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Integrating a combination of bioinformatics, microRNA microfluidic arrays, ELISA

analysis, LED Northern, and transfection-luciferase reporter assay data using

human neuronal-glial (HNG) cells in primary culture we have discovered a set

of up-regulated microRNAs (miRNAs) linked to a small family of down-regulated

messenger RNAs (mRNAs) within the superior temporal lobe neocortex

(Brodmann A22) of sporadic Alzheimer’s disease (AD) brain. At the level of

mRNA abundance, the expression of a significant number of human brain genes

found to be down-regulated in sporadic AD neocortex appears to be due to

the increased abundance of a several brain-abundant inducible miRNAs. These

up-regulated miRNAs—including, prominently, miRNA-34a—have complimentary

RNA sequences in the 3′ untranslated-region (3′-UTR) of their target-mRNAs

that results in the pathological down-regulation in the expression of important

brain genes. An up-regulated microRNA-34a, already implicated in age-related

inflammatory-neurodegeneration–appears to down-regulate key mRNA targets involved

in synaptogenesis and synaptic-structure, distinguishing neuronal deficits associated

with AD neuropathology. One significantly down-regulated post-synaptic element

in AD is the proline-rich SH3 and multiple-ankyrin-repeat domain SHANK3 protein.

Bioinformatics, microRNA array analysis and SHANK3-mRNA-3′UTR luciferase-reporter

assay confirmed the importance of miRNA-34a in the regulation of SHANK3 expression

in HNG cells. This paper reports on recent studies of a miRNA-34a-up-regulation

coupled to SHANK3 mRNA down-regulation in sporadic AD superior-temporal lobe

compared to age-matched controls. These findings further support our hypothesis of

an altered miRNA-mRNA coupled signaling network in AD, much of which is supported,

and here reviewed, by recently reported experimental-findings in the scientific literature.
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OVERVIEW

Alzheimer’s disease (AD) is a complex, insidious, and
ultimately lethal neurodegenerative disorder characterized
by the appearance of pro-inflammatory lesions known as
senile plaques and neurofibrillary tangles and a progressive
disruption of the synaptic architecture of the brain. Synaptic
loss and synapto-axonal pathology in AD is thought to be
the strongest correlation to, and the basis for, the loss of
sensory, intellectual, and cognitive function in AD patients
(1–5). Indeed the most recent studies employing stepwise
regression analysis has revealed that the major correlate of
cognitive deficiency in AD is synaptic loss in the prefrontal
cortex, and this contributes strongly to the association between
global psychometric assessment and neuronal network collapse
(4–7).

Because inter-neuronal signaling in the human central
nervous system (CNS) is achieved through a complex network
of presynaptic and postsynaptic elements essential in the
conveyance of both electrical and neurochemical information,
we have focused our investigations on the structural and
functional integrity of key pre- and post-synaptic components
in the superior temporal lobe neocortex (Brodmann A22),
an anatomical region targeted by the AD process. One
recently characterized core element essential for the efficient
operation of this complex inter-neuronal signaling network
is the relatively abundant ∼185 kDa proline-rich cytoskeletal
scaffolding and post-synaptic density (PSD) protein known
as SHANK3 (SH3-and multiple ankyrin repeat domains 3;
encoded at human chr 22q13.33) (8, 8–13). Interestingly,
disruption in the abundance of the postsynaptic SHANK3
cytoskeletal anchoring protein has been associated with
neurological disorders including autism spectrum disorder
(ASD), bipolar disorder (BD), Phelan-McDermid syndrome
(PMS; 22q13.3 deletion syndrome), intellectual disability,
schizophrenia (SZ), and sporadic AD (9, 10, 14). In this
“Perspectives” article, we review and comment on recent
advances in SHANK3 research as it pertains to age-related
neurodegeneration using AD as an important example
wherever possible. We also include some original data that
provides evidence indicating that SHANK3 is under post-
transcriptional control by an inducible NF-kB-regulated
microRNA-34a in the temporal lobe neocortex, and adds
to the growing list of pathological genetic mechanisms and
cardiovascular and neurological disease-relevant messenger
RNAs (mRNAs) targeted by the CNS-abundant miRNA-34a [see
below;(15–18)].

