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Abstract

Any condition leading to chronic liver disease is a potential oncogenic agent for hepatocellular carcinoma (HCC). 
Alterations in the expression of antioxidant enzymes could alter the redox balance. Our aim was to evaluate the 
expression of the genes GPX1, GPX4, SEP15, SELENOP, SOD1, SOD2, GSR, CAT, and NFE2L2 in patients with HCC. 
Differential gene expression analysis was performed using RNA-Seq data from the TCGA and GTEx databases, and 
RT-qPCR data from HCC patient samples. Bioinformatic analysis revealed significant differential expression in most 
genes. GPX4 expression was significantly increased (p=0.02), while SOD2 expression was significantly decreased 
(p=0.04) in experimental data. In TCGA samples, alpha-fetoprotein levels (mg/dL) were negatively correlated with 
the expression of SEP15 (p<0.001), SELENOP (p<0.001), SOD1 (p<0.001), SOD2 (p<0.001), CAT (p<0.001), and 
NFE2L2 (p=0.004). Alpha-fetoprotein levels were positively correlated with the expression of GPX4 (p=0.02) and 
SELENOP (p=0.01) in the experimental data. Low expression of GPX1 (p=0.006), GPX4 (p=0.01), SELENOP 
(p=0.006), SOD1 (p=0.007), CAT (p<0.001), and NFE2L2 (p<0.001), and higher levels of GSR, were associated 
with low overall survival at 12 months. These results suggest a significant role for these antioxidant enzymes in HCC 
pathogenesis and severity. 
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Introduction
Hepatocellular carcinoma (HCC) has a high mortality 

rate, and ranks as the third leading cause of cancer deaths 
worldwide (Ozakyol, 2017; Forner et al., 2018). Major risk 
factors for HCC include infection with hepatitis B and C 
viruses, alcohol intake, and fatty liver disease (Ozakyol, 
2017; Yang et al., 2019). Prognosis and treatment options vary 
according to tumor stage and liver function. The percentage 
of patients eligible for curative treatment varies between 
high and low-resource countries (Ozakyol, 2017; Yang et al., 
2019), but generally fluctuates between 20-30% of patients. 
The median survival of patients with untreated disease is nine 
months (Klungboonkrong et al., 2017; Forner et al., 2018). 
New markers or therapeutic targets are required for early 
diagnosis, and the development of novel treatment strategies 
for HCC (Klungboonkrong et al., 2017).

Oxidative stress is associated with cancer, and has a 
dual role in disease development, due to the effects of reactive 
oxygen species (ROS) on cellular processes. Increased ROS 
levels are associated with oncogenic effects because of their 
ability to cause damage to biological macromolecules, such 
as DNA, lipids, and proteins (Reuter et al., 2010; Moloney 
and Cotter, 2018). High concentrations of ROS have been 

associated with activation of p53, oxidative lipid peroxidation, 
consumption of antioxidants, and can ultimately lead to 
cell death (Wang et al., 2016b; Sajadimajd and Khazaei, 
2017). Oxidative stress can play different roles: promoting 
carcinogenesis or cell apoptosis, or by providing sufficient 
components to promote cancer cell survival. The physiological 
functions of ROS include regulation of the expression and 
activity of several signaling regulators that are involved in 
key processes, such as proliferation and apoptosis (Gill et al., 
2016). Cancer cells, in turn, seem to maintain advantageously 
elevated levels of ROS to guarantee their survival, by adapting 
the content and regulation of their antioxidant machinery 
(Sajadimajd and Khazaei, 2017; Moloney and Cotter, 2018).

