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Abstract

Background: Four genome-wide association studies mapped an ‘‘obesity’’ gene to human chromosome 10p11–12. As the
zinc finger E-box binding homeobox 1 (ZEB1) transcription factor is encoded by the TCF8 gene located in that region, and as
it influences the differentiation of various mesodermal lineages, we hypothesized that ZEB1 might also modulate adiposity.
The goal of these studies was to test that hypothesis in mice.

Methodology/Principal Findings: To ascertain whether fat accumulation affects ZEB1 expression, female C57BL/6 mice
were fed a regular chow diet (RCD) ad libitum or a 25% calorie-restricted diet from 2.5 to 18.3 months of age. ZEB1 mRNA
levels in parametrial fat were six to ten times higher in the obese mice. To determine directly whether ZEB1 affects
adiposity, wild type (WT) mice and mice heterozygous for TCF8 (TCF8+/2) were fed an RCD or a high-fat diet (HFD) (60%
calories from fat). By two months of age on an HFD and three months on an RCD, TCF8+/2 mice were heavier than WT
controls, which was attributed by Echo MRI to increased fat mass (at three months on an HFD: 0.51760.081 total fat/lean
mass versus 0.31360.036; at three months on an RCD: 0.17560.013 versus 0.12460.012). No differences were observed in
food uptake or physical activity, suggesting that the genotypes differ in some aspect of their metabolic activity. ZEB1
expression also increases during adipogenesis in cell culture.

Conclusion/Significance: These results show for the first time that the ZEB1 transcription factor regulates the accumulation
of adipose tissue. Furthermore, they corroborate the genome-wide association studies that mapped an ‘‘obesity’’ gene at
chromosome 10p11–12.
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Introduction

Obesity and its related metabolic disorders have become an

international health concern, especially because of their alarming

increase in the young [1]. Excessive white adipose tissue puts

individuals at risk for medical conditions such as Type II diabetes,

cardiovascular disease, and cancer. Therefore, considerable interest

exists in defining the molecular pathways that regulate the

development of adipocytes and their ability to store lipids in hopes

of elucidating new preventative measures and treatment options.

Adipocytes primarily derive from multipotent mesenchymal

stem cells (MSCs) that reside in bone marrow and the stroma of

adipose tissue [2]. The conversion of MSCs to preadipocytes

activates an extensive transcriptional cascade that regulates

terminal differentiation (for recent reviews, see [3,4]). While

several transcription factors such as PPARc (nuclear peroxisome

proliferator-activated receptor gamma) and the C/EBPa family

are key components of this cascade, other modulatory transcrip-

tion factors continue to be discovered [5]. This report identifies

one such transcription factor, the ZEB1 (zinc finger E-box binding

homeobox 1) transcription factor.

As much as 70% of obesity can be attributed to polygenetic

traits [6], and numerous genome-wide linkage studies have

attempted to define loci that segregate with a predisposition to

obesity [6–10]. To increase the likelihood that these association

scans are detecting genetic rather than environmental conditions,

they are often done on children. Four studies [9,11–13], two using

children and young adolescents, are of particular interest as they

found linkage in a region of chromosome 10 (10p11–12) that

harbors TCF8, the gene that encodes the ZEB1 transcription

factor. So far, no viable candidate obesity/anti-obesity gene in this

region has emerged. We hypothesize that mutations or polymor-

phisms in TCF8 contribute to childhood/adolescent obesity.

A number of lines of correlative evidence support the hypothesis

that ZEB1 plays a role in adipogenesis and/or lipogenesis.

Expression of ZEB1 is high in mesenchymal tissues, including

adipose tissue [14]. Moreover, ZEB1 modulates the differentiation

of the myogenic, osteogenic, and chondrogenic mesenchymal

lineages [15–19] and can even direct which lineage differentiates

from the multipotent C2C12 mesenchymal cell line [20]. Thus, it

is reasonable to propose that ZEB1 can also affect the

differentiation of the adipogenic lineage. Additionally, ZEB1
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mRNA expression increases following stem cell differentiation into

adipocytes in culture [2], and it is higher in obese women

compared to those of normal weight [21], although nothing has

been done as yet to investigate either of those observations. The

goal of our studies was to determine whether ZEB1 affects adipose

accumulation in mice.

ZEB1 (also called dEF1, TCF8, Nil-2-a, AREB6) is a large

transcription factor of 1117 amino acids in humans that is

conserved from worm [22,23] to man (for review, see [19]). It

binds to DNA via two zinc finger clusters at its N- and C-termini,

and it recognizes target genes through a modified E-box sequence

(59-CACCT(G)). Mechanistically, little is known about how ZEB1

regulates gene expression, but it can either repress or activate

target genes [24,25]. The regulation of ZEB1 is also understudied.

We were the first to report that it is induced by estrogen [24], but

it is also induced by progesterone [26], suggesting that ZEB1 plays

an important role in female physiology. Interestingly, high

expression of ZEB1 becomes independent of estrogen in

endometrial and ovarian carcinomas [27]. Other regulators of

ZEB1 include NF-kB and the TGF-b family [19]. ZEB1 is also

induced by p63 in neurons in response to ischemia, and ZEB1

appears to serve protective role in the central nervous system [28].

