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Microarray technology results in high-dimensional and low-sample size data sets. Therefore, fitting sparse models is substantial
because only a small number of influential genes can reliably be identified. A number of variable selection approaches have been
proposed for high-dimensional time-to-event data based on Cox proportional hazards where censoring is present. The present
study applied three sparse variable selection techniques of Lasso, smoothly clipped absolute deviation and the smooth integration
of counting, and absolute deviation for gene expression survival time data using the additive risk model which is adopted when the
absolute effects ofmultiple predictors on the hazard function are of interest.The performances of used techniques were evaluated by
time dependent ROC curve and bootstrap .632+ prediction error curves. The selected genes by all methods were highly significant
(𝑃 < 0.001). The Lasso showed maximum median of area under ROC curve over time (0.95) and smoothly clipped absolute
deviation showed the lowest prediction error (0.105). It was observed that the selected genes by all methods improved the prediction
of purely clinical model indicating the valuable information containing in the microarray features. So it was concluded that used
approaches can satisfactorily predict survival based on selected gene expression measurements.

1. Introduction

Head and neck squamous cell carcinoma (HNSCC) is the
sixth most common cancer worldwide that has variation
across subsites (oral cavity, oropharynx, larynx, or hypophar-
ynx) in many characteristics including age, sex, ethnicity,
histologic grade, treatment modality, and prognosis [1–3].
HNSCC as the most common smoking related cancer after
lung cancer is one of the most aggressive malignancies in
human population [1, 3] and causes about 438,000 smoking-
attributable mortalities in the world each year. The most
common anatomic site of HNSCC counting for approxi-
mately 50% of all HNSCC is oral squamous cell carcinoma

(OSCC) which contains two most commonly diagnosed
oral premalignant lesions (OPL) including Leukoplakia and
erythroplakia [3].

Although tremendous efforts were committed to early
detection, prevention, and treatment during the last decades,
HNSCC prognosis remains very poor with the rising inci-
dence in developed countries and younger population [1].
Even for HNSCC diagnosed at early stages, surgery (current
standard care) is a debilitating, substantially morbid proce-
dure that leads to severe impairments in quality of life for the
patients [3].Therefore, developing new approaches including
diagnosis of the disease before the cancerous stage and
preventing development of invasive cancers such as HNSCC
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is very substantial. The HNSCC is a multistep process and
genetic factors play an important role in its etiology [1].
Generally, it is well accepted that malignant tumors, on the
molecular level, are disease of genes [1].

The rapid development of biotechniques during the past
decade has brought in a wealth of biomedical data includ-
ing DNA microarrays which can be used to measure the
expression of thousands of genes in a sample of cells or to
identify hundreds of thousands of single nucleotide poly-
morphisms for an individual at the same time [4]. This kind
of information leads to high-dimensional and low-sample
size (HDLSS) data sets (i.e., 𝑝 ≫ 𝑛 where 𝑝 and 𝑛 are the
number of covariates and patients) which pose tremendous
challenges to effective statistical inference especially for the
time-to-event due to the presence of censoring and the use
of much more complicated models. In this case, a number
of the outcome variables are typically censored. Besides,
establishing link between high-dimensional biomedical data
and patient’s survivals would be informative in the presence
of clinical data.

In this regard, a fundamental objective is to identify a
small set of genes from a huge number of features whose
expression levels are significantly correlated with a given
clinical outcome such as cancer. Identified genes are then
often used to create a predictive model for conducting
prediction of outcome for new patients [5].

Recently, several variable selection techniques based
on the maximization of a penalized likelihood have been
proposed for HDLSS time-to-event data under the Cox
proportional hazards model. Some of the most common
penalization methods are the least absolute shrinkage and
selection operator (lasso) [6], smoothly clipped absolute
deviation (SCAD) [7], Dantzig selector [8], LARS [9], and
the smooth integration of counting and absolute deviation
(SICA) penalty [10]. These techniques can yield sparse
models and hence perform simultaneous variable selection
and estimation. To select ideal penalty functions for model
selection Fan and Li [7] advocated penalty functions giving
rise to estimators with three desired properties of sparsity,
unbiasedness, and continuity. This class of penalty functions
has been studied by Lv and Fan [11] and Fan and Lv
[12] in (generalized) linear models contexts. The reasonable
performance of penalization techniques such as Lasso, SCAD,
and SICA was also investigated by Lin and Lv [4].