SHANK3 DOWN-REGULATION AND
SYNAPTIC SIGNALING DEFICITS

The SH3 and multiple ankyrin (ANK)-repeat domain-proteins
SHANK1, SHANK2, and SHANK3 (also known as the ProSAP
family, SHANK postsynaptic density proteins, the proline-rich
synapse-associated family of proteins; also known as PROSAP2,
PSAP2, SCZD15, SPANK-2) encode a small family of related

postsynaptic scaffolding proteins that are highly abundant at
glutamatergic synapses in the human CNS (8, 12). SHANK
proteins are essential to post-synaptic structure and function in
connecting, linking, networking and anchoring neurotransmitter
receptors, ion channels, and other integral membrane proteins to
the actin cytoskeleton and in the normal “homeostatic” operation
of G-protein-coupled signaling pathways. Research evidence
indicates that the massive SHANK3 protein (at ∼185 kDa)
forms an extensive post-synaptic cytoskeletal scaffolding network
(involving the linkage of multiple SHANK3 proteins at the PSD)
to which the smaller PSD-95 (at ∼95kDa) protein is tethered
usually via the SAPAP protein (∼100 kDa); interestingly both
SHANK3 and PSD-95 proteins, highly interactive components
of the PSD complex, are reduced in abundance in the temporal
lobe of AD-affected brain (13, 19, 20). SHANK3 post-synaptic
scaffolding proteins thereby play essential roles in synapse
formation and organization, synaptic cell adhesion, dendritic
spine maturation and synaptic vesicle release (4, 11, 13, 21, 22).
All SHANK species are abundantly expressed in the human
CNS but exhibit different anatomical, developmental, and spatial
patterns of expression; SHANK3 appears to have preferential
expression in the human neocortex and hippocampus. Indeed,
like all SHANK proteins, SHANK3 contains multiple domains
for extensive protein-protein interaction including ankyrin
(ANK) repeats—hence a deficit in these central and major
cytoskeletal components, key players for both synapse formation
and the modulation of synaptic transmission and synaptic
plasticity, may be responsible for major synaptic aberrations
and loss of the capability for inter-neuronal communication,
with ensuing cognitive impairment, as has been observed in
multiple neurological disorders (9, 10, 12) (Figures 1A–E). As for
mentioned, these disorders include several seemingly unrelated
human neurological syndromes such as sporadic AD, ASD,
BD, PMS, and SZ (8, 9, 21). Indeed, synaptic dysfunction and
abnormal behaviors in transgenic murine models are apparent in
mice lacking adequate SHANK3; in the CNS of the transgenic AD
(TgAD) 5x familial AD murine model engineered to overexpress
the 42 amino acid amyloid-beta (Aβ42) peptide, SHANK3 was
also found to be significantly downregulated but the pathological
mechanisms remain unclear (9, 10, 12, 21, 25–27). Interestingly,
the extra-neural levels of Aβ peptide oligomers have been shown
to strongly correlate with the severity of cognitive impairment
(using the Blessed information-memory-concentration score and
mini-mental state examination, MMSE) and with the loss of
synaptic markers such as SHANK3 that results in the disruption
of synaptic function (5, 28). It has been known for some time that
the application of known pro-inflammatory stressors, such as the
Aβ42 peptide and neurotoxic metal sulfates (such as aluminum
sulfate) to human neuronal-glial (HNG) cells in primary culture
also results in a significant decrease in the expression of
SHANK3 (9, 10, 12). Collectively these data indicate that deficits
in SHANK3-expression may be one common denominator
linking a wide-range of human neurodegenerative disorders
that exhibit a progressive synaptic disorganization temporally
associated with progressive, developmental, and/or age-related
intellectual disability combined with sensory and cognitive
decline.
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FIGURE 1 | Gene products on human chromosomes 1 and 22 interactively contribute to SHANK3 expression in CNS tissues. (A) Results of miRNA microfluidic array

analysis; miRNA-34a is significantly up-regulated in the sporadic AD temporal lobe compared to miRNA-183 and 5S RNA control sncRNA markers; the numbers 1–3

indicates 3 separate control and age-matched AD cases; all female; control mean age 72.1 ± 6.6 years; AD mean age 73.8 ± 8.2 years; N = 3 control and 3 AD: all

