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Active matter, comprising many active agents interacting and moving in fluids or more complex environments, is a commonly
occurring state of matter in biological and physical systems. By its very nature, active matter systems exist in nonequilibrium
states. In this paper, the active agents are small Janus colloidal particles that use chemical energy provided by chemical reactions
occurring on their surfaces for propulsion through a diffusiophoretic mechanism. As a result of interactions among these
colloids, either directly or through fluid velocity and concentration fields, they may act collectively to form structures such as
dynamic clusters. A general nonequilibrium thermodynamics framework for the description of such systems is presented that
accounts for both self-diffusiophoresis and diffusiophoresis due to external concentration gradients, and is consistent with
microreversibility. It predicts the existence of a reciprocal effect of diffusiophoresis back onto the reaction rate for the entire
collection of colloids in the system, as well as the existence of a clustering instability that leads to nonequilibrium

inhomogeneous system states.

1. Introduction

Active matter is composed of motile entities or agents inter-
acting with each other either directly or through the velocity
and concentration fields of the medium in which they move.
Such interactions lead to collective dynamics giving rise to
states of matter that may differ from those in equilibrium sys-
tems. The study of such collective behavior presents chal-
lenges and is currently a topic of considerable scientific
interest. Systems with many complex agents can be investi-
gated in different ways. One way is to describe collective
dynamics at the macroscale in terms of fields representing
the distribution of the agents across the system. These fields
are ruled by partial differential equations that are established
using general symmetries and experimental observations.
Another approach is to model active matter as being com-
posed of active particles moving in space according to spe-
cific rules that are postulated on the basis of empirical
considerations.

Both of these approaches have been used to explore the
origins and types of collective dynamics that can be found
in active matter systems, and research on this topic ranges
from studies of simple active particle models, often satisfying

minimal rules, to suspensions of more complex active syn-
thetic or biological agents [1-11]. The collective behavior in
systems where the active agents are chemically propelled col-
loids, the subject of this paper, has also been the topic of
experimental and theoretical research [12-25].

Systems containing colloidal particles are governed by
physicochemical laws, so that their time evolution can be
understood from first principles using statistical-mechanical
methods. This approach was pioneered by Einstein [26]
and Smoluchowski [27-29] at the beginning of the twentieth
century and systematically developed since then for passive
colloidal particles [30-33]. In active matter, the colloidal par-
ticles are propelled with energy supplied by the surrounding
solution, so that the description should be extended to
include the molecular concentrations of fuel and product
powering their motion, in addition to the velocity field of
the fluid. Through such an approach, active matter can be
described from the scale of a single colloidal motor moving
in the surrounding fluid, up to the macroscale where many
colloidal motors generate collective motion by interaction.
At the macroscale, collective dynamics is described in terms
of the distribution function giving the orientation as well as
the position of the colloidal motors. This statistical-


https://orcid.org/0000-0003-3804-2110
https://doi.org/10.34133/2020/9739231

mechanical approach has the advantage that the parameters
characterizing active matter at the macroscale can be
deduced from the microscopic level of description. The
knowledge of these parameters in terms of the properties of
materials composing the colloidal motors and the surround-
ing solution is fundamental for engineering active systems.

The present paper contributes to the statistical-
mechanical and nonequilibrium thermodynamic approaches
for active matter systems [34-42], and considers systems
whose active agents are Janus colloids with catalytic and non-
catalytic faces moving by diffusiophoresis generated by
chemical reactions taking place on their catalytic faces or
caps [43, 44, 40]. Because of diffusiophoresis, the velocity
and concentration fields are coupled together in the fluid
around the Janus particle [45]. We start from the calculation
of the diffusiophoretic force and torque on a single Janus par-
ticle moving in a fluid in the presence of molecular species
corresponding to the fuel and the product of the reaction tak-
ing place on its catalytic surface. The concentrations of these
molecular species may develop gradients on large scales
under nonequilibrium conditions, and these gradients should
be included in the calculation of the force and torque. The
resulting diffusiophoretic force and torque enter the coupled
Langevin equations ruling the displacement, rotation, and
overall reaction of a single active particle.

Next, the evolution equation is established for the distri-
bution function of the ensemble of active particles in a dilute
colloidal solution. In order to be consistent with microrever-
sibility, the principles of nonequilibrium thermodynamics
are used to relate the thermodynamic forces or affinities to
the current densities with linear response coeflicients satisfy-
ing Onsager’s reciprocal relations [46-53]. This method
allows us to obtain all the possible couplings compatible with
microreversibility, including a priori unexpected reciprocal
effects. Moreover, this method provides an expression for
the entropy production rate density for active matter in
agreement with the second law of thermodynamics and
including the contribution of the reaction powering activity.
Through this procedure, macroscopic evolution equations
are obtained that govern the collective dynamics of colloidal
motors coupled to the molecular concentrations of fuel and
product. These equations can be shown to generate the recip-
rocal effect of diffusiophoresis back onto the reaction rate
that has been obtained previously for a single particle
[39, 40], but now at the macroscale. Furthermore, pattern
formation due to a clustering instability manifests itself
under nonequilibrium conditions induced by a bulk reac-
tion replenishing the solution with fuel.

The paper is organized as follows. Section 2 is devoted to
the dynamics of a single colloidal motor. The force and tor-
que due to diffusiophoresis are deduced by solving the diffu-
sion equations for the molecular concentrations coupled to
the Navier-Stokes equations for the fluid velocity, including
the contributions of concentration gradients at large dis-
tances from the particle. These contributions were neglected
previously [39, 40] and are calculated in detail here. In
Section 3, the diffusiophoretic force and torque obtained in
Section 2 are incorporated into the evolution equation for
the distribution function describing the ensemble of colloidal
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FIGURE 1: Schematic representation of a Janus particle with its
catalytic (C) and noncatalytic (N) hemispheres where the surface
reaction (1) takes place between fuel A and product B supplied by
the solution surrounding the particle. The particle is also subjected
to some external force F,, and torque T,,. The position of its
center of mass is R, and u is the unit vector giving its orientation
and pointing in the direction of the catalytic hemisphere.

motors, and the entropy production rate density is explicitly
obtained. Two implications of these results are presented in
Sections 4 and 5. First, the reciprocal effect due to the diffu-
siophoretic coupling of an external force and torque back
onto the reaction rate is recovered, now at the level of the col-
lective dynamics. Second, a clustering instability leading to
pattern formation is shown to manifest itself. The conclu-
sions of the research are given in Section 6. The appendices
provide additional details of the calculations.

2. Diffusiophoresis and Colloidal Motors

This section describes the motion of a single spherical Janus
colloidal motor of radius R that is propelled by self-
diffusiophoresis generated by a reversible reaction,

A+C = B+G, (1)

K_

with rate constants «, taking place on its catalytic surface, as
depicted in Figure 1. In this reaction, A is the fuel and B the
product, which are present in the solution surrounding the
particle. Moreover, the concentrations of the A and B molec-
ular species are assumed to have gradients g, with k= A, B at
large distances from the particle that also contribute to
motion by diffusiophoresis; thus, the motion of the particle
is determined by processes in the fluid surrounding the
particle.

2.1. Chemohydrodynamics around a Colloidal Motor. In
order to determine the force and the torque due to diffusio-
phoresis, as well as the overall reaction rate, the velocity of
the fluid and the concentrations of fuel A and product B
should be obtained by solving the Navier-Stokes equations
for the fluid velocity v=vg,q coupled to the advection-
diffusion equations for the molecular concentrations ¢; with
k=A, B:

p(0,v +v-Vv)==Vp+nV, (2)
Vv =0, (3)
atCk +v- VCk = Dkvzck, (4)
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where p is the constant mass density (the fluid being assumed
to be incompressible), p the hydrostatic pressure, # the shear
viscosity, and D, the molecular diffusivity of species k.

