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Abstract 

Background:  Oxidative stress plays an important role in the progression of various 
types of tumors. However, its role in esophageal squamous cell carcinoma (ESCC) has 
seldom been explored. This study aimed to discover prognostic markers associated 
with oxidative stress in ESCC to improve the prediction of prognosis and help in the 
selection of effective immunotherapy for patients.

Results:  A consensus cluster was constructed using 14 prognostic differentially 
expressed oxidative stress-related genes (DEOSGs) that were remarkably related to the 
prognosis of patients with ESCC. The infiltration levels of neutrophils, plasma cells, and 
activated mast cells, along with immune score, stromal score, and estimated score, 
were higher in cluster 1 than in cluster 2. A prognostic signature based on 10 prognos‑
tic DEOSGs was devised that could evaluate the prognosis of patients with ESCC. Cal‑
culated risk score proved to be an independent clinical prognostic factor in the train‑
ing, testing, and entire sets. P53 signaling pathway was highly enriched in the high-risk 
group. The calculated risk score was positively related to the infiltration levels of resting 
mast cells, memory B cells, and activated natural killer (NK) cells and negatively associ‑
ated with the infiltration levels of M1 and M2 macrophages. The relationship between 
clinical characteristics and risk score has not been certified. The half-maximal inhibitory 
concentration (IC50) values for sorafenib and gefitinib were lower for patients in the 
low-risk group.

Conclusion:  Our prognostic signature based on 10 prognostic DEOSGs could predict 
the disease outcomes of patients with ESCC and had strong clinical value. Our study 
improves the understanding of oxidative stress in tumor immune microenvironment 
(TIME) and provides insights for developing improved and efficient immunotherapy 
strategies.
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Background
Esophageal cancer (EC) is a highly aggressive malignancy with poor prognosis, ranking 
sixth and seventh highest in mortality and morbidity worldwide, respectively. Two main 
histopathological variants of EC have been described, including esophageal adenocar-
cinoma and esophageal squamous cell carcinoma (ESCC), which differ significantly in 
incidence, etiology, and clinical characteristics [1, 2]. Chinese patients account for 70% 
of all the EC patients worldwide [3]. ESCC is the most common pathological subtype 
of EC in China, accounting for approximately 90% of all the cases [1]. Most patients are 
diagnosed at an advanced stage, and such patients show poor response to surgery, poor 
outcome, and high recurrence rate [4].

Accumulating evidence over the recent years suggest, that oxidative stress plays a 
key role in the pathogenesis of EC [5–7]. Oxidative stress refers to a state of imbalance 
between oxidation and antioxidation in the body; which leads to inflammatory infiltra-
tion of neutrophils [8]. An increasing number of studies have found that oxidative stress 
and its consequent damage are important factors involved in the development of cancers 
[9–11], such as breast cancer [12, 13], ovarian cancer [14, 15], lung cancer [16, 17], liver 
cancer [18, 19], and EC [20, 21]. Oxidative stress promotes cell carcinogenesis via dys-
regulation of oxidation and antioxidation, and by generation and elimination of reactive 
oxygen species [22, 23]. Accumulating evidence suggests the potential of implications 
of modulating oxidative stress-related processes in cancer therapy [24–26]. Oxida-
tive stress has been reported to modulate immune cell activity in ovarian cancer, and is 
related to the immune microenvironment [27]. Similarly, a certain relationship between 
oxidative stress-induced apoptosis and immune microenvironment has also been 
observed in patients with gastric and esophageal cancers, which can influence the prog-
nosis of patients [28]. To the best of our knowledge, very few studies have explored the 
relationship between ESCC and oxidative stress, and the pathophysiology still remains 
unknown. In addition, the relationship between oxidative stress and immune microenvi-
ronment in ESCC requires further investigation.

In this study, clinical information and RNA-seq expression profiles corresponding to 
patients with ESCC were retrieved from gene expression omnibus (GEO) and the cancer 
genome atlas (TCGA) database. We performed consensus cluster analysis on the basis 
of expression of differential oxidative stress genes between ESCC and normal tissues. To 
improve the predictive performance of the differential oxidative stress gene signature, 
we constructed a risk model using a training set and verified this model using a test-
ing set. We also evaluated the predictive value and diagnostic efficacy of this model and 
determined tumor immune infiltration and medical treatment using it in patients with 
ESCC.