Cellular antioxidant defense systems include a series of 
antioxidant enzymes that maintain homeostasis by restricting 
ROS production or neutralizing ROS (Gill et al., 2016). 
This group of enzymes includes major components such as 
superoxide dismutase (SOD), catalase (CAT), and glutathione 
reductase (GSR), and selenoproteins, including glutathione 
peroxidase 1 (GPX1), glutathione peroxidase 4 (GPX4), 15-
kDa selenoprotein (SEP15), and selenoprotein P (SelP). All 
of these enzymes act in pathways of chain-breaking ROS 
molecules, or have other important functions, including 
detoxification of hydrogen peroxide (H2O2), inhibition of 
lipid peroxidation, quality control of protein folding, and 
transport of selenium to peripheral tissues (Gupta et al., 2014; 
Labunskyy et al., 2014; Zoidis et al., 2018). Altered expression 
of these enzymes could be a useful resource for cancer 
cells. Hyperactivation of nuclear factor erythroid 2-related 
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factor 2 (Nrf2), a transcription factor that regulates the 
expression of several genes, including antioxidant enzymes, 
has been associated with a variety of cancers as well as with 
HCC (Cheng et al., 2015; Menegon et al., 2016; Ma-on et 
al., 2017; Sajadimajd and Khazaei, 2017). 

Previous studies have demonstrated an association 
between aberrant expression of antioxidant enzymes and 
cancer (Table 1). Abnormal expression of the GPX1, GPX4, 
SEP15, and selenoprotein P (SELENOP) genes has been 
detected in a variety of cancers, including gastric cancer (Lan 
et al., 2017), colon carcinoma (Yagublu et al., 2011), colorectal 
cancer (Hughes et al., 2018), clear cell renal cell carcinomas 
(Rudenko et al., 2015; Cheng et al., 2019), laryngeal squamous 
cell carcinoma (Zhang Q et al., 2018), breast cancer (Król et 
al., 2018), MCF-7 adenocarcinoma cells (Rusolo et al., 2017), 
lung cancer (Gresner et al., 2009), and HepG2 liver cancer 
cells (Guariniello et al., 2015; Zhao et al., 2015). The SOD1, 
SOD2, glutathione-disulfide reductase (GSR), catalase (CAT), 
and nuclear factor erythroid 2-related factor 2 (NFE2L2) 
genes are deregulated in bladder cancer (Wieczorek et al., 
2017), oral squamous cell carcinoma (Pedro et al., 2018), 
breast cancer (Wolf et al., 2016), lung cancer (Zhang Y et al., 
2016), MCF-7 cells (Shi et al., 2017), and HCC (Cheng et al., 
2015; Guerriero et al., 2015; Wang et al., 2016a). 

In the present study, we produced new data on the gene 
expression levels of the antioxidant enzyme genes GPX1, 
GPX4, SEP15, SELENOP, SOD1, SOD2, GSR, CAT, and 
NFE2L2 in human HCC tissues. Bioinformatic analyses using 
databases and RT-qPCR analysis of the original data were 
performed to investigate whether changes in the expression 
of these genes might be associated with severity and overall 
survival in HCC, and to explore possible relationships between 
the genes. 

Material and Methods

Datasets and bioinformatic analyses of differentially 
expressed genes

Bioinformatic analyses were performed using two 
different experimental designs: transversal and case-control 
studies. For the transversal study, publicly available RNA-
Seq data from the liver hepatocellular carcinoma (LIHC) 
project were downloaded directly from The Cancer Genome 
Atlas (TCGA) portal. These data included HTSeq-Counts of 
matched samples from 48 tumoral tissues and 48 normal solid 
tissues. The results published here are in whole or part based 
upon data generated by the TCGA Research Network: https://
www.cancer.gov/tcga. For the case-control study, RNA-Seq 
by Expectation-Maximization expected count data of 292 
TCGA-LIHC tumoral samples (case) and 115 Genotype-
Tissue Expression (GTEx) normal liver samples (control) were 
downloaded from “Figshare Data Record 1”, made available 
by Wang et al. (2018). Since TCGA and GTEx are studies 
from different sources, reprocessing of data and batch effect 
removal were necessary for adequate comparison. Therefore, 
in the present study, normalized datasets provided by Wang 
et al. (2018) were used. Publicly available clinical data were 
also collected from both datasets. 