The coupling between the velocity and concentration
fields is established with the boundary conditions [40, 54]

n- (V - vsolid)R = 0’ (5)

1, - (V - vsolid)R =1,- lb(VV)s - Z kaCk] > (6)
k R

Dy(n-Vep) g =—vi(i,ca = K Cg)ps (7)

where # is the unit vector normal to the solid surface, 1, =
1-nn, b is the slip length, (Vv)° = (Vv+VvT), T denotes
the transpose, b, is the diffusiophoretic coefficient of species
k coupling the velocity field to the corresponding concentra-
tion field because of different interactions between the solid
surface with the molecules of different species. The velocity
field inside the solid particle is given by v =V +Q x
(r—R) in terms of the translational and angular velocities
of the particle, respectively, denoted by V and Q, and
position R of the center of mass of the particle. Equations
(5) and (6) are the boundary conditions on the compo-
nents of the velocity field that are, respectively, normal
and tangential to the interface 2(¢), which is located on
the sphere |- R||=R. The last equation, i.e., equation
(7) is the boundary condition for the two reacting species
k= A, B, where v, is the stoichiometric coefficient of species
k in the reaction (v, = -1 and vz = +1), and «, are the for-
ward and reverse surface rate constants per unit area.

The velocity field is assumed to vanish at large distances
from the particle, so that the fluid is at rest except in the
vicinity of the colloid. With the aim of obtaining mean-field
equations for a dilute suspension of active particles, we also
assume that the concentration fields can have nonvanishing
gradients on large spatial scales. Accordingly, the concentra-
tion gradients (Vc,),, = g, are taken to exist at large dis-
tances from the colloidal particle.

We suppose that the diffusiophoretic coeflicients take the
values b}, and b} on the catalytic and noncatalytic hemi-
spheres, respectively, while the surface rate constants per unit
area take positive values « on the catalytic hemisphere and
vanish on the noncatalytic hemisphere, 7} = 0. Using spheri-
cal coordinates (6, ¢) with polar angle 8 defined with respect
to the axis of the cylindrical symmetry of the Janus particle,
we have

bi(6,9) = Y bH'(6),

h=c,n

k.(6:9)= ). KiH'(0),

h=c,n

(8)

where H"(6) denotes the Heaviside function such that
H"(0) =1 on hemisphere & and is zero otherwise. The cat-
alytic hemisphere is taken as 0 <0 < (/2), and the nonca-
talytic hemisphere as (7/2) <0 <.

Solving equations (2)-(4) with the boundary conditions
(5)-(7), the velocity and concentration fields can be obtained
in the vicinity of the colloidal motor [45, 40, 41]. Accord-
ingly, the force and the torque exerted by the fluid on the
motor, as well as the overall reaction rate at its catalytic sur-
face, are given by the following surface integrals at the fluid-
colloid interface 2(t),

F= —J P.ndz,
20

T=—. r—R)x (P-n)dX,
Jﬂ; )% (P) ©)

W=J (x, cq —K_cp)dZ,
20

where P = p1 —5(Vv)® is the pressure tensor of the fluid. The
fluctuating contributions from thermal noise can also be
included (40, 41].

2.2. Coupled Langevin Equations for the Motor. The orienta-
tion of the Janus particle is described by the unit vector u
attached to the axis of the cylindrical symmetry of the Janus
particle and pointing towards the catalytic hemisphere.
Accordingly, the displacement and rotation of the particle
are ruled by

(10)

in terms of the translational and rotational velocities. These
velocities, as well as the number N of reactive events taking
place on the particle, are governed by the following coupled
Langevin equations [39, 40, 41]:

av

ME =—y,V+ F + Fo + Fy(t), (11)
dQ

I- E :_yrQ+Td+Text+Tfl(t)’ (12)
dN
E = Wrxn + Wd + Wfl(t)’ (13)

where M and I denote the mass and inertia tensor of the
motor, y,=6mnR(1+ (2b/R))/(1+ (3b/R)) is the transla-
tional friction coefficient, y, = 87nR*/(1 + (3b/R)) the rota-
tional friction coeflicient, F; and T, the diffusiophoretic
force and torque, F,, and T, the external force and torque
exerted on the particle, while F,(t) and T';(t) are the contri-
butions to the force and torque due to thermal fluctuations.
The overall net reaction rate is W,,,,, W, is the reciprocal
contribution of diffusiophoresis back onto the reaction rate,
and W(t) is the fluctuating reaction rate. If the Janus parti-
cle has a magnetic dipole y and is subjected to an external
magnetic field B, then the external torque would be given



by T, =uuxB. In the overdamped regime, the coupled
Langevin equations are obtained by neglecting the inertial
terms in equations (11) and (12).

Solving the Navier-Stokes equations (2) and (3) coupled
to equation (4) for molecular concentrations with the bound-
ary conditions (5)-(7), the force and the torque exerted on a
spherical particle of radius R in a fluid with shear viscosity #
and the overall net reaction rate are given by [40]

6rMR
Fa= 13 1+ (3b/R) Zb" Ve, (14)
12nmR - s
Ta= 1 (b 20 % Ve =
W, = 4Rk, c Kkcg’, (16)

expressed in terms of the surface average

() = % J (+),_gd cos Ode. (17)

The expressions (14) and (15) find their origin in the gen-
eralization of Faxén’s theorem to a sphere moving in a time-
dependent velocity field [55, 56]. When writing these equa-
tions, we have taken into account the possibility that the dif-
fusiophoretic coefficients b, and the surface rate constants «,
may be nonuniform on the particle surface.

2.3. Motion in Molecular Concentration Gradients. If molec-
ular diffusion is fast enough so that the concentration fields
adopt stationary profiles around the catalytic particle in the
concentration gradients g,, the diffusiophoretic translational
and rotational velocities can be written as follows (see
Appendix A):

F
v, = y_d =Vsdu+2(fk1+5kQu)'!]k’ (18)
t k
Ty
r k

where the parameters &, €, and A, are given in equations
(A.35)-(A.40) in terms of the diffusiophoretic coefficients
bz, the rate constants per unit area 5, the slip length b, the
molecular diffusivities D,, and the geometry of the Janus par-
ticle. The 3 x 3 identity matrix is 1, while

Quzuu—%l. (20)

The self-diffusiophoretic velocity, expressed in terms of
the molecular concentrations ¢, extrapolated to the center
of the particle, is

Va= ZCkEk =¢(ricy — kicp), (21)
x
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since the parameters {; may be written in the forms {4 = ¢«
and {5 = —ck° (see Appendix A, equations (A.33)-(A.34).

In the absence of a reaction, we recover the diffusiophore-
tic velocities given in Refs. [57, 58]:

) b+ b}
V= ngogk with &, = m»
' (22)

. 9 e
Q=) At x g with Ay = - (b~ b).
k

Moreover, if the diffusiophoretic coefficients are the same
on both hemispheres b}, = by, the angular velocity is equal to
zero, Q;=0.

In the presence of a reaction, but without gradients
(g, =0), we have «c, # k“cp and the linear velocity reduces
to the contribution of self-diffusiophoresis, V; = V ;u, char-
acterizing the activity of the Janus particle.

The overall reaction rate can be written as follows:

Wrxn = k+EA - k—EB + @ (k+gA - kng) U (23)
in terms of rate constants k, = I'c$ and a parameter @ = O(R)
given in equation (A.45). In the absence of the concentration
gradients, we recover the expression obtained in Ref. [40]. In
the presence of the concentration gradients g,, there is an
extra contribution depending on the direction u of the Janus
particle. However, this last term is normally negligible
because we typically have R| g, || <c; for micrometric particles
and macroscopic gradients of molecular concentrations.