Results
Differential expression of genes and functional enrichment analysis

Oxidative stress gene matrices were obtained from 650 normal samples (GTEx) and 77 
ESCC samples (TCGA) for differential analysis of gene expression. Consequently, we 
obtained 294 differentially expressed oxidative stress-related genes (DEOSGs), visual-
ized as volcano plot (Fig. 1A). Of these 294 DEOSGs, 133 were upregulated, while the 
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remaining were downregulated. We utilized the STRING database to observe the inter-
actions among these 294 DEOSGs, and after deleting the genes without interactions, 
a protein–protein interaction network of DEOSGs was constructed (Fig.  1B). Subse-
quently, these 294 DEOSGs were subjected to functional enrichment analysis designed 
to elucidate their biological processes and pathways activities. Gene ontology (GO) 
analysis revealed that antioxidant activity, peroxide, NADPH, heat shock protein, serine 
threonine kinase, and ubiquitinated protein ligase were significantly enriched (Fig. 1C), 
whereas Kyoto encyclopedia of genes and genomes (KEGG) analysis showed that chemi-
cal carcinogens, tumor necrosis factor (TNF) signaling pathways, apoptosis, and plati-
num resistance were significantly enriched (Fig. 1D).

Identification of two clusters of patients with ESCC

Univariate Cox proportional hazards regression analysis showed that 14 DEOSGs were 
significantly related to overall survival (OS) (p < 0.05). PTGS2, ZC3H12A, PRODH, 
CD38, EDN1, and ERCC1 were protective factors with hazard ratios (HRs) of < 1 and 
STK24, TOR1A, TPM1, RACK1, HSPA1B, STK25, MAP1LC3A, and PSIP1 were risk 
factors with HRs of > 1 (Fig.  2A). Three independent prognostic DEOSGs (PRODH, 
STK24, and MAP1LC3A) were identified by multivariate Cox proportional hazards 

Fig. 1  A Volcano map of DEOSGs between normal and ESCC samples. B Network between DEOSGs. C, D 
Bubble plots of GO analyses (C) and KEGG analyses (D)
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regression analysis after consideration of confounding factors such as gender, tumor, 
node, and metastasis (TNM) stage, tumor (T) stage, and node (N) stage (Fig. 2B). We 
then constructed a consensus cluster based on 14 prognostic DEOSGs expressions. Fig-
ure 2C shows the change curve of cumulative distribution function (CDF) from k = 2 to 
k = 9 for the consensus cluster; k = 2 was the best value when the area under the curve 
(AUC) was the largest, so we divided the patient population with ESCC derived from the 
GEO database into two clusters (Fig. 2D). Kaplan–Meier analysis showed that cluster 1 

Fig. 2  A The prognostic DEOSGs extracted by Univariate Cox regression analysis. B The independent 
prognostic DEOSGs extracted by Multivariate Cox regression analysis. C, D Unsupervised clustering of 14 
prognostic DEOSGs in the GEO-ESCC cohort: C Relative change in area under CDF curve for k = 2 to 9; D The 
ESCC cohort from GEO was divided into two distinct clusters when k = 2. E Kaplan–Meier survival curve of 
patients between cluster 1 and 2. F Comparison of the relationship between the clinical characteristics of 
two clusters and heatmap of 14 prognostic DEOSGs. Blue represents down-regulation and red represents 
up-regulation of genes
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had a significant survival advantage (p = 0.028, Fig. 2E). Moreover, the median survival 
time of ESCC patients was higher in cluster 1 than in cluster 2 (3.26 vs. 1.87 years). Fig-
ure 2F shows comparison of clinical characteristics and expression levels of 14 prognos-
tic DEOSGs between the two clusters. Significant differences were not found between 
the two clusters 1 and 2 in terms of sex, age, location, TNM stage, T stage, or N stage. 
The expression levels of CD38, HSPA1B, STK25, ZC3H12A, ERCC1, PTGS2, EDN1, and 
PRODH were lower in cluster 2 than in cluster 1, and the expression levels of STK24, 
TOR1A, MAP1LC3A, RACK1, TPM1, and PSIP were lower in cluster 1 than in cluster 2.