Differential expression analyses for both studies (tumoral × 
normal and case × control) were performed using the DESeq2 
(Love et al., 2014) package in the R language with padj<0.05. 
The Edge R (Robinson et al., 2009) package was also used 
for trimmed mean of M values (TMM) normalization and 
generation of logarithmic counts per million (logCPM) data 
for further statistical analyses. 

Tissue samples and clinical data collection

Hepatic fresh tissue specimens (tumoral and adjacent 
peritumoral tissues) were collected from 14 cirrhotic patients 
with HCC who underwent liver transplantation between 2013 
and 2015 at the Division of Gastroenterology of Irmandade 
Santa Casa de Misericórdia de Porto Alegre (ISCMPA), Brazil. 
Clinical data, such as age, sex, etiology, and metabolic panel, 
were collected from medical records. Informed consent was 
obtained from all patients. The study protocol was approved 
by the ISCMPA and Universidade Federal de Ciências da 
Saúde de Porto Alegre (UFCSPA) Ethics Committees (no. 
2.400.119).

RNA extraction and quantitative real-time PCR 
analysis

Tissue samples from ISCMPA were collected from 
explanted liver and immediately dipped in RNAlater solution 
Ambion® (Thermo Fisher Scientific, USA). The stabilized 
tissue samples were frozen at −80 °C until RNA isolation. Total 
RNA was extracted from the samples shortly after collection, 
using TRIzol™ reagent (Invitrogen, USA) according to the 
manufacturer’s specifications. RNA purity and concentration 
were evaluated by spectrometry using a Biospec-Nano device 
(Shimadzu, Japan). RNA integrity was evaluated by agarose 
gel electrophoresis of total RNA (Figure S1). Total RNA was 
reverse transcribed using the GoScript™ Reverse Transcription 
System (Promega, USA) according to the manufacturer’s 
instructions, in a PCR thermal cycler (Applied Biosystems, 
USA). Total RNA not used for RT-PCR was frozen at −80 °C 
in case any additional experiments were necessary.

Quantitative polymerase chain reaction (qPCR) assays 
were performed on a StepOnePlus™ system (Applied 
Biosystems, USA), using SYBR™ Select Master Mix (Applied 
Biosystems, USA) and specific primers (Invitrogen, USA). The 
primer sequences are shown in Table S1. Actin beta (ACTB), 
glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and 
18S genes were tested for stability using the protocol described 
by Moura et al. (2014). The ACTB gene displayed higher 
stability, and was used as an endogenous control.

Gene expression was normalized to the ACTB 
housekeeping gene. The difference in gene expression 
between tumoral and peritumoral tissues (used as the 
calibrator) was calculated using the 2−ΔΔCt method (Livak 
and Schmittgen, 2001; Schmittgen and Livak, 2008), where 
ΔΔCt= ΔCt(tumor)-ΔCt(peritumor) for tumoral tissue and 
ΔΔCt=ΔCt(peritumor)-ΔCt(peritumor) for peritumoral tissue. 
Fold-change calculations were conducted as previously 
described (Schmittgen and Livak, 2008).
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Figure 1 – Gene expression profiles. (A) Gene expression levels in the TCGA-LIHC dataset for tumoral and normal adjacent tissues. (B) Gene expression 
levels in case (TCGA) versus control (GTEx) analysis. (C) and (D) Significant differentially expressed genes in ISCMPA’s sample (tumoral versus 
peritumoral tissues). *p<0.05, **p<0.001. 

Protein-protein interaction (PPI) network analysis 

PPI network visualization and analysis were performed 
using Cytoscape 3.8 software (Shannon, 2003). PPI network 
construction was carried out using the Search Tool for the 
Retrieval of Interacting Genes (STRING) database v.11 
(Szklarczyk et al., 2019), using STRINGapp from Cytoscape 
3.8. A confidence score of 0.4 was set as the cut-off criterion.