We note that both the self-diffusiophoretic velocity
(21) and the leading term of the reaction rate (23) are
proportional to each other. Their ratio defines the self-
diffusiophoretic parameter y which was introduced in
Refs. [39, 40],

Vsd

G
=S 24
kic,—kcy T (24)

XE

where the last equality was obtained using k, = I'«S.

3. Active Suspension of Colloidal Motors

3.1. Onsager’s Reciprocal Relations. We now show that Onsa-
ger’s principle of nonequilibrium thermodynamics [46-53]
can be used to establish coupled diffusion-reaction equations
of motion for active matter that are consistent with microre-
versibility. According to Onsager’s principle, currents are
related to thermodynamic forces (or affinities) by

Jo= Y LogAP, (25)
B

where the linear response coefficients satisfy the Onsager
reciprocal relations,

szﬁ = Lﬁzx’ (26)
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if the affinities are even under time reversal. The thermody-
namic entropy production rate density is given by

o =ky ) J A% =kg ) LgA"AF 20, (27)
a (xﬁ

where kj is Boltzmann’s constant.

3.2. Mean-Field Equations for the Active Suspension. The sys-
tem we consider is a dilute solution containing the reactive
molecular A and B species together with colloidal motors C
in an inert solvent S. The motors are spherical Janus particles
and, as described in Section 2, have hemispherical catalytic
surfaces where the reaction A = B takes place. Moreover,
we suppose that the solution is globally at rest, so that the
velocity field is equal to zero on scales larger than the size
of colloids. The solution is described at the macroscale in
terms of the molecular densities #,(r, ) and ng(r, t), as well
as the distribution function of the colloidal motors, f(r, u, t),
where 1= (x,y,z) is the position and u = (sin 6 cos ¢, sin 0
sin ¢, cos 0) is the unit vector giving the orientation of the
Janus particles (expressed in spherical coordinates in the lab-
oratory frame). The distribution function is defined as

frun= Y O-rou- ) (9)

where {r,, u,-}ficl are the positions and orientational unit vec-
tors of the colloidal motors. For a dilute suspension, the evo-
lution equation of this distribution function can be deduced
from the Fokker-Planck equation for the probability that a
single colloidal motor is located at the position r with the ori-
entation u [39, 40, 41]. Once, this distribution function is
known, we can obtain the successive moments of u:

ne(r,t)= | f(rout)du, (29)
p(r,t)= |uf(r,u, t)dzu, (30)
q(r.t)= | Qf(r u, t)dzu, (31)

where d*u = d cos 0dg, n is the density or concentration of
colloidal motors, p is the polar order parameter or polarization
of the colloidal motors, and g is the traceless order parameter
analogous to that for apolar nematic liquid crystals expressed
in terms of the tensor (20) and, thus, satisfies tr(g) = 0.

At the macroscale, the reaction is

k+
A+C<k:>B+C, (32)

with the rate constants k,. For the colloidal suspension
treated here, the reaction should be described by a reaction
rate density w that is proportional to the distribution func-

tion of colloidal motors and determined by the surface reac-
tion taken into account with the boundary conditions (7) in
Section 2.

The mean concentrations of molecular species are
defined by n; = (1 — ¢)¢;, where ¢ = 4R>n /3 is the volume
fraction of the suspension. Their corresponding gradients are
related to those considered in Section 2 by Vu, = (1 -¢)g,
for a dilute enough suspension. The coupled diffusion-
reaction equations for the different species take the following
forms:

om+V-j=viw (k=A4,B), (33)

atf+v'(Vf_DtVf):Drer’ (34)

where j, are the molecular current densities, V is the total
drift velocity obtained by adding the drift velocity due to
the external force V,, = F/y, to the diffusiophoretic veloc-

ity (18) giving

V:Vsdu+z (Ek1+8kQu) 'Vnk+ﬁDtFext’ (35)
k

with the self-diffusiophoretic velocity (equation (21))

Va= ZCk”k =¢(rin, — xing), (36)
x

now expressed in terms of the mean concentrations #,, and
the inverse temperature 8= (k;T)~". In equation (34), D, is
an effective translational diffusion coefficient related to the
effective translational friction coeflicient by Einstein’s for-
mula D, = kzT/y, and D, is an effective rotational diffusion
coeflicient related to the effective rotational friction coefhi-
cient by D, = kzT/y,. Since the shear viscosity increases as
7 =% (1+2.5¢) with the volume fraction ¢ of the suspen-
sion [26, 31], both friction coeflicients y, and y, also increase,
and the diffusion coefficients decrease. In particular, it is

known that D, = DEO)(l —2.1¢) [31]. A similar dependence
on the volume fraction ¢ is expected for the parameters g, &,
& and A, given in Appendix A, since these parameters are
proportional to the diffusiophoretic coefficients b}’ that are
known to be inversely proportional to shear viscosity,

bZ oot [54, 57, 58]. The effects of this dependence
would manifest themselves if the colloidal suspension
became dense enough. Here, such effects are assumed to play
a negligible role.

The Janus particles have a spherical shape so that their
random rotational and translational motions are decoupled.
In this case, the rotational diffusion operator is given by

Lf= ﬁ Og {sin e PU0, (e'BU'fﬂ
+ ﬁaw {e’ﬁUfaq, (eﬁU'fﬂ,

expressed in terms of the rotational energy associated with
the torque exerted by an external magnetic field B on some



magnetic dipole y of the particle [52] and that due to the dif-
fusiophoretic effect, we have the following:

U=-uB-u-vy, (ZAkVnk> U (38)
k

3.3. Translational and Rotational Current Densities. Before
proceeding with nonequilibrium thermodynamics, we need
to identify in equation (34) the current densities associated
with the translational and rotational movements of the col-
loidal motors. The distribution function f(r, u) for colloidal
Janus particles is defined in the five-dimensional space
(x,¥,2,6,¢), where (x,y,z) are the Cartesian coordinates
for the position r and (6, ¢) the spherical coordinates for the
orientation u. Vector calculus is used in these coordinates to
obtain the corresponding gradients and divergences [59].
For the rotational degrees of freedom we have

0 sin%0
(39)

o 1 0
du? =do* + sin“0dg? = gijdq’dqf with (gij) = ( )

The scalar product between a pair of rotational vectors
a, b, € R® is given by a,-b, =¥, 9,9;,a,b}, and the scalar
product of such a vector with itself is denoted a* = a, - 4,. In
spherical coordinates, the rotational gradient and divergence

are given, respectively, by [59]

0pX
grad X = 1 , (40)
sin?0 ¥
. 1 0 . ¢
=__ 41
div, X, Py Oy (X, sin 6) +0, X7. (41)

In the five-dimensional space, the gradient is given by

9.X
VX
grad X= ( d X) with VX = ByX s (42)
ra
grad, ox

and the divergence of a five-dimensional vector, X =
(XpX,)", is

divX =V-X, +div,X,. (43)

Using these notations, equation (34) can be written in the
form of a local conservation law involving the five-

dimensional current density, J. = (j,, j,)", as

o,f +div]-=0,
of c (49)
or 0,f+V.-j, +div,j, =0,
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with translational current density

ji= V= DVf = Vot £Y (Ed + £ Q,) - Vi~ D,(Vf + fBVU,),
k
(45)

where U,(r) =—F,, - r is the translational potential energy
due to the external force F,,,, rotational current density

jr = _DreiﬁUY gradr eﬁU'f :f /\kvnk
(5) =12 )
-grad,u — D, (grad,f — fuB - grad,u),

and their translational and rotational divergences, V-j, and
div,j, =-D,L,.f, where L, is the operator (37).