post mortem intervals <3 h; (B) quantitation of miRNA-34a levels in bar graph format; (C) quantitation of SHANK3 mRNA (using Northern analysis) and SHANK3

protein (using ELISA) in the superior temporal lobe of control and AD as previously described (9, 23); N = 3; *p < 0.001 (ANOVA). (D–G) highly schematicized

depiction of the human SHANK3 gene organization at chr 22q13.33 and the human miRNA-34a gene organization at chr 1p36.22; with a PCT (probability of

conserved targeting) or Friedman score of 83 [(24); that has been calculated for all highly conserved miRNA families]; this hsa-miRNA-34a-SHANK3-3′-UTR

recognition/interaction is highly favorable and almost certain to occur in the cytoplasm/nucleoplasm of CNS cells; (E) has been modified from (25); the homo sapien

(hsa) microRNA-34a (hsa-miRNA-34a) is encoded from the distal end of human chromosome 1p (at chr 1p36.22) and generates a 22 nt mature miRNA-34a species;

hence the expression of at least two genes, one cytoskeletal and structural (SHANK3) and one regulatory (miRNA-34a) on human chromosomes 1p and 22q is

required for regulating the expression of SHANK3.

miRNA-34a

The 22 nucleotide (nt) miRNA-34a (Figures 1F, 2) encoded in
humans as a single copy gene at chr1p36.22 has about ∼1,200
predicted human mRNA targets using standard bioinformatics

analysis (miRBase; EMBL-EBI; www.genecards.org/cgi-bin/
carddisp.pl?gene=MIR34A; accessed 17 January 2019); major
bioinformatics- and experimentally-verified miRNA-34a-mRNA
targets include those encoding TREM2, a transmembrane
glycoprotein of microglial cells that plays a role in amyloid
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sensing and removal (29). miRNA-34a has also been implicated
in epithelial cell proliferation, in endothelial cell-mediated
inflammation, in T-cell activation and in the regulation of
the innate-immune system, in the down-regulation of the
apoptosis regulator/suppressor Bcl-2, in both cardiovascular
and neurovascular disease mechanisms involving epithelial
and endothelial cell linings, and in the down-regulation of
expression of specific synaptic cytoskeletal elements including
SHANK3 [this publication (8, 9, 15–18)]. Recent data have
further indicated that as an NF-kB-inducible microRNA,
miRNA-34a appears to play analogous roles in AD, age-related
macular degeneration (AMD), autism and in transgenic murine
models of AD or AMD (TgAD, TgAMD) (18, 29–31). For
example, miRNA-34a up-regulation in a double transgenic
mouse model (APPswe/PSDeltaE9) of AD has been shown
to inhibit the translation of the anti-apoptosis regulating
protein Bcl-2 resulting in a progressive and pro-inflammatory
neurodegeneration, and excessive miRNA-34a has a significant
inhibitory effect on retinal pigment epithelial cell proliferation
and migration (17, 30–32). More recently, miRNA-34a has
been shown to regulate the calcium- and calmodulin-dependent
serine/threonine protein phosphatase heterodimer calcineurin
1 to modulate endothelial inflammation and T-cell activation
in the innate-immune system (33). We have observed a
significant increase in miRNA-34a abundance in AD temporal
lobe neocortex averaging a remarkable 8.1-fold increase over
control in 6 AD brain tissue samples over control coupled
to SHANK3 deficits, at both the SHANK3 mRNA level (to
0.27-fold of controls) and at the SHANK3 protein level (to
0.18-fold of controls) within the same neocortical tissue
sample (Figures 1A–C). Taken together the results suggest
that increases in miRNA-34a linked to SHANK3 decreases
orchestrate a complex pathological program involving pro-
inflammatory degeneration, endothelial and epithelial cell
deficits, pro-apoptotic signaling and synaptic insufficiency in the
aging human cardiovascular, neurovascular, and neurological
systems.