Gene ontology (GO) and pathway enrichment 
analyses

To analyze the genes and biological characteristics, 
bioinformatic enrichment analysis of GO and pathways was 
performed using the STRINGapp plugin from Cytoscape 3.8. 
This plugin has a feature that performs enrichment retrieval 
from databases. GO (Ashburner et al., 2000; Carbon et al., 
2019), the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) Pathway (Kanehisa, 2000; Kanehisa et al., 2019) 
and REACTOME Pathway (Jassal et al., 2020) were the 
databases selected for retrieval by the STRINGapp plugin. 
Two groups of genes were examined separately: upregulated 
and downregulated. All genes were analyzed with “Homo 
sapiens” as background species. The statistical criterion was 
a corrected p-value <0.05.

Statistical analyses 

Continuous data are shown as mean ± standard deviation 
or median (interquartile range). Categorical values are shown 
as absolute frequency (relative frequency). Shapiro-Wilks or 
Kolmogorov-Smirnov tests were used to test the normality of 
variables. Comparison of mRNA levels between tumoral and 
peritumoral tissues was performed using Wilcoxon signed-
rank tests. Correlations were made using Spearman’s tests, 
and are presented as p-values and r coefficients. Survival 
analysis was performed using Kaplan–Meier log-rank tests 
and Cox regression. Evaluate Cutpoints (Ogłuszka et al., 
2019) software was used to choose the optimal cut-off point 
for the dichotomization of continuous variables. SPSS 20.0 
(SPSS Inc., USA) and R software version 4.0.0 were used for 
statistical analysis. The significance level was set at p<0.05.

Results

Differential gene expression of antioxidant enzymes 
in HCC

Comparison of matched tumoral and adjacent normal 
tissues from TCGA patients revealed significantly differential 
expression of six genes (Figure 1A). One gene (GPX1) was 
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upregulated and five (SELENOP, SOD1, SOD2, CAT, and 
NFE2L2) were downregulated. All genes except SOD1 showed 
significant differential expression in TCGA (case) and GTEx 
(control) comparisons (Figure 1B). Six genes (GPX1, GPX4, 
SEP15, SELENOP, GSR, and NFE2L2) were upregulated, and 
two genes (SOD2 and CAT) were downregulated. Detailed 
data from these analyses are provided in Table S2.

In RT-qPCR analysis of 28 fresh frozen matched 
samples of HCC patients from ISCMPA, two genes displayed 
significantly higher expression in tumoral tissue than in 
peritumoral tissue (Figure 1C, D). GPX4 displayed a 2.70-fold 

increase (p=0.02), and SOD2 a 2.59-fold increase (p=0.04). In 
contrast, the GPX1, SEP15, SELENOP, SOD1, GSR, CAT, and 
NFE2L2 genes were not significantly differentially expressed 
when comparing tumoral and peritumoral tissues (data not 
shown). 

Correlation analysis

Correlations between gene expression levels of TCGA data 
and alpha-fetoprotein levels were also examined (Figure 2A). 
Alpha-fetoprotein levels (mg/dL) were negatively correlated 
with the expression of SEP15 (p<0.001), SELENOP (p<0.001), 

Figure 2 – Spearman correlation analysis. (A) Spearman correlation coefficients (r) for gene expression levels in TCGA tumoral samples and clinical 
data. (B) Spearman correlation coefficients (r) for gene expression levels in ISCMPA tumoral samples. *p<0.05, **p<0.001.
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SOD1 (p<0.001), SOD2 (p<0.001), CAT (p<0.001), and 
NFE2L2 (p=0.004). In contrast, analysis of relative mRNA 
expression (2−ΔΔCt) in tumoral tissue revealed that patients from 
ISCMPA, alpha-fetoprotein (mg/dL) levels were positively 
correlated with GPX4 (p=0.02) and SELENOP (p=0.01) 
expression levels (Figure 2B). 