3.4. Nonequilibrium Thermodynamics of the Active
Suspension. Local thermodynamic equilibrium is assumed
on scales larger than the size of the colloidal motors where
the description by the mean-field equations (33) and (34) is
valid and the fluid is at rest. According to this assumption,
thermodynamic quantities can be locally expressed in
the active suspension in terms of the molecular densities
1 (r, t) and the distribution function f(r, u, t). Furthermore,
we suppose that the system is isothermal and isobaric and the
solution is dilute in the species A, B, and C. The appropriate
thermodynamic potential is thus Gibbs’ free energy given by
the following volume integral of the corresponding density:

G= Jd3r{n5ws+ D (nkq/k+nkkBTln :7k)

k=A,B S
f

4reng

+Jd2u{f1//c+kaTln +fUt(r)—f‘uB-u] }

(47)

where the first term is the contribution from the solvent S of
density ng, the next terms from fuel k = A and product k=B
dilutely dispersed in the solvent [52], and the last terms from
all the orientations u of the colloidal motors moving in the
mechanical potential energies due to the external force F,,
and the external torque exerted by the magnetic field B on
the magnetic dipoles of the colloids. We can thus deduce
the following chemical potentials:

5G kT

P‘s:é—nS:‘//s‘n—S(”AJf”BJf”c)’ (48)
oG n

Mk: é‘_nk :‘l//k +kBT1n n—z (k=A,B)> (49)
8G f

chyzwc+kBTln%+Ut(r)—yB-u. (50)

Here, y, = u) + ky T In (ng/n°), where 4 is the standard
chemical potential of species k and n° =1 mole/liter is the
standard concentration. Since the solution is dilute, we have
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taken the solvent density ng to be essentially uniform in space
and constant in time.

Next, we use the principles of nonequilibrium thermody-
namics in order to express the current densities in terms of
the affinities or thermodynamic forces given in Table 1. For
the reaction (32), the affinity is given by

‘ -

A= k*”A, (51)

rxn k
B

(Mg —pp)=In

Ds]

and the corresponding current density is the rate density w
introduced in equation (33). At chemical equilibrium, we
have A,,, =0, w=0, and k,n, . =k ng.. In the linear
regime close to equilibrium where 81 = n) — n ., the chem-
ical affinity (51) can be approximated as

on,  Ong 1
Arxn = - =
nA,eq nB,eq

(k,6ny —k_Ong), (52)

-

rxn

D (k,ny +k_ng (53)

)eq’

| =

rxn =

is the diffusivity of the reaction taking place on the colloidal
motors [39, 40]. For the diffusion processes of species k, the
affinity associated with the current density j, is given by
Ay =—grad (4, /kgT) in terms of the chemical potential
;. For molecular species, the gradient is tridimensional
in Euclidian space, so that A, =-V(u/kyT)=-n;'Vn,.
For the colloid with chemical potential (50), the affinity
is given by the five-dimensional gradient (42) as

Vf +fBVU
Acz—gradﬁz_l f fﬁ t )
kT f grad f — fBuB - grad, u
(54)

if the magnetic field B is uniform. In this five-dimensional

space, the associated current density J. = (jt’jr)T given by
equations (45) and (46) can thus be written in the follow-
ing form:

Vsdu Ekl + 8kQu
Je=f +f Z
0 k=AB \ A grad,u
D1 0
He
-V —f -grad —=,
( 0 Dr1r> ks T

where 1, is the 2 x 2 identity matrix. In this form, we see
that the first term is related to the reaction affinity since
the self-diftusiophoretic velocity can be written as V ;= y
D,.,A,.,- The next two terms can be related to the affini-
ties of molecular species, and the last term to the affinity
of the colloidal species.

According to the Curie principle, there is no coupling

between processes with different tensorial characters. How-

(55)

ever, the Janus particles have a director given by the unit vec-
tor u and we have adopted a description in terms of the
distribution function f(r, u, t) for the Janus particles. Conse-
quently, it is possible that a vectorial process such as diffusion
may be coupled to a scalar process such as reaction if it is
polarized by the unit vector u. If we introduce the densities
Nc=fA*u for Janus particles having their orientation u
in cells with a size of A’u, along with the associated
current densities,

Jo=TcAu, (56)

we may write a general coupling (25) of the following form:

Arxn
w er LrA LrB LrC -V 1147A
) kgT
Ja | | Lar Laa Lap Lac b
B vl I
JB Ly, Lpy Lpp Lpc kT
J Le, L L L
C ¢r +tca tcB  “cc —grad Hc

(57)

up to possible nonlinear contributions that may be required in
order for the reaction rate to obey the mass-action law. In
equation (57), we have that L,, is 1 x1, L,;1x3, L,-1x5,
Li,3x1, L3 x3, Lic3%5, Le,5%1, L5%3, and Lc5%5
(for k, 1= A, B).

According to Onsager’s reciprocal relations (26), the lin-
ear response coefficients should obey

T
Ly =L,
T
Lc=Ley
Lkl = Lljll; (58)
T
Lec=Lees
Li=LE
kC Ck>

for k= A, B and where T again denotes the transpose.
We assume that the molecular species A and B undergo
Fickian diffusion without cross-diffusion, so that

Ly = Dymdiyl, (59)

and that the reaction rate does not depend on the gradients
Vn, or Vng, whereupon

LrA = LrB =0. (60)

This last assumption consists in neglecting the terms with
the coeflicient @ in equation (23), which is usually justified as
mentioned in Section 2.

The scalar coeflicient associated with the reaction can be
identified as

er :DrxnnC’ (61)
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TaBLE 1: Current densities and corresponding affinities or thermodynamic forces in the active suspension: w is the reaction rate density
introduced in equation (33) corresponding to the affinity (51), j, and j, are the molecular current densities of fuel A and product B, j, is the
translational current density of colloids given by equation (45), j, is the rotational current density of colloids given by equation (46). The
translational and rotational current densities of colloids form the five-dimensional current density (55) according to J. = (j,, j,)". Similarly,
the translational and rotational affinities of colloids form the five-dimensional affinity (54). 8= (k;T)™" denotes the inverse temperature, Wi
the chemical potentials, V = (d,, 0,, 9,) the gradient in Euclidean space, and grad, the rotational gradient (40). We note that colloidal motors

with the given orientation u are considered as so many independent species in the free energy (47), which is expressed by equation (56).

Process Current Affinity Dimension
Reaction w By — ug) 1
Molecular diffusion of fuel ja -V(Bu,) 3
Molecular diffusion of product i -V(Bug) 3
Translational diffusion of colloids e =-V(Buc) 3
Rotational diffusion of colloids Jr —grad, (Buc) 2

and the linear response coefficients L, L, and L in equa-
tion (57) can be determined using the current density (55), as
described in Appendix B. As a consequence of Onsager’s
reciprocal relations, we can conclude that the reaction rate
and the current densities should be given by

w= DrxnnCArxn - XDTXn J u: (Vf +fﬁv Ut)dzu’ (62)

ji=-Dn + j[(fkl +&,Q,) - (Vf +fBVU,)

+ M(grad,u) - (grad, f — fBuB - grad,u)]d’u.

In equation (62), the second term describes the reciprocal
effects of diffusiophoresis back onto reaction. The second term
in equation (63) is due to cross-diffusion between the molecu-
lar and colloidal species due to diffusiophoresis. We see that
the linear response coefficients depend on the unit vector u
in a manner similar to that already shown in Refs. [39, 40].

