
model and found that a total of the top 500 SNPs included in the
model appeared to be a better choice for all cases examined in
this study.
A B

C

FIGURE 2 | Predictive performance of support vector machine (SVM) models based on two feature selection methods with different parameters [logistic regression
(Log R) and least absolute shrinkage and selection operator (LASSO) regression (Las R)]. (A) Evaluation of performance on training sample with 10-fold cross-
validation; (B) evaluation of performance on test sample; and (C) evaluation of performance on independent test sample.
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https://www.frontiersin.org/journals/psychiatry
http://www.frontiersin.org/
https://www.frontiersin.org/journals/psychiatry#articles


Xu et al. Smoking Prediction With Machine Learning
Given the better performance of the SVM relative to the RF
method, we developed an SVM model with the 500 top SNPs
selected using a combined feature selection method of logistic
regression (P <0.01) and LASSO regression (l = 10−3). Initially,
we did not expect that the predictive performance would
improve significantly given that the performance of the SVM
model with logistic regression had already achieved impressive
results. To our surprise, we found a significant improvement in
predictive performance, with an AUC of 0.897 achieved for the
independent dataset.
Frontiers in Psychiatry | www.frontiersin.org 7
Considering that there are so many SNPs included in each
model (see Supplementary Table 1 for a list of the top 500 SNPs
included in the final model and Supplementary Figure 1 for a
comparison of the top 500 SNPs selected by logistic regression at
a P value of <0.01 and LASSO regression with l = 10−3), it is
impossible as well as unreasonable to discuss them one by one. In
fact, this activity probably is unnecessary, as the selection of
SNPs for incorporation into our prediction model was based on
the association of SNPs with smoking without considering the
A B

C

FIGURE 3 | Predictive performance of random forest (RF) models based on feature selection methods with different parameters [logistic regression (Log R) and least
absolute shrinkage and selection operator (LASSO) regression (Las R)]. (A) Evaluation of performance on training sample with 10-fold cross-validation; (B) evaluation
of performance on test sample; and (C) evaluation of performance on independent test sample.
TABLE 3 | Area under the curve (AUC) value of machine learning models utilizing
logistic regression (P <0.01) as feature selection method.

No. of
SNPs

SVM Random forest

Test
sample

Independent test
sample

Test
sample

Independent test
sample

10 0.552 0.563 0.528 0.549
100 0.686 0.648 0.636 0.601
500 0.721 0.720 0.665 0.667
1,000 0.742 0.738 0.681 0.673
1,500 0.764 0.755 0.708 0.669
2,000 0.785 0.764 0.708 0.677
TABLE 4 | Comparison of area under the curve (AUC) values under support
vector machine (SVM) model with feature selection methods of logistic
regression, least absolute shrinkage and selection operator (LASSO) regression,
and combined logistic and LASSO regression.

No. of
SNPs

Logistic regression
(P <0.01)

LASSO regression
(l = 10−3)

Logistic (P <0.01) +
LASSO regression

(l = 10−3)

Test
sample

Independent
test sample

Test
sample

Independent
test sample

Test
sample

Independent
test sample

10 0.552 0.563 0.502 0.503 0.586 0.608
100 0.686 0.648 0.611 0.550 0.684 0.764
500 0.721 0.720 0.773 0.546 0.776 0.897
1,000 0.742 0.738 0.877 0.517 0.812 0.911
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biological functions of the genes where these SNPs are located.
Nevertheless, the first SNP rs1449123, located in the 2 KB
sequence upstream of olfactory receptor family 2 subfamily D
member 2 (OR2D2), deserves to be discussed as an example.
OR2D2 is a member of a family that produces a unique
component of the signal transduction pathway involved in
odorant discrimination (59). By examining the full list of SNPs
included in the models, we found that 15 of the top 500 SNPs are
related to olfactory receptor genes. A gene cluster for olfactory
receptors is close to the MHC region on chromosome 6 (60). Füst
et al. showed a potential role of theMHC-linked olfactory receptor
genes in the initiation of smoking (60). Our group also reported
that taster status plays a role in governing the development of
nicotine dependence (ND) and may represent a way to identify
individuals at risk for ND, particularly in AA smokers (61).

We also did gene ontology (GO) enrichment and pathway
analyses (Supplementary Tables 2 and 3) based on the genes in
which those top 500 SNPs are located and found many genes are
related to the immune system. For example, the products of
seven genes are involved in antigen presentation: folding,
assembly, and peptide loading of class I MHC. The regulatory
effect of smoking on immune-related pathways has been
reported several times by many groups, including ours (62–64).

Technological advances can always drive the development of
new approaches. Applying machine learning methods to
genomic data analysis has become a promising way to dig out
the complex relations between these data and the phenotype(s)
of interest. Given the high AUC score of our prediction model
for smoking status classification, the top 500 SNPs included in
the model are assumed to contribute greatly to smoking
behavior. However, the explanation for the complex relations
between these top SNPs and smoking is far from complete. The
Frontiers in Psychiatry | www.frontiersin.org 8
main question we would like to address is why does this group of
SNPs yield such a high performance for the prediction of
smoking status? Our future work will try to identify the inner
complex relations between these SNPs and smoking status.

There are several limitations of this study. First, compared
with those reported GWAS where hundreds of thousands of
samples commonly were included, the sample size used in this
study was small. However, this was not a GWAS, and the
objective differed from that of a GWAS. The primary goal of
this study was to determine whether a machine learning approach
could be used to develop a prediction model for clinical testing
based on the genotyped biomarkers of a participant of interest.
Under such circumstances, we believe that the sample is large
enough to accomplish our goal, although we do agree that a large
sample is always better. The second issue is related to the number
of SNPs selected for inclusion in the model. Although it is
generally believed that more SNPs would be better, it would
increase genotyping cost and the computing power needed to
analyze the data. Given these concerns, along with the objectives
of this work, we selected a number of SNPs from 10 to 2,000 for
our model constructions. Third, only the SVM and RF methods
were examined in this study. It would be interesting to test other
models such as elastic net for this type of research.

In sum, this study compared different methods (SVM and RF
for model development; logistic regression and LASSO regression
for feature selection) to build a predictive model for smoking
behavior. By applying the SVM approach with a combination of
logistic regression (P <0.01) and LASSO regression (l = 10−3), we
developed a statistically sound predictive model for smoking
behavior. It is our hope that such a model could be used for the
prevention of smoking initiation. In addition, it would be
interesting to determine whether such a model could be
generalized to other ethnic samples in future studies.
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