Despite the extensive study of the proportional hazards
model for survival data with high-dimensional covariates, a
few authors have utilized variable selectionmethods based on
additive riskmodel whichmay providemore insights beyond
the proportional hazards model analysis [4, 13]. Additive
models assume that the covariate effects under consideration
contribute additively to the conditional hazard [13].

The aim of the present study was to compare three sparse
variable selection methods of Lasso, SICA, and SCAD for
high-dimensional low-sample size data using an additive
hazard approach to predict survival time in patients with
OSCC and to determine the influential genes on survival
time.

2. Methods

2.1. Data Source. The proposed techniques are illustrated
with publicly available microarray data from patients with
OPL [3]. The dataset consists of gene expression measure-
ments for 29096 genes and survival outcomes to develop
oral cancer on 86 patients. These 86 patients were selected
from the 162 patients who were involved in a chemopre-
vention trial. The number of 35 patients who developed
oral cancer during the study period was selected for gene
expression profiling. Besides, 51 samples (ad hoc choice)
from patients who did not develop OSCC were randomly
selected among 106 patients. The median follow-up time was
5 years for this sample. The data analyzed in this study is
available from the NIH Gene Expression Omnibus database
at www.ncbi.nlm.nih.gov/geo under the accession number
GSE26549. Potentially important clinical covariates were age,
histology at baseline, deltaNp63, and podoplanin expression
at baseline.

2.2. Variable Selection via Additive Hazards Model. Reg-
ularization techniques are particularly useful for variable
selection in high-dimensional setting where the number of
variables is much greater than the sample size and have
gained increasing popularity. These estimation techniques
pose a penalty term on the coefficients in objective function
and shrink the estimates of the coefficients towards zero
relative to the maximum likelihood estimates. The goal of
this shrinkage is to prevent overfitting which arises due to
either collinearity of the covariates or high-dimensionality
[14]. When the outcome is survival time, the objective
function is usually written based on hazards at the failure
time and posing penalties on the coefficients can yield sparse
models and hence perform simultaneous variable selection
and estimation.
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𝑇
𝑖
(𝑖 = 1, . . . , 𝑛) be the time to an event like death from

cancer for the 𝑖th subject and conditionally independent of
the censoring time𝐶

𝑖
, given the p-dimensional possibly time-

dependent covariate vector𝑍
𝑖
= (𝑍
𝑖1
, 𝑍
𝑖2
, . . . , 𝑍

𝑖𝑝
)
𝑇. Let𝑋

𝑖
=

min(𝑇
𝑖
, 𝐶
𝑖
) and Δ

𝑖
= 𝐼(𝑇

𝑖
≤ 𝐶
𝑖
) for right censored data,

where 𝐼(⋅) is the indicator function. Then the observed data
consists of (𝑋

𝑖
, Δ
𝑖
, 𝑍
𝑖
). The hazard function of a failure time

𝑇 given a 𝑝-vector of possibly time-dependent covariates 𝑍
based on Lin and Ying additive hazards model is as follows:

𝜆 (𝑡; 𝑍) = 𝜆0 (𝑡) + 𝛽
𝑇

0
𝑍, (1)

where 𝜆
0
is an unknown baseline hazard function which is

common to all subjects and 𝛽
0
is a 𝑝-vector of regression

coefficients [4, 15]. The pseudo score linear in 𝛽 ∈ R𝑝

function for Lin and Ying [16] model can be defined as
follows:

U (𝛽) = 1
𝑛

𝑛

∑
𝑖=1

∫
𝜏

0

{𝑍
𝑖
− 𝑍} {𝑑𝑁

𝑖 (𝑡) − 𝑌𝑖 (𝑡) 𝑍𝑖𝑑𝑡} , (2)

where 𝑁
𝑖
(𝑡) = 𝐼(𝑋

𝑖
≤ 𝑡, Δ

𝑖
𝜀
𝑖
= 𝑘) is the observed-failure

counting process, 𝑌
𝑖
(𝑡) = 𝐼(𝑋

𝑖
≤ 𝑡) is at-risk indicator,



BioMed Research International 3

𝑍 = ∑
𝑛

𝑗=1
𝑌
𝑗
(𝑡)𝑍
𝑗
/∑
𝑛

𝑗=1
𝑌
𝑗
(𝑡), and 𝜏 is the maximum follow-

up time. Performing some algebraic manipulation results in

𝑈 (𝛽) = 𝑏 − 𝑉𝛽, (3)

where 𝑏 = (1/𝑛)∑𝑛
𝑖=1
∫
𝜏

0
{𝑍
𝑖
− 𝑍}𝑑𝑁

𝑖
(𝑡) and 𝑉 = (1/𝑛)∑

𝑛

𝑖=1

∫
𝜏

0
𝑌
𝑖
(𝑡){(𝑍

𝑖
−𝑍)(𝑍

𝑖
− 𝑍)
𝑇

}𝑑𝑡. Because𝑉 is positive semidef-
inite, integrating −𝑈(𝛽) with respect to 𝛽 results in the least
squares type loss function as

𝐿 (𝛽) =
1

2
𝛽
𝑇
𝑉𝛽 − 𝑏

𝑇
𝛽. (4)
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𝛽 = argmin
𝛽∈R𝑝

{

{

{

𝑄(𝛽) ≡ 𝐿 (𝛽) +

𝑝

∑
𝑗=1

𝑝
𝜆
(
󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗

󵄨󵄨󵄨󵄨󵄨
)
}

}

}

, (5)

where 𝐿(𝛽) is the likelihood of beta for additive model, 𝑝
𝜆
(𝜃),

𝜃 ≥ 0 is a penalty function based on the regularization
parameter 𝜆 ≥ 0 and is often rewritten as 𝑝

𝜆
(⋅) = 𝜆𝜌(⋅) [4].

The present study considered three commonly used
sparse penalty functions which correspond to Lasso, SCAD,
and SICA. In this regard, the Lasso uses the 𝐿

1
-penalty; that

is, 𝜌(𝜃) = 𝜃. The SCAD penalty is given by the derivative
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some 𝑎 > 2 as a shape parameter and SICA penalty takes
the form 𝜌(𝜃) = (𝑎 + 1)𝜃/(𝑎 + 𝜃) and 𝑎 > 0 is a shape
parameter. Estimation of 𝛽 is then accomplished via the
coordinate descent algorithm [4].

Selecting the optimal regularization parameter 𝜆 is con-
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ing cross-validation score function:
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where 𝐿(𝑚)(⋅) is the least squares type loss function computed
from the 𝑚th part of the data, and 𝛽(−𝑚)(𝜆) is the estimate
from the data with the𝑚th part removed [4].

The SCAD and SICA have one additional tuning parame-
ter 𝑎. For the SCADpenalty, 𝑎 = 3.7was suggested by Fan and
Li [7] from a Bayesian perspective. Selecting 𝑎 for the SICA
penalty requires a little more caution, because small values of
𝑎 that often needs to yield a superior theoretical performance
may sometimes lead to the computational instability [4].
This study used the method proposed by Lin and Lv [4] to
determine 𝑎 in SICA.

2.3. Properties of Used Penalties. In spite of choosing the
penalty function, the performance of the regularized estima-
tors depends on various factors, such as the dimensionality
of the model, the correlation among the variables, and the
choice of the regularization parameter. Also, penalization
techniques may suffer from some drawbacks.

Although the Lassomethod enjoys the advantage of com-
putational simplicity, it suffers from several shortcomings.