With respect to standard expressions, the terms involving
the integral fdzu in equation (63) are required in order to
satisty Onsager’s reciprocal relations and for these quantities
to be compatible with microreversibility. However, these
extra terms can be shown to be negligible, although the recip-
rocal terms are not negligible in equations (45) and (46). In
order to show that the extra terms are negligible, we suppose
that the self-diffusiophoretic and diffusiophoretic velocities
take the typical value V; ~ V; ~ 10 um/s [60]. According to
Ref. [58], the molecular gradients used in experiments of dif-
fusiophoresis are of the order of ||V, || ~ 10° mol/m*, so that
diffusiophoretic parameters have the value &, &, ~ 10710 m®
s~ mol™'. Moreover, we have A, ~ &/R, but since ||grad,f||
~ R||Vf]|, the effect of the coeflicients A, is again of the same
order of magnitude as &, and ¢;. Molecular diffusivities typi-
cally have the value D, ~ 10 m?/s, while the translational
diffusion coefficient of a micrometric colloidal particle is of
the order of D, ~107"* m*/s. The molecular concentrations
used in experiments on self-diffusiophoresis are about 7, ~
10% mol/m?, while the density of micrometric colloidal parti-
cles is approximately n ~ 10 m™ ~ 10"°mol/m?, or lower.
If we assume that the molecular and colloidal gradients take

(63)

comparable values ||Vn.||/n; ~||Vf]||/f, the ratio between
the extra term and the standard molecular diffusion term in
equation (63) is given by

mENVA_ &S g o
Dk||Vnk|| Dk

which shows that the second term in equation (63) is negligi-
ble. Accordingly, the standard Fickian expressions jj = —D
Vi, are very well justified for the molecular current densities.
In the presence of colloidal motors, the expressions compat-
ible with microreversibility are nevertheless given by equa-
tions (62) and (63). In contrast, the terms associated with
the diffusiophoretic parameters in the colloidal current den-
sity (55) have effects that are not negligible.

The conclusion from these considerations is that active
matter can be described as generalized diffusion-reaction
processes in complete compatibility with microreversibility
and Onsager’s reciprocal relations. In this way, the program
of nonequilibrium thermodynamics is complete and applica-
tion of equation (27) gives the following expression for the
thermodynamic entropy production rate density:

ky'o, =D, ,ncA?

rxn rxn

(V)
+ D, ——
k:ZA:B ¢ Mk

_2D, A, Ju (Vf + fBVU,)dPu - 2J

' [ > Ve (&l +£kQu)1 -(Vf +fBVU,)d’u

k=A,B

-zJ ( Y Akwk> -(gradru)]
| \ka.8

- (grad,f — fBuB - grad, u)du

+D, ! (Vf +fBVU,)*d*u

+D

r

(grad,f — fBuB - grad,u)*d*u > 0.

| = S

(65)
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The second law is satisfied if D, > y*D,.,, >0, DD, >
nem& >0, DD, > nemer >0, and DD, > neml >0,
which is expected.

The results derived in this section provide the basis for
the analysis of collective effects in suspensions of active Janus
particles. In Sections 4 and 5, we describe two collective phe-
nomena that emerge from this theoretical framework: the
effect of an external force and torque on the reaction rate,
and a clustering instability.

4. Effect of External Force and Torque

Using a thermodynamic formulation that is consistent with
microreversibility, we showed earlier [39-41, 61] how the
application of an external force and torque on a single colloi-
dal motor can change the reaction rate on its surface and
even lead to a net production of fuel rather than product.
Now we show how these considerations can be extended to
a suspension of such motors.

4.1. Local Evolution Equations. We suppose that the colloidal
motors are subjected to an external force F_, = F_1, and an
external torque induced by an external magnetic field B = B1,
exerted on the magnetic moment p of the colloidal particles,
both oriented in the z-direction. If BuB is large enough, the

distribution function is given by

f(ryut)=n(r,t) Amﬁt}fﬁyB exp (fuBcos ),  (66)

so that p(r,t)=1,(u,)nc(r,t) with (u,)=coth fuB -
(BuB)™". Moreover, the terms with the coefficients &, &,
and A, are assumed to be negligible in equation (34). If the
concentrations are uniform in the x- and y-directions, the
process is ruled by

Oync +0,[x(u,) (kyny —k_ng)nc —Dy(0,n¢c = BFeync)] =0,
(67)

obtained by integrating equation (34) over the orientation u.
This equation for n is coupled to equation (33) with the
Fickian molecular current densities j, =~-D,Vn;, and the
local reaction rate

w= (k+nA - k—nB)nC - X<u2>Drxn (az”c - ﬁFextnC)’ (68)

given by equation (62), as predicted by Onsager’s reciprocal
relations.

4.2. Global Evolution Equations. Defining the mean value of
the z-coordinate for the colloidal motors as

_ jzncd3r

_j o (69)
ned’r

(@)

and using equation (67), we obtain the evolution equation,

dt =X<uz>wrxn +ﬁDtFext’ (70)
with mean reaction rate,

[ ngncd’r

T [ned’r .

3

nyned'r
3

[ned'r

wy =k, (1)

Furthermore, integrating equation (33) with k=B over
the position r with the local rate (68), we get the total reaction
rate

dern

_dNg  dN,
dt— dt ~ dr

- dt Nc(wrxn + X<uz>DrxnﬁFext)’ (72)

where N = jncd3r is the total number of colloidal motors
in the suspension. Equations (70) and (72) have precisely
the same structure as for a single colloidal motor. However,
one should note that the mean reaction rate in equation
(71) contains spatial correlations between the solute and col-
loid concentration fields. Given the structure of the equa-
tions, the results obtained in Refs. [39, 40] also apply here.
In particular, there exists a regime where the entire ensemble
of colloidal motors is propelled and carries out work against
the external force by consuming fuel. In addition, there is also
a regime where fuel is synthesized if the external force that
opposes motion is sufficiently large to reverse the reaction
A — B. The efficiencies of these processes are given by the
same expressions as in Refs. [39, 40].

5. Clustering Instability and Pattern Formation

The equations of motion developed in Section 3 that describe
a dilute suspension of colloidal motors moving in a dilute
solution of fuel A and product B molecular species will be
shown in this section to lead to a clustering instability. This
instability can be described by the mean-field equations
obtained above for the concentrations of the molecular spe-
cies and the distribution function of the colloidal motors in
the absence of an external force and torque (F,, =0 and
B=0). A number of other mean-field descriptions that
predict instabilities and the formation of various clustering
states of collections of diffusiophoretic colloidal particles
have appeared in literature [62, 18, 6, 19, 20], and use
techniques involving coupled moment equations similar
to those adopted in this section.

5.1. Molecular Diffusion and Reaction. The equation for the
colloidal motors is coupled to the reaction-diffusion equa-
tions for the molecular species A and B, accounting for the
fact that the reaction A = B occurs both at the surface of
the catalytic hemisphere of the colloids and in the bulk:

o,ny = DkVan + ViWiops (73)
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where the total reaction rate density is given by

Wor = (kg =k np)nc +kyny —k_ynp. (74)

The system is driven out of equilibrium if k, /k_ # k,,/k_,
[61].

5.2. Colloidal Density and Polarization. If the second moment
(31) as well as higher moments are assumed to be negligible,
the evolution equations for the density of colloidal motors
(29) and the polarization (30) are given by

0,nc+V - <HCZEkVnk + Vsdp> =D,V’n, (75)
k

1 1
0,p+V - (pZEkVnk> + 5V(Vsdnc) +24:V (ZskVnkp>
k k

2
= Dtvzp - 2D1'p + 5 nCZAkVnk,
k

(76)

in terms of the fourth-order tensor A with the following com-
ponents: Ay, =68, + 0,0, — (2/3)8,,8,,,-

If D, is large enough so that 2D,p dominates the other
terms involving p in equation (76), we can neglect these other

terms and this equation can be inverted to obtain

p

~ 5 —VSanC + ncz (ZAk - Ck)Vnk] s (77)
r k

under which circumstances the field p is driven by the gradi-
ents of the colloid and species densities. Substituting this
result into equation (75) for the density n of colloidal parti-
cles, we find

r

V, eff
0nc+V - {”CZ {fk + 6Dd (2A - (k)] Y D§ )Vnc} =0,
k

(78)
with the effective diffusion coefficient
V2
D =p,+ s, (79)
6D,

expressing the enhancement of diffusivity due to the self-
diffusiophoretic activity [17].