Estimation of immune cell infiltration in the cluster subgroups

We found that cluster 2 exhibited higher infiltration levels of memory B cells, resting 
mast cells, and natural killer (NK) cells than cluster 1 (Fig. 3A–D). The infiltration levels 
of neutrophils, plasma cells, and activated mast cells were lower in cluster 2 than in clus-
ter 1 (Fig. 3E–G). In addition, we calculated tumor immune microenvironment (TIME) 
scores and found that cluster 2 showed comparatively lower levels of immune score, esti-
mated score, and stromal score (p < 0.05, Fig. 3H–J).

Establishment and verification of risk assessment model

We performed Lasso regression on 14 prognostic DEOSGs to properly fit the prognostic 
signature, and obtained 10 DEOSGs (PRODH, STK24, TPM1, RACK1, CD38, EDN1, 
ERCC1, HSPA1B, MAP1LC3A, and PSIP1); wherein the first-order probability of devia-
tion of log (λ) was minimal (Fig. 4A, B). The formula used to calculate the risk score for 
each patient with ESCC was as follows:

The specific risk score and risk level group for each patient with ESCC is shown in 
Additional file  1: Table  S1. The distribution of risk score, survival status, and survival 
time between low- and high-risk group patients was compared. The results obtained 
from training, testing, and entire sets showed that the high-risk group had poorer prog-
nosis than the low-risk group (Fig. 5A–L). Median survival time of patients with ESCC 
in the high-risk group in the training set was 1.55 years, while the median survival time 
was not reached in the low-risk group (p < 0.001). Median survival time of patients with 
ESCC was significantly higher in the low-risk group than in the high-risk group in the 
testing set (3.87 vs 1.86 years; p < 0.001). Median survival time of patients with ESCC in 
the high-risk group in the entire set was 1.78 years, while the median survival time was 
not reached in the low-risk group (p < 0.001). Moreover, with the exceptions of female 
ESCC in the training, testing and entire sets, T1-2 ESCC in training and entire sets, N0 
ESCC in the test set and stage III-IV ESCC in the test set, the results of male, stage I-IV, 
T stage, and N stage in the training, testing, and entire sets also showed that low-risk 
group had better prognoses (Fig. 6A–X). Median survival times off the ESCC high- and 

Risk score = PRODH× (−0.21530727028836)+ STK24× (0.455763298103475)

+ TPM1× (0.0292612108251768)+ RACK1× (0.410189196857841)

+ CD38× (−0.0759940749876345)+ EDN1× (0.0931339783806189)

+ ERCC1× (0.700516244351063)+HSPA1B× (0.0580781289297423)

+MAP1LC3A× (0.539464253406876)+ PSIP1× (0.281871899388918).
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Fig. 3  A–G The infiltrating levels of 22 immune cell types in cluster1 vs cluster 2: B resting mast cells, 
C memory B cells, D NK cells, E plasma cells, F activated mast cells, G neutrophils. The comparison of 
immune-related scores between cluster 1 and cluster 2 (H, J): (H) estimated score, I immune score, J stromal 
score
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low- risk group patients, and their survival curves stratified by these clinical characteris-
tics in the training, testing, and entire sets are shown in Additional file 2: Table S2.

Additional file 3: Fig. S1A, B, D, E, G, and H show the comparison of expression 
levels of 10 prognostic DEOSGs between the low- and high-risk groups. Expression 
levels of PRODH, CD38, and ERCC1 in the training, testing, and entire sets were 

Fig. 4  A, B The prognostic signature constructed by the minimum criterion of LASSO Cox regression 
algorithm

Fig. 5  A–C Risk score distribution of patients between high- and low-risk groups in the training (A), testing 
(B), and entire sets (C), respectively. D–I Survival status of patients between high- and low-risk groups in the 
training (D, G), testing (E, H), and entire sets (F, I), respectively. J–L Kaplan–Meier survival curve of patients 
between high- and low-risk groups in the training (J), testing (K), and entire set (L), respectively
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notably lower in the high-risk group than in the low-risk group. Expression levels 
of MAP1LC3A and PSIP1 in the training, testing, and entire sets were higher in the 
high-risk group than in the low-risk group.