All coefficients are shrunken toward zero by Lasso. So, the
large elements of coefficients tend to be underestimated. The
SCAD penalty is proposed to eliminate the bias caused by
the Lasso and does not have this drawback. Also, it has been
shown to enjoy the oracle property. Itmeans that the resulting
estimator performs asymptotically as well as the oracle
estimator which knew the true sparse model in advance
[4]. SCAD does not require the irrepresentable condition to
consistency. In spite of nonconvexity of SCAD, algorithms are
available to compute its solution [7, 17]. On the other hand Lv
and Fan showed that the regularity conditions needed for the
Lasso can be substantially relaxed by using concave penalties
due to nonasymptotic weak oracle property [11]. The SICA
family proposed in their study has the noticeable feature that
it can be used to define a sequence of regularization problems
with varying theoretical performance and computational
complexity [4].

2.4. Predictive Performance. Assessment of the performance
of three variable selection methods was performed by
using time-dependent receiver operator characteristic (ROC)
curves [18] and bootstrap .632+ prediction error curves [19]
which were used to evaluate the performance of the models.
The prediction error was obtained as squared difference
between the true state (0 for being still under risk and 1
if an event of cancer occurred) at time t and predicted
survival probability. Lower prediction errors suggest better
performance.

2.5. Software. Analyses were performed by using the R
software programming (http://www.r-project.org) based on
a publically available R package which has been provided by
Lin and Lv [4] (http://www-scf.usc.edu/∼linwei/software.
html). In addition, evaluating the predictive performance of
used methods was utilized using “pec,” “peperr,” and “sur-
vAUC”R packages. Besides, to select themost effective genes,
“timeROC” package was utilized.

3. Results

Three variable selection techniques of Lasso, SCAD, and
SICA were implemented on microarray gene expression data
of 86 leukoplakia samples of OPL patients based on additive
hazards model. The frequency of occurrences of the genes
along with means of coefficients and standard errors over
100 replicates, obtained from three techniques, was shown in
Table 1. As shown in Table 1, the number of selected genes by
Lasso was greater than SCAD and SICA. The SICA selected
only a small set of genes due to the sparseness. In addition,
there are seven common genes (7905589, 7908407, 8106919,
8126931, 8161169, 8174970, and 8180388) among three variable
selection techniques.

In order to assess predictive performance, the median
area under ROCcurve over time (AUC(𝑡)) was computed and
plotted based on 69 (∼80%) training and 17 (∼20%) test sets
for each method. Results are shown in Figure 1.
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Table 1: Influential genes on OSCC patients’ survival based on additive hazards model using Lasso, SCAD and SICA. Values are frequency
of occurrences of the genes, means of coefficients (standard errors) over 100 replicates.

Probeset ID Lasso SCAD SICA
Frequency Coefficient (SE) Frequency Coefficient (SE) Frequency Coefficient (SE)