5.3. Coupled Colloidal and Molecular Diffusion-Reaction
Equations. In the following, we suppose that the diffusion
coefficient is the same for both molecular species: D=D, =
Dy. Consequently, n, = n, + ng remains uniform during the
time evolution if initially so. Therefore, ny=ny—n, is
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known and only n, needs to be determined. Introducing
the notations

aA="1,,
. (80)
C=1g,

we have the following coupled equations describing the sys-
tem:

0,a=DVia-W,, (81)
Wit = c(Ka—K,) + Kya - Ky, (82)
0,c=V- [(D,+71,V.)Ve— (§+0V 4)cVa], (83)
Va=Ca=V, (84)
with
K=k, +k_,
K, =k_ny,
K,=k, +k_,,
Ky =k np
7,=(6D,)7",
(6D;) (85)
§=8,-&
A=A, —Ap,

=04 = Cp=g(x +x5),
Vo =-Cpny =g ny,

o=1,(2A-1).

Moreover, consistency with the existence of equilibrium
requires that (/K = V /K, =¢/I' = y is equal to the diffusio-
phoretic parameter (24) that is the ratio between the self-
diffusiophoretic velocity (21) and the leading term of the
overall reaction rate (23).

For this system, there exists a uniform nonequilibrium
steady state, where ¢ keeps its initial uniform value ¢, and
the molecular density is also uniform at the value

Ky +K
ay= 20T S0 (86)
K+K,
in order to satisfy the stationary condition W, = 0. For this
molecular concentration a=a,, we notice that the rate
Ka—-K, of the catalytic reaction on the colloids is not

vanishing under the nonequilibrium condition k,/k_#
kylk_,.

5.4. Pattern Formation. To analyze the stability of this homo-
geneous steady state, for simplicity we consider a one-
dimensional system where the fields a and ¢ only depend
on the variable z. Accordingly, the gradients V can be
replaced by partial derivatives 0, in equations (81) and
(83). The set of equations (81)-(84) is then numerically
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FIGURE 2: Nonequilibrium steady state of the one-dimensional system for the parameter values (87): (a) with K,, = 2; (b) with K,;, =2.5.

integrated by spatial discretization over the grid z=iAz
with i=1,2, -, M with Az=0.1 and M =500. The integra-
tion is performed with a Runge-Kutta algorithm of varying
order 4-5 over a long enough time interval to reach a steady
state. Figure 2 shows numerical results for the parameter
values:

=1,
n, =10,
D=1,
D, =1,
T,=1,
= (87)
o=-2,
V,=0.5,
{=0.1,
K=0.2,
K,=1,
K,=0.3,

and increasing values of K,,. We observe the formation of
clusters of colloidal motors in regions where the fuel A is
depleted, as expected.

5.5. Linear Analysis of the Clustering Instability. The thresh-
old of this clustering instability can be found from a linear
stability analysis. Linearizing the equations around the uni-
form steady state, we find that the perturbations obey

da DJ2-K
3, -
o -po;

—w

da
Dgeff) aﬁ Sc ?

(88)

with
K= oK +K,,
w = Ka, - K,
p=c(§+aVy) (89)
D" =D, +1,V?,
Va=Cay—-V,.

Supposing that the perturbations behave as 8a, §c ~ exp
(iqz + st), we obtain the dispersion relations

suq) =3 [K+ (D+ D) ]

1 ~
+ 3 \/{K + (D - Dgeff)>q2} g 4pwq?.

These dispersion relations are depicted in Figures 3(a)-
3(c), respectively, below, at, and beyond the threshold. The
leading dispersion relation is associated with the conserved
unstable mode of the colloidal motors because s,(0) =0.
The subleading dispersion relation is associated with the
reactive mode of the molecular species because s_(0) = —K.
We notice that, since K > 0, there is no possibility for a Hopf
bifurcation to uniform oscillatory behavior, which would be
the case if the eigenvalues s, (0) were complex. We also note
that there is no wavelength selection at the level of linear sta-
bility analysis in this clustering instability.

Therefore, instability manifests itself if

(90)

pw + I~<D£eff) <0,

(91)

and the threshold is given by the condition

(eff)

pw+ KD, =0, (92)

which leads to the value K,, = 1.89817 for the parameter
values (87).
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Ky=3 S s

) -1 0 1 \\2 1
[9)

FiGure 3: Dispersion relations of linear stability analysis for K,, =1, K,, = 1.89817, and K, = 3, respectively, below, at, and beyond the
threshold of clustering instability. The dispersion relations are obtained in (a)-(c) with the approximation (90), and in (d)-(f) by
truncating equation (C.5) into a 5 x 5 matrix. The other parameter values are given in equation (87) and e = 1.

The dispersion relations can also be obtained from the
evolution equation (34) for the distribution function. Sup-
posing that f = f(z,0) and a = a(z), we have

Dr
sin 6

0.f +0,(Vyf —D,0,f) = Og(sin 80gyf) +2A cos 0f0,,a,

(93)
where

V4, =V cos 0+ {E + s(cosze - ;)} 0,4, (94)

with e =¢, — 5. Equation (93) is coupled to the diffusion-
reaction equation (81) for the concentration field a with

c= [fdu.

The linear stability analysis can be carried out for equa-
tion (93) coupled to equation (81) with the rate (82) in a sim-
ilar manner to that for equations (81)-(84). This analysis is
presented in Appendix C. The dispersion relations can be
computed by truncating the infinite matrix (C.5) in order
to obtain the eigenvalues as a function of the wave num-
ber g. The result converges to the dispersion relations
shown in Figures 3(d)-3(f) below, at, and beyond the
threshold, for the parameter values (87) and e€=1. The
convergence occurs faster for the leading dispersion rela-
tion than for the subleading ones. For the chosen param-
eter values, we can see that the approximation where we
suppose that the vector field p is driven by the gradients
(which corresponds to truncating to a 2 x 2 matrix) consti-
tutes a good approximation to describe the instability.
Indeed, the leading dispersion relation of Figure 3(b) is
already very close to that in Figure 3(e).

The conclusion is that equations (81)-(84) provide a
robust description of the clustering instability and of the
emerging patterns.
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6. Conclusion

Autonomous motion is not possible at equilibrium and active
matter relies on the presence of nonequilibrium constraints
to drive the system out of equilibrium. As a result the theoret-
ical formulations provided by nonequilibrium thermody-
namics and statistical mechanics are a natural starting point
for the description of such systems.

Many of the active matter systems currently under study
involve active agents such as molecular machines or self-
propelled colloidal particles with linear dimensions ranging
from tens of nanometers to micrometers. The transition from
microscopic to macroscopic description for fluids containing
active agents of such sizes takes place in the upper range of
this scale. Suspensions of active colloidal particles are inter-
esting in this connection since, as described earlier in this
paper, the colloidal particles are large compared to the mole-
cules of the medium in which they reside. The dynamics of
the suspension can then be described by considering the
equations for the positions, velocities, and orientations of
the colloidal particles in the medium, or through field equa-
tions that describe the densities of these particles.