Survival analysis

In TCGA samples, patients were divided into two groups 
according to gene expression (high or low), using the optimal 
cut-off point generated by the Evaluate Cutpoints (Ogłuszka 
et al., 2019) software. Kaplan–Meier and Cox multivariate 
regression were used to generate overall survival data (Figure 3 
and Table 2). The final models used for multivariate analysis 
are presented in Table S3. Low overall survival at 12 months 
was correlated with low expression of GPX1 (p=0.006), 
GPX4 (p=0.01), SELENOP (p=0.006), SOD1 (p=0.007), 
CAT (p<0.001), and NFE2L2 (p<0.001). Higher levels of 
GSR (p<0.001) were associated with low overall survival in 
the same period. Complete sample data from patients from 
ISCMPA were not available for survival analysis. 

PPI network analysis 

Since correlation analyses revealed several significant 
correlations (Figure 2) between gene expression in both 
TCGA and ISCMPA samples, a PPI network analysis was 
performed. The PPI network contained nine nodes and 25 
edges (Figure 4A), with an average node degree of 5.55 and 
PPI enrichment p-value < 1.0e–16. GPX1 and GPX4 had the 
highest degree and betweenness centrality values, of 8 and 
0.166, respectively. Proteins SELP and SEP15 had the lowest 
degree value, interacting with only three other proteins in this 
analysis: GPX1, GPX4, and each other. 

GO and pathway enrichment analyses

Gene enrichment analysis using the enrichment tool 
STRINGapp returned a series of sets. GO terms are divided 
into three groups: biological process (BP), molecular function 
(MF), and cellular component (CC). The most significant 
results are presented in Table 3. 

Upregulated genes were mainly enriched in the 
biological processes of cellular detoxification, response to 
oxidative stress, and cellular response to toxic substances. 
With respect to GO molecular function, antioxidant activity 
and glutathione peroxidase activity were implicated. According 
to GO cellular component, genes was mainly enriched in 
the intracellular organelle lumen. Downregulated genes 
were mainly enriched in biological processes of response to 
ROS, protein homotetramerization, and aging. GO molecular 
functions returned antioxidant activity and oxidoreductase 
activity as the main enriched terms. 

KEGG pathways and REACTOME Pathways analyses 
revealed that genes were enriched in several pathways. The 
most significant results are presented in Table 4. Upregulated 
genes were mainly enriched in pathways involving glutathione 
metabolism, synthesis of eicosatetraenoic acids, detoxification 
of ROS, and diseases that included amyotrophic lateral 
sclerosis and Huntington’s disease. Downregulated genes 
were also enriched in pathways of detoxification of ROS, as 
well as pathways involving peroxisomes, longevity regulation, 
FoxO signaling, and the immune system. 

Discussion
We performed bioinformatic and experimental analyses 

to evaluate the expression patterns of eight antioxidant enzymes, 
including four selenoproteins, and one important transcription 
factor, to assess their association with HCC pathogenesis. 

Figure 3 – Survival analysis. Cumulative survival plot of dichotomized gene expression levels of TCGA tumoral tissues. 
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Adjusted HR 95% CI p

GPX1 2.023 1.222-3.347 0.006

GPX4 1.859 1.147-3.015 0.012

SEP15 0.75 0.315-1.783 0.514

SELENOP 1.968 1.217-3.183 0.006

SOD1 2.447 1.273-4.702 0.007

SOD2 1.461 0.824-2.590 0.194

GSR 0.354 0.224-0.559 <0.001

CAT 2.924 1.774-4.820 <0.001

NFE2L2 2.955 1.779-4.908 <0.001

HR: hazard ratio; CI: confidence interval

Table 2 – Multivariate Cox proportional hazards regression analysis to assess the independent effect of gene expression on survival in 12 months

A number of differentially expressed genes were identified 
in tumoral samples from TCGA patients (Figure 1A,  B), 
along with replication of two genes in the experimental data 
(Figure 1C, D). Previous studies have demonstrated variable 
expression patterns of antioxidant genes, depending on the 
type of cancer analyzed (Table 1). The present results add 
new information about the expression of these genes in HCC. 