7897663 100 0.141 (0.006)
7905589 100 −0.122 (0.032) 97 −0.182 (0.086) 88 −0.324 (0.132)
7908407 100 −0.639 (0.054) 98 −1.239 (0.645) 92 −1.367 (0.460)
7916489 99 −0.012 (0.009) 56 −0.022 (0.021)
7918825 99 0.112 (0.041)
7919157 81 0.081 (0.049)
7922793 99 −0.069 (0.035) 48 −0.012 (0.017)
7925161 1 −0.002 (0.017)
7946565 44 0.009 (0.010)
7964627 91 0.102 (0.056) 12 0.030 (0.084)
7965467 99 −0.100 (0.050) 56 −0.034 (0.051)
7971191 91 0.037 (0.019) 30 0.003 (0.007)
7978754 100 −0.136 (0.015) 50 −0.005 (0.008)
7981968 100 −0.086 (0.021)
7982129 99 −0.012 (0.005) 56 −0.002 (0.003)
8002247 91 0.100 (0.052) 2 0.002 (0.017)
8018097 100 −0.140 (0.008) 98 −0.060 (0.018)
8020844 36 −0.011 (0.019) 94 −0.024 (0.012)
8035398 75 −0.018 (0.012)
8035829 64 0.018 (0.014)
8040338 91 −0.016 (0.007)
8044733 91 −0.039 (0.019)
8047690 56 0.023 (0.028)
8048595 91 −0.055 (0.030) 30 −0.005 (0.013)
8065392 91 −0.168 (0.086) 1 −0.003 (0.029)
8076511 49 0.011 (0.011)
8075691 26 −0.034 (0.058)
8093764 56 −0.018 (0.020)
8095441 56 −0.006 (0.006)
8103368 100 −0.011 (0.003) 56 −0.009 (0.013)
8106814 75 0.040 (0.029) 56 0.024 (0.033)
8106919 81 0.070 (0.046) 97 −0.092 (0.028) 1 0.002 (0.020)
8109828 100 −0.128 (0.003) 47 −0.068 (0.082)
8110880 56 0.047 (0.041)
8112916 68 0.005 (0.009)
8120206 91 0.030 (0.015)
8123338 75 −0.065 (0.045) 1 −0.002 (0.018)
8126931 100 0.157 (0.025) 84 0.022 (0.017) 2 0.002 (0.014)
8138531 90 0.873 (0.338)
8139808 99 −0.059 (0.016)
8127993 30 −0.008 (0.014)
8158952 84 0.900 (0.676)
8161169 100 0.281 (0.029) 97 0.154 (0.041) 70 0.144 (0.175)
8174710 82 −0.023 (0.013) 24 −0.007 (0.012)
8174970 100 0.360 (0.030) 94 0.060 (0.046) 35 0.101 (0.140)
8180388 100 −0.403 (0.039) 98 −0.139 (0.077) 12 −0.072 (0.199)
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Figure 1: Comparison of predictive performance (area under the
ROC curve, over time) for the OPL patients.

For the follow-up period, the median AUC for Lasso,
SCAD, and SICA was 0.95, 0.91, and 0.83, respectively. As
can be seen from Figure 1, the predictive performance of the
Lasso was superior to SCAD and SICA in this data analysis.

In addition, to evaluate prediction performance improve-
ment by including selected genes over a purely clinical
model, bootstrap .632+ prediction error curves were plot-
ted based on 𝐵 = 100 bootstrap samples drawn with-
out replacement. Figure 2 shows the results. As shown,
including selected microarray features in the models clearly
improved prediction performance over the purely clinical
model indicating the valuable information containing in the
microarray features. Also, it can be seen that the performance
of SCAD (bootstrap .632+ prediction error = 0.105) was
slightly superior to Lasso (bootstrap .632+ prediction error =
0.124) and SICA (bootstrap .632+ prediction error = 0.132).
In order to compare, the prediction error curve of the
method utilized by Saintigny et al. [3] to select effective genes
named component-wise likelihood-based boosting was also
provided in Figure 2. As shown, based on prediction error
curve, the performance of SCAD was better compared to
component-wise likelihood-based boosting.

Finally, five most effective genes (8126931, 8120206,
7971191, 8161169, and 7897663) were selected using area under
ROC curve by means of timeROC package. The median
AUC of these genes was 0.825, 0.816, 0.787, 0.786, and
0.702, respectively.Genes 8126931, 8120206, and 7897663were
significant (𝑃 < 0.001, 𝑃 = 0.01, and 𝑃 < 0.001) by using
additivemodel and the expression of all three genes decreased
the survival time.
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Figure 2: Model comparison using prediction error curves. Clin-
ical model used age, histology, and podoplanin and deltaNp63
expression as predictors. The SICA, SCAD, and Lasso used selected
microarray data as well as age, histology, and podoplanin and
deltaNp63 expression as predictors.

4. Discussion

Due to the low observations for microarray data, only a small
number of influential genes can reliably be identified [20].
Therefore, fitting sparse models with only a few nonzero
coefficients is interesting [20].