We observed the following positive correlations between the expressions of 
DEOSGs in the training, testing, and entire sets: EDN1 with ERCC1 and PRODH; 
PSIP1 with RACK1 and TPM1; and STK24 with PRODH. We also observed that 
the following negative correlations between the expressions of DEOSGs: CD38 
with RACK1 and MAP1LC3A; CD38 with RACK1 and MAP1LC3A; and PSIP1 and 
TPM1 with PRODH (Additional file 3: Fig. S1C, F, and I).

Fig. 6  A–H Kaplan–Meier survival curves stratified by gender (A, E), stage T (B, F), N (C, G), or TNM (D, H) 
between low- and high-risk groups in the training set. I–P Kaplan–Meier survival curves stratified by gender 
(I, M), stage T (J, N), N (K, O), or TNM (L, P) between low- and high-risk groups in the testing set. Q–X Kaplan–
Meier survival curves stratified by gender (Q, U), stage T (R, V), N (S, W), or TNM (T, X) between low- and 
high-risk groups in the entire set
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Evaluation of the risk model

We used time-dependent receiver operating characteristic (ROC) curves to assess the 
specificity and sensitivity of the risk model and found that the 1-, 3-, and 5-year AUCs 
were as follows: 0.75, 0.72, and 0.75 for the training set (Fig. 7A); 0.70, 0.70, and 0.64 for 
the testing set (Fig. 7B); and 0.72, 0.71, and 0.69 for the entire test (Fig. 7C), respectively. 
The results of univariate and multivariate Cox proportional hazards regression analyses 
between clinical features and risk score in the training, testing, and entire sets are shown 
in Additional files 4, 5: Tables S3 and 4. In the training, testing, and entire sets (Figs. 7D, 
E, and F), univariate Cox regression analysis showed that TNM stage (p = 0.003, 
HR = 1.843, 95% confidence interval (CI) [1.229–2.762]; p = 0.001, HR = 2.182, 95%CI 
[1.361–3.498]; p < 0.001, HR = 2.008, 95%CI [1.480–2.724], respectively), N stage 

Fig. 7  A–C Time-dependent ROC curve analyses of risk score in the training (A), testing (B), and entire sets 
(C), respectively. D–F Univariate Cox analyses of clinical factors and risk score with OS in the training (D), 
testing (E), and entire sets (F), respectively. (G–I) Multivariate Cox analyses of clinical factors and risk score 
with OS in the training (G), testing (H), and entire sets (I), respectively. (J–L) One-year ROC curve analyses 
of gender, clinical stage, T stage, N stage and risk score in the training (J), testing (K), and entire sets (L), 
respectively



Page 10 of 19Liu et al. BMC Bioinformatics          (2022) 23:406 

(p = 0.029, HR = 1.360, 95% CI [1.032–1.792]; p < 0.001, HR = 1.652, 95%CI [1.286–
2.122]; p < 0.001, HR = 1.505, 95%CI [1.255–1.804], respectively), and risk score 
(p < 0.001, HR = 1.002, 95%CI [1.001–1.003]; p < 0.001, HR = 1.002, 95%CI [1.001–1.003]; 
p < 0.001, HR = 1.002, 95%CI [1.001–1.003], respectively) showed significant differences 
(Fig. 7D, E, and F), whereas multivariate Cox regression analysis showed that risk score 
(p < 0.001, HR = 1.002, 95%CI [1.001–1.002]; p < 0.001, HR = 1.002, 95%CI [1.001–1.003]; 
p < 0.001, HR = 1.002, 95%CI [1.001–1.003], respectively) was an independent prognos-
tic predictor (Figs. 7G, H, and I). We found the AUC values for gender, stage, T, and N 
in one-year survival to be as follows: training set, 0.521, 0.619, 0.669, and 0.576, (Fig. 7J); 
testing set, 0.517, 0.575, 0.509 and 0.585, (Fig.  7K); entire set, 0.515, 0.595, 0.600 and 
0.574, respectively (Fig. 7L).