Some studies evaluated the expression of the genes 
for these antioxidant enzymes separately in HCC tumoral 
samples, HepG2 and Huh7 cell lines (Table 1). Results 
for GPX1, GPX4, SEP15, SELENOP, SOD2, and NFE2L2 
seem to be corroborated by our analysis (Cheng et al., 2015; 
Guariniello et al., 2015; Guerriero et al., 2015; Wang et al., 
2016a; Zhao et al., 2015). We observed that the pattern of gene 
expression of these enzymes seemed to vary when analysis 
was performed in TCGA tumoral versus normal adjacent 
tissues, and TCGA versus GTEx databases (Figure 1A, B and 
Table 1). The tumor microenvironment seems to play a role 
in HCC progression, influencing progression by modulation 
of liver fibrosis, initiation of the epithelial-to-mesenchymal 
transition, invasion, alterations of oxidative stress status, 
and other processes (Novikova et al., 2017). Differences in 
antioxidant enzyme levels between normal, tumoral, and 
peritumoral tissues may represent different stages of adaptation 
of this system against oxidative stress, or the use of ROS as 
signaling molecules (Moloney and Cotter, 2018). 

Differences in the expression of two genes, GPX4 and 
SOD2, were statistically significant in TCGA and experimental 
data. Increased expression of GPX4 was present in TCGA 
versus GTEx analysis and experimental data (Figure 1B, C). 
However, this difference was not significant in TCGA tumoral 
× non-tumoral tissues (Figure 1A). In agreement with our 
findings, studies with grade III HCC tissues (Guerriero et al., 
2015), HepG2 cell lines (Guariniello et al., 2015; Zhao et al., 
2015), and Huh7 cells (Guariniello et al., 2015) also revealed 
higher expression of GPX4 (Table 1). Lower expression was 
found in gastric cancer (Lan et al., 2017), clear cell renal cell 
carcinoma (Rudenko et al., 2015), and human breast cancer 
cell lines (Rusolo et al., 2017) (Table 1).

GPX4 has the same detoxification function as GPX1 in the 
cell, including the ability to reduce lipid peroxides (Figure 4B) 
(Labunskyy et al., 2014). Even though mRNA expression 
was analyzed, and gene transcription is not always directly 
related to protein synthesis, it is possible that overexpression 

of GPX4 could affect the cell environment. Increased GPX4 
expression could enhance the levels of antioxidant components 
in cells and protect against oxidative stress (Davis et al., 
2012; Rohr-Udilova et al., 2018). However, overexpression 
of GPX4 could also benefit cancer cells. GPX4 plays an 
important role in preventing oxidative stress-induced apoptosis 
by decreasing lipid peroxidation. In so doing, GPX4 blocks 
posterior signaling, leading to cell death (Figure 4B). Therefore, 
overexpression of this enzyme could be an advantageous 
mechanism used by tumoral cells to sustain growth and avoid 
apoptosis (Labunskyy et al., 2014; Rohr-Udilova et al., 2018). 
A previous study showed that overexpression of GPx4 in HCC 
in vitro protected the cells from oxidative stress and reduced 
the intracellular free radical level (Rohr-Udilova et al., 2018).