Because TCF8 null mice are perinatal lethal [25], even less is

known about its target genes or normal physiological roles,

especially in the adult. ZEB1 is predominantly known for its ability

to modulate epithelial to mesenchymal transitions (EMT) in

development and cancer by downregulating E-cadherin and other

genes encoding cell adhesion and basement membrane proteins

[29,30]. While the effects of ZEB1 on EMT have been studied

extensively, its role in the development and differentiation of

tissues is complex and less well understood (for review, see [19]).

However, ZEB1 is at the intersection of multiple mesenchymal

developmental pathways [15–19], raising the possibility that it also

affects adipogenesis.

The experiments in this study were undertaken to directly

investigate whether or not ZEB1 modulates adipogenesis and/or

lipogenesis in vivo using female mice, which were chosen because

estrogen induces ZEB1 [24,26,27,31]. As considerable data

indicate that estrogen protects against weight gain [32,33], it

seems plausible that ZEB1 might mediate estrogen’s effects on

adiposity. The results with wild type (WT) mice demonstrate that

ZEB1 mRNA levels in adipose tissue increase dramatically with

weight gain and plateau as the rate of weight gain decreases. To

directly test whether ZEB1 affects this weight gain, mice

heterozygous for TCF8 (TCF8+/2) were fed a regular chow or

high fat chow diet for up to 5 months, and the effects on body

weight, fat mass, activity level, food intake, and glucose processing

were determined. The resulting data indicate that haploinsuffi-

ciency of ZEB1 is sufficient to elicit significant fat accumulation,

regardless of diet. Furthermore, in cell culture models of

adipogenesis, ZEB1 expression increases with differentiation and

lipid accumulation, as it does in the mice. These data are the first

to show that ZEB1 plays a protective role against obesity. They are

also the first to support the genome-wide association studies

that mapped a human ‘obesity’ gene to chromosome 10p11–12

[9,11–13].

Materials and Methods

Animals and Genotyping
All experiments were done in accordance with the University of

Minnesota Research Subjects Protection Program in adherence

with federal, state, and local regulations. The IACUC protocol

number is 0609A91913. All mice were maintained in a University

of Minnesota specific pathogen-free animal facility, where light

and temperature were regulated. TCF8 null mice were generated

by Dr. Yujiro Higashi and colleagues (Osaka University, Osaka,

Japan) by b–galactosidase (b-gal) insertion into Exon 1 as

described previously [15,25], and heterozygous (TCF8+/2) males

were provided by Dr. Jennifer Richer, University of Colorado,

Aurora, CO. The colony was generated and maintained on a

C57BL/6 background. Female breeder mice were purchased from

Charles River Biological Laboratories (Wilmington, MA). Geno-

mic DNA was isolated from ear snips, and polymerase chain

reactions (PCR) were performed to determine genotype. To

generate products, Choice-Taq (#CB4050-2 Denville Scientific,

Metuchen, NJ) with its accompanying 10X buffer and 25 mM

dNTPs were used. PCR reactions were done for 35 cycles

consisting of 95uC for 30 sec, 61uC for 30 sec, and 72uC for

1 min. Products were amplified using the allele-specific primers

designed by Jennifer Richer (University of Colorado) listed below.

The TCF8 forward and reverse primers were used to detect wild

type (WT) animals (193 bp product), and the TCF8 forward and b-

gal reverse primers were used to detect heterozygous animals

(537 bp product).

TCF8 Forward: 59-AGCACTATTCTCCGCTACTCCAC-39

TCF8 Reverse: 59-ACCGCACCTGGTTTACGACACTC -39

b-gal Reverse: 59-AACCGTGCATCTGCCAGTTTGAG-39

Animal Diet and Body Composition
The caloric-restricted mice used for Figure 1 were treated as

described previously [34]. Briefly, C57BL/6 female mice 10 weeks

of age were fed a purified regular chow diet (RCD) (AIN-93M,

Harlan Teklad, Madison, WI) ad libitum or were fed a restricted

amount of a diet modified to provide 75% of the calories consumed

by the ad libitum group [35]. Thus, only the absolute amount of

carbohydrate differed between the two dietary regimens. Body

weights of the mice were recorded weekly until sacrifice at specific

time points as indicated, with the longest being 18.3 months of age.

Parametrial fat was harvested at the indicated times (Figure 1), snap

frozen in liquid nitrogen, and stored at 280 uC.

For the remaining experiments, female TCF8+/2 and WT

controls were placed for the indicated times on either a RCD

(#2018, Harlan Teklad Global Diets, Indianapolis, IN) or a high fat

diet (HFD, 60% of calories from fat, #F3282, Bio-Serv, French-

town, NJ) following weaning at 21 days of age. TCF8+/2 and WT

mice were age matched with 8–12 mice per group. Body weights

were recorded once a week from 5 weeks of age until sacrifice. Mice

were sacrificed at 2, 3, 4, and 5 months for tissue collection;

consequently, as the experiment progressed, fewer mice were

available to record body weights. Fat pads were harvested and

weighed, snap frozen in liquid nitrogen, and stored at 280uC.