The strip charts (Additional file 6: Fig. S2A, F, and K) and consequent scatter diagrams 
showed that gender, clinical stage, T stage, and N stage were not associated with the risk 
score in the training (Additional file 6: Fig. S2B, C, D, and E, respectively), testing (Addi-
tional file 6: Fig. S2G, H, I, and J, respectively), and entire sets (Additional file 6: Fig. S2L, 
M, N, and O, respectively).

Comparison of gene set variation analysis between low‑ and high‑risk groups

We then compared the differences in the biological behaviors between high-risk and 
low-risk groups in the training set using the KEGGs pathway enrichment analysis. P53 
signaling pathway was highly enriched in the high-risk group, and the enrichment level 
was closely related to tumor aggressiveness. On the contrary, histidine metabolic path-
way, methyl butyrate metabolic pathway, and valine leucine isoleucine degradation path-
way were more enriched in the low-risk group than in the high-risk group (Fig. 8A).

Fig. 8  A GSVA enrichment analysis between high- and low-risk groups in the training. The heatmap was 
used to visualize these biological processes, and red represented activated pathways and blue represented 
inhibited pathways. B–F The correlation between risk score and the infiltration levels of immune cells: (B) 
memory B cells, C resting mast cells, D activated NK cells, E macrophages M1, F macrophages M2. G–J The 
sensitivity to drugs in high- and low-risk score patients: (G) Sorafenib, H Gefitinib, I Cytarabine, J Elesclomol
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Assessment of clinical treatment and immunity factors in the risk model

A positive association was observed between risk score and infiltration levels of memory 
B cells (p < 0.001, Fig. 8B), resting mast cells (p = 0.049, Fig. 8C), and activated NK cells 
(p = 0.004, Fig. 8D). In addition, risk score was found to be negatively related to the infil-
tration of M1 (p = 0.006, Fig. 8E) and M2 (p = 0.019, Fig. 8F) macrophage enrichment. 
Patients in the low-risk group had a lower IC50 for sorafenib and gefitinib than the high-
risk group (Figs. 8G-H). Patients in the low-risk group had higher IC50 values for cytara-
bine and elesclomol than the high-risk group (Fig. 8I–J).

Discussion
ESCC is a progressive disease, and the effects of existing treatments for this cancer type 
are far from satisfactory due to its high recurrence and metastasis rates [29, 30]. Recent 
studies have focused on construction of gene-based signatures to predict the disease 
outcomes of patients with ESCC [31, 32]. Several studies have explored the therapeutic 
potential of regulating oxidative stress in cancer [33, 34], however, very few studies have 
focused on ESCC. Therefore, it is crucial to further explore this topic.