SOD2 had different expression patterns between TCGA 
analyses and experimental data (Figure 1A, B, D and Table 1). 
Reduced expression of SOD2 has been previously reported 
(Wang et al., 2016a), in a study into HBV‐positive HCC 
tumors in a cohort. Higher gene expression of SOD2 has 
been reported in oral squamous cell carcinoma (Pedro et al., 
2018) and colorectal adenoma and cancer (Hughes et al., 
2018). Most of the patients from TCGA and Wang et al. 
(2016a) presented with hepatitis B as the main etiology, while 
patients from our experimental data were mostly HCV-positive. 
No statistically significant differences were found in gene 
expression levels between risk factor types (data not shown). 
A diversity of tumor types can develop in HCC, in terms of 
staging and its molecular subclasses, which could explain, in 
part, the variety of findings in gene expression and deregulated 
pathways (Hoshida et al., 2013).

SOD2 is located in the mitochondrial matrix (Figure 4B) 
and acts to catalyze dismutation of the superoxide anion 
(O2

•−) to H2O2, playing a crucial role in alleviating oxidative 
stress (Kim et al., 2017). Loss of this antioxidant component 
could impair the oxidative balance in cells. However, its 
overexpression could favor the cancer cell environment (Kim 
et al., 2017). Intensification of SOD2 expression in tumoral 
cells seems to ensure H2O2 flow from mitochondria, which is 
a crucial step for the occurrence of the Warburg effect (Che 
et al., 2016), a strategy used by cancer cells to increase the 
generation of additional metabolites. Upregulation of SOD2 
could favor H2O2 accumulation (Figure 4B), which is involved 
in a variety of signaling pathways related to proliferation, 
migration, and invasion in cancer cells (Glorieux et al., 2015). 
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Figure 4 – Enriched annotation pathways and interaction network analysis of antioxidant proteins investigated in the present study. (A) Protein-protein 
interaction network of the analyzed genes. Lines represent interaction associations between nodes and line thickness indicates the strength of data support 
(score). Size of nodes indicates the degree of associations. Blue nodes represent downregulated genes and red nodes represent upregulated genes according 
to data from case (TCGA) vs control (GTEx) analyses. (B) Illustrative representation of antioxidant enzymes functions in hepatocytes. Up- and down-
arrows denote significant upregulated or downregulated genes, respectively. Red arrows: both analysis; Blue arrows: only in TCGA analysis; Orange 
arrows: only in experimental analysis. Abbreviations: GPX1, glutathione peroxidase 1; GPX4, glutathione peroxidase 4; GSR, glutathione reductase; 
SOD1, superoxide dismutase 1; SOD2, superoxide dismutase 2; CAT, catalase; SEP15, 15 KDa selenoprotein; SelP, selenoprotein P; GSSG, oxidized 
glutathione; GSH, reduced glutathione; NRF2; nuclear factor erythroid 2-related factor 2; HMXO1; heme oxygenase-1 gene; ARE; antioxidant response 
element; Se, selenium; and PUFAs; Polyunsaturated fatty acids.

Table 4 – Top Most significant enriched pathways.

Category Id Term Count Genes P-valuea

Upregulated

K hsa00480 Glutathione metabolism 3 GSR|GPX4|GPX1 8.46E-06

R HSA-2142770 Synthesis of 15-eicosatetraenoic acid 
derivatives 2 GPX4|GPX1 7.05E-05

R HSA-2142712 Synthesis of 12-eicosatetraenoic acid 
derivatives 2 GPX4|GPX1 7.05E-05