miRNA-34a INTERACTIONS WITH THE
SHANK3 mRNA 3′-UTR

The ∼7,413 nt human SHANK3 mRNA [major species
SHANK3a; GenBank: AB569469.1; https://www.ncbi.nlm.nih.
gov/nuccore/AB569469.1;https://www.genecards.org/cgi-bin/
carddisp.pl?gene=SHANK3]1 encoded at the distal arm of
human chromosome 22q (chr 22q13.33) and spliced together
from a 22 exon gene includes multiple anykyrin (ANK) repeat
domains and a 1986 nt 3′-UTR with multiple binding sites for
miRNA-34a (from position 543–550 and 549–556 of the 22 nt
miRNA-34a; Figures 1D–G). Interestingly these miRNA-34a
binding sites have been previously shown to be immediately
flanked downstream by a single miRNA-146a binding site (23);
miRNA-146a is a pro-inflammatory microRNA also linked to
AD neuropathology and pro-inflammatory neurodegeneration

1SHANK3 gene expression data:https://www.genecards.org/cgi-bin/carddisp.,pl?
gene=SHANK3 (2018)

(34, 35). Hence the SHANK3 mRNA-3′UTR provides a classic
example of multiple miRNAs—and in this case multiple
pro-inflammatory miRNAs (miRNA-34a and miRNA-146a)–
targeting the same mRNA 3′-UTR; these miRNA-mRNA
recognition features for SHANK3 are shared by Homo sapiens,
chimpanzee and Rhesusmonkey (http://www.targetscan.org/cgi-
bin/targetscan/vert71/viewgene.cgi? members =miR-34-5p/449-
5p&show cnc =0&shownc=0&subset=1; accessed 17 January
2019) (23). Different SHANK3 gene deletions, duplications,
and point mutations are also associated with ASD, intellectual
disability, SZ, BD, and attention deficit hyperactivity disorder
(ADHD) and these different genetic alterationsmay contribute to
the pathophysiological and phenotypic diversity of neurological
disorders related to SHANK3 gene mutations (14, 22, 36).
Interestingly, multiple promoters for the human SHANK3 gene,
often immediately associated with CpG islands, encode multiple
SHANK3 species including SHANK3a, SHANK3b; SHANK3c,
SHANK3d, SHANK3e, and SHANK3f (see Figure 1E); the
significance of these 5 SHANK3 mRNA subspecies, all smaller
than the full length SHANK3a mRNA, is not well understood but
they may be involved in neuronal and synaptic development in
different anatomical regions of the CNS (10, 14, 26, 37)

UNANSWERED QUESTIONS

While a considerable amount of scientific evidence suggests that
miRNA-34a (and miRNA-146a) are involved in progressive and
ultimately lethal degenerative pathologies in human neurological,
cardiovascular and neurovascular disease, at this point in time
we cannot exclude the pathological participation of other
miRNA species, other small non-coding RNAs (sncRNAs)
or other pathological factors in the regulation of SHANK3
expression (23). There are currently ∼2,654 known human
miRNAs (http://mirbase.org/help/FAQs.shtml) but only about
30-35 miRNAs appear to be abundant in the human brain
neocortex, hippocampus and retina (15, 23, 38). It will be
interesting to see if miRNA-34a and miRNA-146a compete to
control SHANK3-3′UTR binding and hence, ultimately SHANK3
expression and the status of the synaptic signaling network
in health and in the SHANK3-mediated neuronal network
collapse as typified in AD. The significance (if any) of adjacent
and overlapping miRNA binding sites in the same 3′UTR is
not well understood; it may be a built-in redundancy in the
intrinsic miRNA-mRNA signaling system encoded on at least
2 chromosomes to ensure, for example, miRNA-34a-SHANK3
mRNA regulatory control. Very recently it has been established
that the gastrointestinal (GI) tract microbiome may provide a
long list of pro-inflammatory genetic mediators that are capable
of transiting the aging GI tract and blood-brain barriers to
upregulate a select number of pro-inflammatory miRNAs that
have strong potential to induce neurological disease via the
targeting of genes involved in the cytoskeleton, in the synapse,
in the transit of signaling molecules across endothelial cell
barriers and in the innate-immune response (5, 28, 34, 35, 39–
44).
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FIGURE 2 | Luciferase reporter vector-based studies of miRNA-34a and SHANK3 expression - Functional validation of a miRNA-34a-SHANK3–3′UTR interaction.