In this study, we explored the expression patterns and prognostic values of oxidative 
stress signatures that constituted a model and TIME in the context of ESCC. In our 
study, the expression levels of PTGS2, CD38, STK25, ZC3H12A, EDN1, TOR1A, and 
MAP1LC3A in normal tissues were lower than the ESCC tissues. We found that high 
expression levels of PTGS2, CD38, and EDN1 were associated with better prognosis in 
patients with ESCC, and this finding was in concordance with previous research [35–37]. 
Elevated expression levels of MAP1LC3A have been claimed to be related to poor out-
come in patients with ESCC [38]. In this study, the expression levels of HSPA1B, ERCC1, 
PRODH, STK24, RACK1, TPM1, and PSIP were found to be notably higher in normal 
tissues than in ESCC tissues. Low expression levels of ERCC1 have been reported to be 
related to improved prognosis in patients with ESCC [39]. Increased expression levels 
of RACK1 and TPM1 have been claimed to be related to poor outcome in patients with 
ESCC [40, 41]. Other genes included in this study have not been previously studied in 
patients with ESCC, but they have been claimed to be independent prognostic factors 
in patients with cancer. The following genes and their expression levels were claimed 
to be related to poor outcome in patients with different types of cancers: hepatocellular 
carcinoma with high STK25 expression levels [42]; colorectal cancer with low ZC3H12A 
expression levels [43]; colon cancer with elevated HSPA1B expression levels [44]; lung 
adenocarcinoma with STK24 expression levels [45]. PRODH expression has been 
reported to be related to apoptosis in patients with breast cancer [46]. Our study showed 
that ZC3H12A, ERCC1, PTGS2, CD38, EDN1, and PRODH expressions were independ-
ent factors predicting good prognosis in patients with ESCC. In addition, we also found 
that STK24, STK25, TOR1A, MAP1LC3A, RACK1, HSPA1B, TPM1, and PSIP expres-
sions were independent factors predicting poor outcome in patients with ESCC, and 
this finding was consistent with other reports. Then, we constructed a consensus cluster 
based on the expression of 14 prognostic DEOSGs. Based on DEOSG expressions and 
specific HRs in the two clusters, we could hypothesize that the prognosis of cluster 1 was 
better than cluster 2 of patients with ESCC.
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Oxidative stress processes have been reported to affect the TIME of patients and 
influence the prognosis of patients with EC [28]. Mast cell-derived TNF activates the 
endothelial cells within blood vessels. Neutrophils circulating in the blood are directly 
activated to migrate into the inflamed tissues. KEGG analysis of 294 DEOSGs revealed 
the enrichment of TNF pathway, and we theorized that oxidative stress genes may play 
an important role in mast cell and neutrophil immunoregulatory processes [47]. We fur-
ther compared the TIME of the two clusters. The infiltration levels of plasma cells, acti-
vated mast cells, and neutrophils were higher in cluster 1 than in cluster 2. Moreover, 
cluster 1 exhibited high levels of the estimated score, stromal score, and immune score. 
The infiltration levels of memory B cells, resting mast cells, and NK cells in cluster 1 
were lower than cluster 2. In our study, cluster 1 was classified as immune-infiltrated 
type with adaptive immune cell infiltration, stromal, and immune activation. On the 
other hand, cluster 2 can be classified as immune-inflamed type, characterized by immu-
nodepletion and immune response diminution, which may be the reason for worse prog-
nosis for ESCC patients in cluster 2 [48, 49].

We further established a ten-gene prognostic signature composed of PRODH, CD38, 
EDN1, ERCC1, STK24, TPM1, RACK1, MAP1LC3A, PSIP1 and HSPA1B using the 
training set of 131 patients. We found that the calculated risk score could better predict 
the outcome of patients with ESCC. Moreover, the potential of oxidative stress prognos-
tic signatures was verified using the testing and entire sets, which revealed a great prog-
nostic potential of this risk model.

We verified that the expression of CD38 was negatively related to RACK1 and 
MAP1LC3A expressions. Low expression of RACK1 and high expression of CD38 were 
found to be independent factors predicting good prognosis, and high expression of 
MAP1LC3A was related to unfavorable prognosis in patients with ESCC. These find-
ings were in accordance with previous studies [36, 38, 40]. Our study further illustrates 
that CD38, RACK1, and MAP1LC3A may serve as strong prognostic biomarkers for 
ESCC. High calculated risk score was found to be significantly related to poor prognosis 
of patients with ESCC and it was verified to be an independent prognostic factor which 
was not influenced by clinical characteristics including sex, T stage, N stage, and TNM 
stage.

We further analyzed the GSVA and TIME differences in low- and high-risk groups and 
explored the reasons for the difference in prognosis between the two groups of ESCC 
patients. High expression of p53 was related to low OS of patients with ESCC [50, 51]. 
High histidine levels were related to a reduced risk of developing ESCC [52]. The expres-
sion level of valine was higher in patients with metastatic ESCC than in non-metastatic 
ESCC [53, 54]. CD38 can downregulate metabolic signaling pathways associated with 
p53 [55, 56], and our study also showed a negative correlation between CD38 expression 
and risk score, consistent with GSVA enrichment analysis results. ERCC1 participates 
in p53-related metabolic signaling pathways and is a potential target for cancer therapy 
[57]. Our study also showed a positive correlation between ERCC1 expression and risk 
score, which was consistent with GSVA enrichment analysis results. In addition, p53 and 
ERCC1 are used in conjunction to assess tumor malignancy [58], and the effect of chem-
otherapy response [59, 60]. Depletion of HSPA1B in tumor cells induced macrophage 
suppression of cytokine-1 expression, and this was identified as a target of p53 tumor 
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suppressor protein [61]. Our study suggests that 10 DEOSGs were associated with P53 
signaling pathway and are potential targets for cancer therapy.