R HSA-2142688 Synthesis of 5-eicosatetraenoic acids 2 GPX4|GPX1 7.05E-05

R HSA-3299685 Detoxification of Reactive Oxygen Species 2 SOD1|GPX1 4.20E-04

K hsa05014 Amyotrophic lateral sclerosis (ALS) 2 SOD1|GPX1 9.40E-04

K hsa04918 Thyroid hormone synthesis 2 GSR|GPX1 0.0013

R HSA-114608 Platelet degranulation 2 SOD1|SEPP1 0.0033

K hsa05016 Huntington’s disease 2 SOD1|GPX1 0.0065

Downregulated

R HSA-3299685 Detoxification of Reactive Oxygen Species 2 CAT|SOD2 6.61E-5

K hsa04146 Peroxisome 2 CAT|SOD2 9.18E-5

K hsa04211 Longevity regulating pathway 2 CAT|SOD2 9.18E-5

K hsa04068 FoxO signaling pathway 2 CAT|SOD2 1.0E-4

R HSA-2262752 Cellular responses to stress 2 CAT|SOD2 0.003

R HSA-8953897 Cellular responses to external stimuli 2 CAT|SOD2 0.003

R HSA-168256 Immune System 2 CAT|SOD2 0.046

K, KEGG Pathways; R, REACTOME Pathways; a Corrected p-value
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Survival analysis of patients from TCGA revealed an 
interesting aspect of gene expression patterns in HCC. Although 
higher expression of antioxidant enzymes was present in HCC 
patients, patients with lower gene expression also displayed 
lower overall survival, except for GSR expression (Figure 3). 
As previously discussed, ROS act as a two-edged sword in 
cancer, with beneficial and detrimental roles in cells, and are 
tightly regulated by cancer cells (Moloney and Cotter, 2018). 
On the one hand, higher expression of antioxidant enzymes 
could not only control ROS accumulation, preventing cell 
death being triggered by them, but could also perpetuate 
tumoral cells. On the other hand, lower expression could 
cause apoptosis and kill tumoral cells. However, regarding the 
level of expression, tumors could also be favored due to the 
accumulation of ROS used as signaling factors (Sajadimajd and 
Khazaei, 2017; Moloney and Cotter, 2018). This mechanism 
and the extent to which the levels of these antioxidant enzymes 
vary in each stage of hepatocarcinogenesis should be explored 
in depth in further studies.

Correlation (Figure 2), PPI network (Figure 4A), and GO 
(Tables 3 and 4) analyses highlighted possible relationships 
between the antioxidant enzymes investigated and their 
interactions in different pathways (Table 4). NFR2, which 
is encoded by NFE2L2, seems to be important because of 
its interaction with Antioxidant Responsive Element (ARE) 
(Figure 4B), an interaction that increases the expression 
of several genes, including genes that encode glutathione 
peroxidases and SODs (Raghunath et al., 2018). Further 
analysis at the protein level should be performed to clarify 
the knowledge about this protein network, especially in the 
context of carcinogenesis. 

None of the other genes in the experimental data had 
significantly altered expression, even though there was a 
tendency towards underexpression or overexpression of some 
genes. The limitations of our study, such as the difficulty in 
acquiring fresh liver tissue for mRNA analysis, resulted in a 
small sample size, which could be one of the explanations for 
the lack of statistical significance. To improve our analysis, we 
also investigated data from larger databases, such as TCGA 
and GTEx, which provided us with a better understanding of 
the results. In addition, peritumoral tissue, due to its proximity 
to the tumor, could already contain alterations, and could 
complicate the examination of gene expression differences. 
However, the availability of fresh, healthy liver tissue was also 
limited. Peritumoral tissue was collected with a safety margin 
and, in this case, allowed us to perform a paired analysis. These 
data permitted an evaluation of differences in gene expression 
in the tumoral and adjacent peritumoral tissues of the same 
patient. To verify the presence of differences between tissue 
types, we performed bioinformatic analyses between matched 
samples, as well as between case and control samples. 

We present preliminary findings of the gene expression 
patterns of antioxidant enzymes in HCC. The findings highlight 
the importance of further evaluation of these components in 
the pathology of cancer studies with larger sample sizes. We 
were able to replicate data from TCGA analysis for at least 
two genes. The present study is one of few investigations to 
investigate a diversity of antioxidant enzyme genes in the 
context of cancer. We were also able to examine clinical 

parameters and survival data for different gene expression 
levels in TCGA patients. Our study highlights the need for 
further studies to better understand the role of these enzymes 
in HCC. 
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