Nonequilibrium thermodynamics provides a set of prin-
ciples that these systems must obey. Most important among
these is microreversibility that stems from the basic time
reversal character of the microscopic dynamics. On the mac-
roscale, this principle manifests itself in Onsager’s reciprocal
relations that govern what dynamical processes are coupled
and how they are described. For example, for single Janus
particles propelled by a self-diffusiophoretic mechanism,
microreversibility implies the existence of reciprocal effect
where the reaction rate depends on an applied external force
[39-41, 61].

This paper extended the nonequilibrium thermodynam-
ics formulation to the collective dynamics of ensembles of
diffusiophoretic Janus colloids. In particular, we considered
Janus colloids driven by both self-diffusiophoresis arising
from reactions on the motor catalytic surface as well as
motion arising from an external concentration gradient. This
latter contribution is essential for the extension of the theory
to collective motor dynamics. The resulting formulation is
consistent with microreversibility and an expression for the
entropy production is provided. From this general formula-
tion of collective dynamics, one can show that if an external
force and torque are applied to the system, the overall
reaction rate depends on the applied force. In addition, a
stability analysis of the equations governing the collective
behavior predicts the existence of a clustering instability
seen in many experiments of Janus colloids. Such consid-
erations can be extended to ensembles of thermophoretic
Janus colloids [63].

Appendix

A. Force and Torque on a Colloidal Motor

A.1. Stationary Molecular Concentration Fields. We suppose
that molecular diffusivity is large enough so that the concen-
tration fields adopt a quasistationary profile in the vicinity of
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every Janus particle. Accordingly, the concentration fields
should obey the following equations:

Vi, =0,

Dy(0,6,) g = —ViH(0) (K504 — K Cp) s (A1)

(Vck)oo =9

for the two reacting species k = A, B, where g, is the concen-
tration gradient of species k at large distances from the center
of the catalytic particle. In Ref. [40], we considered the special
case where g, =0, so that the concentration fields are uni-
form at large distances. The upper hemisphere is catalytic,
while the lower one is noncatalytic. The axis of the Janus par-
ticle is oriented from the noncatalytic towards the catalytic
hemisphere and taken along the z-axis in the frame of the
particle.
We introduce the fields

@ =¢(Dyc, + Dycy), (A2)
¥ =0 (kcy — K cp), (A.3)
in terms of the characteristic length of the reaction
K€ KE -1
e= <—+ + —‘) . (A.4)
Dy Dy

The fields @ and ¥ have the units of sec!, and the con-
centration fields are recovered from them by

1 ¢ 1
(@W)
D,\Dy ¢

1 (K+ 1 )
g=—|=—D--Y|.
Dy \D, ¢

Similar expressions hold for the concentration gradients
at large distances: g,, gp,» g and gy
The fields (A.2) and (A.3) obey the equations

(A.5)

VD =0,

(0,0), =0,

(VO), = 9o (A.6)
V2Y =0,

(3,9), = U H(O) (V)

(V) =G>

where H¢(0) is the Heaviside function of the catalytic
hemisphere.
The solution of the equations for @ is given by

1 3
®:®5:®0+g®.r[1+5<§)], (A7)
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D, =€(D4cy + Dgcy), (A.8)
which obeys reflective boundary conditions on the sphere
r=R and represents a gradient at large distances. Defining
Da=R/¢ to be the dimensionless Damkohler number of
the reaction on the spherical catalytic particle, the field
YV can be decomposed as

¥ =¥, —Da¥,F, (A.9)
in terms of a field similar to equation (A.8)
VY, =¥,+ 1+ L(RY’
g= %ot gy 7 S\7) P (A.10)
Wy =0 (K5, — K Cp),
and another field F obeying
VF =0,
(¥,)
R(0,F), = H*(0) | Da(F), - v R, (A.11)
0

(VF)_, =0.

In the equations above, the concentrations ¢, may be
considered as their extrapolations to the center of the
Janus particle or the mean concentrations at that position
in a dilute suspension of Janus particles. Similarly, g, may
also be considered as the mean gradients of concentrations
at the location of the Janus particle in a dilute suspension.

A.2. Calculation of the Diffusiophoretic Velocities. The
diffusiophoretic force (14) and torque (15) are thus given
by the following expressions:

6nR
F -
47 1+ (3b/R) |2 { baly

_ s (A.12)
c = c = bB bA
+R(x ¢y — x5 Cp) D, D, 1,-VF |,
and
_ 127amR [3R b % +3R b
d—m > Ya 9a 5 B 9s
(A.13)

by by )
+R(K ¢y —k°Cp) =2 |rx VE |.
Dy Dy

Next, the field F can be expanded in Legendre polyno-
mials. Since it obeys Laplace’s equation and is vanishing at
large distances, we find that
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F(r,0,¢9) = ZalPl cost)) <R> "
1=0
3R 00 R I+1
— b,P)(cosB) [ —
FmGren(l)
( COSP + gwsm(p)
&) I+1
2 Vi)
with
=(M"-A), (A.15)
b= (M"-B), (A-16)
1=(N"-C)p (A17)
1
4= | dep(@), (A.18)
0
B = 1dEP1(f)Pz(E), (A.19)
0
[P ©) P
CI_J d& VRV (A.20)
My =2 ;_+115,l, N DaJOdEPl(E)Plr ©), (A21)

Pl§) P

VIT+ 1) \/1’ (1’ +1).

(A.22)

I+1 !
Ny = 2m8”r + DaJO dé

First, we calculate the force (A.12) in order to obtain the
corresponding velocity V ;. We have that

bynn' = < (bc +b)1,
1 (A.23)
bl, =3 (b + D)1,
and, furthermore,
b VF — l(ycbc +ynbn) g‘[’x
k1 > k k v,
y bl - VE = —l(vcbi +V”b”)gw
2 ¥y
1 Cc1,C nin C1.C NN g‘{/z
bl VF —_ﬁ(“ b+ a"by) — E(ﬁ bi + ") v,
(A.24)
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in terms of the integrals

dA
"= | dOH"(0) sin’0—,
o Jd@ (0) sin 9d6

L, 3 . dB
g= J d0H" (6) sin®6 S5 d (A.25)
h=_ 3\/_ dOH"(6) ( sin 6 cos 9d£ +C|,
do
where
A= Z a;P)(cos 0),
10
B= ) bP(cos 0), (A.26)
1=0

()

=y it

Then, we calculate the torque (A.13) to get the corre-
sponding angular velocity ;. We have that

bin’ = i (bf b,
1,-brxVF = R (865 + 8"b]') Gey
2 ¥y (A.27)
L byr XVE = (6 + 6) 2,

0

1,-byrx VF =0,

with
6" == V2 [aorr () (sin09C +cosoc),  (A28)
4 dao
so that
o S R cpc nypn
birx VF = W(S b +0"bp)ux gy. (A.29)

0

With the following coeflicients associated with diffusio-
phoresis,

v v
Y* D_A - D_B for h=c,n, (A.30)
A B

the diffusiophoretic linear and angular velocities can be
expressed as

15
F, 1 1 _ i}
=_4d___ = ) (Y nyn c _C
V, v, =TT @0 {2(04 +a"Y")(kCy — kS Cp)u
1 (4 n C n
t3 (b +b4)ga+ (bB +by)95
R Cc n Cc (o
TS (Y YY) (K g, — Kogp)
R C n n n C C
- S )Y (B =900 gy~ gy
(A.31)
T 9 C n C n
a= 4= ﬁ[( 2~ by)ux g, + (bg = bp)ux gg
%3 (A.32)
+ Z(SCYC +8"Y"ux (k.g, — K gp)-
By defining the parameters,
CA = cKi)
A33
CB =—cxk’, ( )
RDYLA G o (A.34)
21+ (2b/R)
1 Zh bh =,
A= 3T bRy T
A.35
6 1 Zh bh 4 C ( )
BT 21+ (2bR)
__ R (ﬁ "+ zyh) v (A.36)
T 6 1+(2b/R)
e, = ExS,
6= X, (A.37)
h_ o h\yh
_RL (B )Y (A38)
2 1+(2b/R) ~
AA = M AK
16R (4.39)
9(b5, - bl . '
=2 168 o,
A=2Y sy (A.40)
4 h > .

the linear and angular velocities in equations (A.31) and
(A.32) can be written in the forms given in equations (18)
and (19) in the main text.