In our study, the calculated risk score on the basis of 10 prognostic DEOSGs was 
positively associated with infiltration levels of memory B cells, resting mast cells, and 
activated NK cells; and negatively related to the infiltration levels of M1 and M2 mac-
rophages. Low-risk group could be classified as immune-infiltrated type with immune 
response at peak and adaptive immune cell infiltration, While the high-risk group could 
be termed as immune-inflamed type, characterized by immunodepletion and immune 
response diminution [48, 49]. High mast cell density has been related to low OS in 
patients with ESCC [62]. In general, M1 macrophages exert antitumor effects. In con-
trast, M2 macrophages promote tumor growth [63]. But an increasing number of studies 
have shown that this simple classification does not fully reflect the complexity of mac-
rophage function, as macrophages usually adjust their function according to the tissue 
microenvironment [64, 65]. The single cell profile of ESCC also hints towards that the 
coexistence of M1 and M2 macrophages in ESCC suggests a more complex macrophage 
activation pattern than classical M1/M2 model [49]. This phenomenon has also been 
reported in breast and liver cancer [66, 67]. Our study further suggested the complexity 
of macrophage regulation of immune function in ESCC TIME, along with the fact that 
oxidative stress may be associated with macrophage exerting immunomodulatory effects 
in ESCC [68, 69]. The 10 screened DEOSGs may help in further investigation of the role 
of macrophages in ESCC. Prognostic signatures of 10 DEOSGs may play a key role in 
defining the TIME in patients with ESCC.

Although we assessed our model using several methods, this study still had several 
limitations. The clinical profile information of ESCC patients obtained from TCGA was 
less rich compared to that obtained from the GEO; therefore, our clinical profile analy-
sis was limited to sex, TNM stage, T stage, and N stage. Although we had collected all 
ESCC information from the TCGA and GSE53625 series, the sample size of this study 
was relatively small. Moreover, we used the testing and entire sets to perform internal 
validation of the model. However, it would be beneficial to improve the sample size and 
perform external validation using other clinical datasets in future works.

Conclusions
The study classified ESCC into two subtypes based on the expression of 14 prognostic 
DEOSGs and explored the differences in TIME. Moreover, we demonstrated a prognos-
tic signature based on 10 DEOSGs that could predict the disease outcomes of patients 
with ESCC. Risk score was proved to be an independent clinical prognostic factor. Our 
study improves the understanding of oxidative stress in the TIME and provides more 
insight into effective immunotherapy strategies. Further studies are necessary to verify 
our findings, and future work should include in vitro and in vivo verification.

Methods
Data acquisition

In this study, clinical information, such as sex, T stage, N stage, metastasis (M) stage, TNM 
stage, survival, and RNA-seq expression profiles of patients with ESCC were retrieved from 
GEO database (179 patients; GSE53625, GPL18109) and the TCGA database (95 patients; 
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https://​portal.​gdc.​cancer.​gov). Fifteen patients from the TCGA database were excluded 
due to lack of survival time data. A total of 259 patients (entire set) with prognostic clini-
cal information were randomly divided into training group (131 patients; half of each of 
the cohorts obtained from the TCGA and GEO databases) and testing group (128 patients; 
the remaining half of each cohort obtained from these databases) using R package “caret.” 
RNA-seq expression profiles of 650 normal samples were retrieved from the genotype-tis-
sue expression (GTEx) database.
Screening of oxidative stress‑related genes

A total of 444 oxidative stress genes were obtained from oxidative stress gene set, M3223.
gmt, in the Gene Set Enrichment Analysis (GSEA) (http://​www.​gsea-​msigdb.​org/​gsea/​
index.​jsp).