In this study, the performance of three sparse variable
selection techniques was investigated based on an additive
hazards model for survival data, in the presence of high-
dimensional covariates. It was indicated that, based on AUC
criterion, Lasso penalty resulted in higher capability of
prediction than other methods. The vast majority of genes
selected by Lasso approach had frequency greater than 90
percent indicating the stability of the selected gene in this
approach. In a study conducted by Ma and Huang [13] the
high-dimensional survival time modeled using the additive
hazards model. Their results, based on two real data sets,
showed appropriate performance of Lasso. Also, in a study
conducted by Lin and Lv [4] performance of Lasso in an
additive hazards model was reasonable.

Although Lasso performs shrinkage and variable selec-
tion simultaneously for better prediction and model inter-
pretation, if there is a group of variables among which the
pairwise correlations are very high, then the LASSO tends
to arbitrarily select only one variable from the group [21].
This restriction might lead to some problems in the analysis
of gene expression data where identification of an entire set
of correlated genes may lead to an improved understanding
of the biological pathway [5]. Superior performance of the
elastic net penalty compared to Lasso was confirmed by
Engler and Li based on a Cox proportional hazards model.
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It is suggested to use the elastic net penalization approach to
deal with high-dimensional low-sample size survival data in
an additive manner.

Despite the lower number of selected genes, the AUC of
the SCAD and SICA was also comparable to the Lasso. On
the other hand, based on the prediction error criterion, the
SCAD showed minimum value indicating better prediction.
Lin and Lv [4] conducted a simulation study to investigate
and to compare some sparse variable selection techniques.
Their results showed that the performance of SCADand SICA
was good with slight superiority of SICA.

In addition, the selected genes exhibited some con-
sistency across three used methods in terms of selecting
common genes. However, variability was observed due to
the low-sample size and ultrahigh-dimensionality as well as
different penalty functions which were utilized by differ-
ent techniques [4]. Reducing the dimensionality by some
techniques including sure independence screening [22] is
suggested before using the regularization methods to gain
more stability. Fan and Lv [22] showed that the prediction
performance of all methods tends to improve.

Based on the AUC, three genes were diagnosed as the
most effective genes on OPL patients’ survival. Accordingly,
these genes can predict the survival time of the patients
with OPL, if they are taken into account simultaneously in
an additive hazards model. The expression of genes 8126931,
8120206, and 7897663 can decrease the survival time.

Saintigny et al. [3] conducted a study on the same dataset
using a boosting approach which is also a sparse technique.
They utilized Cox proportional hazards model and identified
a small cluster of genes expression. However, due to the
sparseness of utilized techniques, there is only a small overlap
with the present study, with only one common microarray
feature (8095441). Also the performance of boosting based
on AUC (AUC = 0.95) was comparable with three methods
used in the present study. However, based on prediction error
curve the performance of SCAD was superior. It is suggested
that simulation studies are conducted to further assessment of
the performance of these techniques as well as different data
sets.

One important restriction in the present study was that
gene expression data were not identified for a large part
of the dataset. Eliminating this part of dataset may result
in selection bias in the present study’s result. Besides, we
could not assess the biological mechanisms and the effect of
the selected genes on the pathogenesis or progress of OPL;
therefore, it is suggested that the pathogenic effect of reported
genes is evaluated in the future studies.

The present study introduced a new set of influential
microarray features in predicting OPL patients’ survival from
a different perspective of the proportional hazards. According
to the result of the present study, despite the small number
of selected genes three methods of Lasso, SCAD, and SICA
showed reasonable performance in additive manner and
the selected genes improved prediction performance over a
purely clinical model.

The additive risk models and used variable selection
approaches provide a useful alternative to existing dimension
reduction techniques based on Cox’s model for survival data

with high-dimensional covariates. The performance of the
different models and dimension reduction techniques are
data dependent with no method dominating the others [23].
Comprehensive simulation studies and data analysis will be
required to draw more definitive conclusions.

5. Conclusion

The present study indicated that three feature selection
approaches of the Lasso, SCAD, and SICA performed rea-
sonably well in handling high-dimensional time-to-event
data corresponding to OPL patients based on additive risk.
However, the SICA selected smaller number of genes than the
Lasso and SCAD. Furthermore, the selected genes by these
methods improved the prediction of purely clinical model
and can satisfactorily predict survival.
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