A.3. Calculation of the Overall Reaction Rate. Moreover,
we can also calculate the overall reaction rate (16). According
to the boundary condition

D4(3,c1)r (A.41)

= H(0) (ke = xicp)ps
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the reaction rate on the Janus particle is equivalently given by

Wrxn = J DA(arCA)RdZ’ (A42)
r=R

with dX = R*d cos 6dg. The concentration field c, is again
decomposed in terms of @ and ¥. The contributions from
the terms @ =&, and ¥, are vanishing, so that there

remains

Da

sz_Tﬂﬁjﬂwjhﬁl (A.43)

Using the expansion (A.14), we obtain the overall reac-
tion rate (23) with the rate constants

k, = 4nR%ayx,, (A.44)
and the parameter
3Rb
=2, (A.45)
2a,

where the coeflicients a, and b, are given by equations
(A.15) and (A.16) with [=0.

B. Determination of Onsager’s Linear Response
Coefficients

B.1. Rotational Gradient and Divergence. In Euclidean space,
the contravariant a’ and covariant a; components of a vector
a € R’ coincide: a; = a’. However, in spherical coordinates,
the contravariant a’ and covariant a,; components of a rota-
tional vector a, € R? are related to each other according to

a,;= Zj:aq, gija]} in terms of the metric (39). Therefore, the

ri
scalar product between two rotational vectors a,,b, € R?
has the following equivalent forms, a,-b, =%, 4,4a,b, =

Y-t aib,;. The inverse of the metric (39) associated with
the spherical coordinates is given by

y -1 10
(gl]) = <gij) = 1 > (B.1)
0 7
sin“6
and its determinant by
g =det (gij> = sin’6). (B.2)

Research

Hence, the element of angular integration can be written
as d*u= \/Edz q =sin 8dOde. Using contravariant compo-
nents, the gradient of some function X is given by [59]

;0X

(a0 =3 o' 550 (B3)
and the divergence of some vector X, by
div, X, =) 1o (Xi/3)s (B.4)
r V999

which leads to equations (40) and (41) with the metric (39) of
spherical coordinates.

B.2. Consequences of Onsager’s Principle. Using the
chemical potentials (49) and (50) and the assumptions (59)
and (60), equation (57) becomes

Arxn
w L, 0 0 L. _Vn,
Ja 0 Ly 0 Ly A
. = ) Vg >
JB 0 0 Lpg Ly -
g
Je Lo, Ley Lep Lee
' —grad He
kg T
(B.5)
which implies that
=LA -YL. orad HC
W=L Ay Z rC * 8 k T’ (B.6)
u B
. Vny, 7
Ja=-Laa- T ; Lyc - grad kaCT’ (B.7)
Jp=~Lgg- Wy _ Z Ly - grad He (B.8)
ng u kBT
Vn Vn U
]C :LCrArxn _LCA . TAA _LCB . TBB - ; LCC . grad kBi?]_‘,
(B.9)

where the sum extends over the different groups A*u of col-
loidal motors and

Vf+fBVU,
dof — fPuB - dgu

o,/ —f P p.9u

sin?9 ¢

e _1
grad —= = - (B.10)
RT T

sin%0
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Using the expression (55) of the five-dimensional col-
loidal current density and comparing with the expression
(B.9), we find that the linear response coefficients are
given by

(B.11)

Consequently, we obtain equations (62) and (63).

Remark. Interestingly, the assumption (60), according to
which the reaction rate does not depend on the gradients of
molecular densities, can be relaxed by taking instead

L,y =—-@k nyp, (B.12)
L.z =+@k_ngp,

with the polarization (30). Cross-diffusion between the
molecular species A and B may also be included with the
coefficients

Lyg=Lgy=Cnyngl. (B.13)

In this general case where the matrix of linear
response coefficients in equation (57) is complete, the
reaction rate and the molecular current densities are instead
given by

w=(k,ny —k_ng)nc+a(k,Vny, —k_Vnyg)

) (B.14)
-p—xDrxnju (VF + fBVU,)du,

jA = _DAVnA - CnAvnB - a)k+nAArxnp
+1y J [(Ea1+€4Q,) - (Vf +fBVU,) + Ay (grad,u)

- (grad,f — fBuB - grad, u)|d’u,
(B.15)

17

jg=—DpVng — CngVn, + @k_ngA,..p

ey [ (€1 +e5Q,)- (VF +£BVU)
+ Ap(grad,u)
- (grad, f — f BuB - grad, u)|d’u.

Neglecting the last term in the expression (B.14), we
recover a form compatible with the reaction rate (23)
obtained in Appendix A by direct calculation using the
molecular concentration profiles around a single motor.
The scheme has great generality.

(B.16)

C. Linear Stability Analysis Using the Colloidal
Distribution Function

Linearizing equation (93) for f around a uniform steady state
fo =col(47), we get

D, .
0,8f = D,028f + i 6ag(sm 0045f)
-V, cos 00,6f

-f {E +e (cosze - ;)} 028a

+ (24 = {)f cos 00,4a,

(C.1)

where 8f = f - f;, and da is ruled by the first line of matricial
equation (88). These linear equations can be solved by
expanding 8f in series of Legendre polynomials as

1 (o]
Sf = E% 8¢,P;(cos 0). (C.2)

Supposing that 8f, da ~ exp (igz), we find the following
coupled equations

déc
d_t’ =-[D,q* +1(1+1)D,]d¢,
. I I+1
—igVy (—21+16c1_1 + —21+38c,+1) (C.3)
2 )
+¢ [qZ <E81,O + 5861)2> +iq(2A - C)Sl,l] da,
for1=0,1,2,-, and
déa P
v =—(Dq* + K)da — wdc. (C.4)

In matrix form, we have
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D -K  —w 0 0 0
2 2 . Vsd
da céq -D,q qu 0 0 da
d¢y 2V 8¢,
icy(2) — -iV_g -D,g*-2D S 0 0
8¢, 024 -0)a ~iVyq -Dig°-2D, 54 5¢,
2 2V 3V
d 6, | G ; q* 0 —i 3Sd qg -D,g*-6D, —iTqu 0 dc,
dt 0cy 3V, V., 8¢y ’
0 0 0 o -D,g* - 12D s
8¢y 5 1 & r o1 8¢y
4V
dcs 0 0 0 —iTqu -D,q* - 20D, dcs

which can be solved by truncation to obtain the dispersion
relations shown in Figures 3(d)-3(f). If the wave number is
vanishing (g = 0), the matrix in equation (C.5) has the follow-
ing successive eigenvalues: s_(0) = —K for reaction, s, (0) =0
for translational diffusion, and s,(0) = -I(I+1)D, with I=1,
2,3, -+ for rotational diffusion. In Figure 3(b), they appear
in the order s,(0)=0>s,(0)=-2D, >s_(0) =K >s5,(0) =
—6D,>--- for the parameter values (87). We note that all the
dispersion relations satisfy the property 9,s(0) =0. At the
threshold of clustering instability, the leading dispersion rela-
tion s, (q) should moreover satisfy the condition 835 L(0)=0,
which also gives equation (92), thus confirming the validity
of the approximation (88) to determine the threshold.
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