Differential expression and enrichment analysis of genes in EC and normal esophageal 

tissue

DEOSGs were identified by comparing the tissues of 80 ESCC patients from the TCGA-
ESCC dataset and 650 normal tissues samples from the GTEx dataset with a threshold 
for false discovery rate of < 0.05, along with |log2 FC (fold-change) |> 0.5 using R package 
“limma”. Interacting genes/proteins (STRING, version 11.5, http://​string-​db.​org/) is an 
online tool that helps study gene or protein interactions, and facilitates visualization [70]. 
We utilized R package “clusterProfiler” to perform KEGG and GO enrichment analyses 
to investigate the biological processes associated with these DEOSGs at a significance of 
p < 0.05.

Clusters based on DEOSGs

Using the DEOSGs retrieved from TCGA and GEO, we performed univariate Cox pro-
portional hazard regression analysis to select genes associated with survival (p < 0.05). We 
explored the potential molecular bastards of ESCC in GEO based on prognostic DEOSG 
expressions using R package “ConsensusClusterPlus” [71], and divided the patients into two 
clusters [72].

Establishment and validation of the risk signature

Once prognostic DEOSGs were obtained from univariate Cox proportional hazards regres-
sion analysis, we performed a tenfold cross-validated Lasso regression with a significance 
threshold of p = 0.05, and ran 1000 cycles in the training risk group. To prevent overfitting, 
1000 random stimuli were established for each cycle. A model was then developed using 
the training test. The 1-, 3-, and 5-year receiver ROC curves of the model were plotted 
using a computational program. The formula used to calculate the risk score was as follows:

The Akaike’s information criterion (AIC) value at each point of the 5-year ROC curve 
was assessed to determine the maximum knee as a cut-off point for classifying patients 
into high- and low-risk groups according to risk scores.

risk score =

k

i=1

βiSi

https://portal.gdc.cancer.gov
http://www.gsea-msigdb.org/gsea/index.jsp
http://www.gsea-msigdb.org/gsea/index.jsp
http://string-db.org/
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We employed Kaplan Meier analysis and used survival curves to evaluate the differ-
ence in survival between the high- and low-risk groups. The specific risk score value for 
each sample in the model was also visualized using the “survival,” “survminer,” “survival-
ROC,” and “glmnet” R packages. We performed univariate and multivariate Cox propor-
tional hazards regression analyses for clinical features and risk score using the “survival” 
R package to confirm whether the risk score could prove to be an independent clinical 
prognostic predictor, and to construct a 1-year ROC curve to compare the risk score and 
clinical features. Wilcoxon signed-rank test was performed to compare the risk score 
differences between groups with different clinical features. We also verified these in the 
testing set of 128 patients, and in the entire set of 259 patients.

Investigation of TIME and immune checkpoints

CIBERSORT (http://​ciber​sort.​stanf​ord.​edu/) is a powerful deconvolution algorithm 
based on gene expression that can calculate the infiltration levels of immune cells from 
the gene expression profiles of complex tissues [73]. Using the expression profile of ESCC 
retrieved from the GEO, TCGA databases and CIBERSORT software, we computed the 
infiltration levels of 22 infiltrating immune cells, and analyzed the corresponding differ-
ences between the clusters using “limma” and “ggpubr” R packages. Subsequently, we 
computed the immune score of each patient by the ESTIMATE algorithm which was 
implemented through R package “ESTIMATE”. We utilized R package “ggpubr” to assess 
the immune score differences between the two clusters along with the high and low-risk 
groups [74].

Gene set variation analysis

GSVA is a non-supervised, non-parametric tool commonly used to estimate changes in 
the biological processes and pathways activities in samples of expression datasets [75]. 
The “c2.cp.kegg.v6.2.-symbols” gene sets were used to run these GSVAs (p < 0.05), and 
were retrieved from the MSigDB database. We then used the R package “GSVA” investi-
gated differences across activities of pathways between high- and low-risk groups.

Exploration of the model in the clinical treatment

R packages pRRophtic and ggplot2 were used to compare the half-maximal inhibitory 
concentration (IC50) differences of chemotherapeutic drugs between the low- and high-
risk groups of patients with ESCC on the basis of the Genomics of Drug Sensitivity in 
Cancer (GDSC) (www.​cance​rrxge​ne.​org/).
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IC50	� The half-maximal inhibitory concentration
GDSC	� Genomics of Drug Sensitivity in Cancer
OS	� Overall survival
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N stage	� Node stage
M stage	� Metastasis stage
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