(A) partial ribonucleotide sequence of the 1986 nt SHANK3-mRNA-3′-UTR is shown in the 5′-3′ direction; the 22 nucleotide (nt) miRNA-34a-SHANK3-3′UTR

complementarity-interaction region is indicated by a black underline and the 8 nt SHANK3-mRNA-3′-UTR seed sequence is overlaid in yellow; a single vertical red

arrow indicates the 5′ end of a poly A+ tail in the SHANK3 mRNA; the SHANK3 mRNA sequence derived from NM_018965; (B) SHANK3-mRNA-3′UTR expression

vector luciferase reporter assay (pLightSwitch-3′UTR; Cat#S801178; Switchgear Genomics, Palo Alto CA); in this vector, the entire 1986 nucleotide SHANK3 3′UTR

was ligated into the unique Nhe1-Xho1site; not drawn to scale; (C) HNG cells, 2 weeks in primary culture; neurons (red stain; λmax = 690 nm), DAPI (blue nuclear

stain; λmax = 470 nm) and glial fibrillary associated protein (GFAP; glial-specific green stain; λmax = 520 nm); the HNG cell culture is about 60% confluent and at 2

weeks of culture contains 70% neurons and 30% astroglia; human neurons do not culture well in the absence of glia; neurons also show both extensive arborization

and display electrical activity (unpublished; Lonza); 40X magnification; HNG cells were transfected with the SHANK3-mRNA-3′UTR expression vector luciferase

reporter were treated exogenously with a stabilized miRNA-34a, a scrambled control miRNA-34a (miRNA-34a-sc) or control miRNA-183; see references and text for

further details; (D) compared to control, HNG cells transfected with a scrambled (sc) control pLightSwitch-3’UTR vector, the SHANK3-mRNA-3′UTR vector exhibited

decreased luciferase signal to a mean of 0.16-fold of controls in the presence of miRNA-34a; this same vector exhibited no change in the presence of the control

miRNA-34a-sc or miRNA-183; for each experiment (using different batches of HNG cells) a control luciferase signal was generated and included separate controls

with each analysis; in addition a control vector β-actin-3′UTR showed no significant effects on the relative luciferase signal yield after treatment with either miRNA-183

or miRNA-34a (data not shown); a dashed horizontal line set to 1.0 is included for ease of comparison; N = 6; *p < 0.001 (ANOVA). The results suggest a

physiologically relevant miRNA-34a-SHANK3-mRNA-3′UTR interaction and a miRNA-34a-mediated down-regulation of SHANK3 expression in HNG cells. This

pathogenic interaction may be related to the down-regulation of other immune, inflammatory, and synaptic system genes by up-regulated miRNAs in the CNS

resulting in an impairment in trans-synaptic signaling and synaptic cytoarchitecture.

CONCLUSIONS

There is a remarkable amount of pathological damage in the
sporadic AD brain, including the progressive and simultaneous
appearance of senile plaques and neurofibrillary tangles,
neuronal atrophy, the appearance of inflammatory markers and
extensive synaptic disruption. Indeed a significant number of
studies have indicated both a progressive and overwhelming
deficit in synaptic cytoarchitecture and synaptogenesis occurs
in the AD-affected brain. Our studies indicate that deficits in

the SHANK3 cytoskeletal post-synaptic protein, with resulting
disruption in synaptic structure and function may be mediated
at least in part by inducible NF-kB regulated pro-inflammatory
microRNAs such as miRNA-34a. Lastly, AD is an extremely
heterogeneous disease with multiple and often strongly
inter-linked pathological deficits. For example Aβ42 peptide
abundance, inflammatory degeneration, loss of SHANK3 and
synaptic disruption all occur concurrently, especially in the
moderate-to-latter stages of AD. It would be interesting to see if
Aβ42 peptide levels, miRNA-34a-mediated SHANK3 abundance
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and synaptic deficits could be managed early during the course
of the disease for therapeutic benefit. These data continue to
indicate that increases in specific miRNAs coupled to deficits in
SHANK3-expression may be one common denominator linking
a wide-range of human neurological disorders that exhibit a
progressive or developmental synaptic disorganization that
is temporally associated with both intellectual disability and
progressive cognitive decline.
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