Whole body composition was determined by use of nuclear magnetic

resonance imaging (MRI) technology produced by Echo Medical

Systems LTD (Houston, TX). Mice were placed in a tube and

analyzed on the accumulation 4 setting, which is specific for mice, to

determine total fat mass, lean mass, body fluid, and water weight.

Real-Time PCR (qPCR) Analysis
Total RNA was harvested from the parametrial fat of female

mice using the RNeasy Lipid Tissue Mini Kit, (Qiagen #74804,

Germany). cDNA synthesis was performed using 2 mg total RNA

as the template, oligo(dT)13 (Integrated DNA Technologies,

Coralville, IA), and AMV reverse transcriptase (Roche

#10109118001, Germany). ZEB1 mRNA was measured on a

BioRad iCycler (#170-8740, Hercules, CA) using iQ SYBR

Green Supermix (BioRad #1708885) and normalized to b-actin

mRNA. Cycling was performed per the manufacturer’s instruc-
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tions with annealing temperatures of 61uC and 61.8uC for ZEB1

and b-actin, respectively. Primers used to amplify were as

follows:

ZEB1 Forward: 59-CGAGTCAGATGCAGAAAATGAG-

CAA-39

ZEB1 Reverse: 59-ACCCAGACTGCGTCACATGTCTT-39

b-actin Forward: 59-CAAAAGCCACCCCCACTCCTAAGA-39

b-actin Reverse: 59-GCCCTGGCTGCCTCAACACCTC-39

Protein Expression
ZEB1 protein levels were measured by western immunoblotting.

One hundred mg of parametrial adipose tissue was homogenized

in detergent-free lysis buffer with Mini Complete Protease

Inhibitor (Roche, Indianapolis, Indiana). To remove lipid, samples

were spun at 10,0006g for 15 min at 4uC, and the floating lipid

removed. The remaining sample was pipetted into a clean tube

and incubated on ice for 30 min with lysis buffer that contained

detergents. Samples were spun at 10,0006g for 15 min at 4uC,

and the protein in the supernatant quantified using the Bio-Rad

DC assay. Thirty mg of protein was electrophoresed on a 6%

polyacrylamide gel and transferred to PVDF membrane. Immu-

noblotting was done using a-ZEB1 antibody at a 1:200 dilution

(#H-102, Santa Cruz, Santa Cruz, CA) and a-GAPDH antibody

at a1:1000 dilution (# MAB 374 Chemicon, Billerica, MA).

Secondary anti-mouse (Santa Cruz) and anti-rabbit (Santa Cruz)

peroxidase antibodies were used, respectively. Proteins were

detected using Pierce Super Signal West Pico Chemiluminescent

Substrate (#34080 Rockford, IL).

Glucose Tolerance Tests
Age-matched mice were fasted for 6 hr prior to testing. The

blood glucose baseline was determined using Roche ACCU-

CHEK Aviva (Germany, #04528280001) blood glucose monitor

and strips. Mice were injected with an intraperitoneal bolus of

glucose dissolved in 0.9% saline. The amount of glucose injected

(0.5–3 mg/kg) was dependent upon body weight and is indicated

in the figure legend. Blood glucose was monitored every 15 min

for the first hr and every 30 min for the second hr or until the

glucose levels returned to baseline levels.

Food Intake
Mice were housed individually following weaning at 21 days.

Caloric intake was measured at 2.5 months of age. Cages were

adapted with a wire mesh raised 1/8 inch off the bottom, allowing

food crumbs to fall through for collection and weighing. One

hundred g of regular chow was placed in each cage and after

3 days the remaining food and crumbs were weighed, and food

consumption was calculated.

Activity Measurements
The activities of WT and TCF8+/2 mice were determined as

described previously [36]. Briefly, 3-month-old mice were housed

singly in mock chambers to acclimatize to their surroundings for

24 h before being placed in chambers that record both horizontal

and vertical movement based on laser breaks. Prior and during the

experiment, mice were fed regular chow.

Cell Culture
3T3-L1 cells were obtained from ATCC and maintained in

DMEM with 10% calf serum and 1% penicillin/streptomycin. To

differentiate these preadipocytes into mature adipocytes, the cells

were grown to confluency, and 48 hours later they were treated

with differentiation media consisting of DMEM with 10% fetal

bovine serum supplemented with bovine insulin, dexamethasone,

and isobutylmethylxanthine [37–39]. Two days following treat-

ment, the medium was refreshed with DMEM +10% FBS and

10% bovine insulin.

C3H10T1/2 cells were differentiated as in [40]. In brief, cells

were maintained in DMEM with 10% fetal bovine serum and 1%

penicillin/ streptomycin. Fifty ng/mL of BMP-4 (bone morpho-

genetic protein-4) (R& D systems, Minneapolis, MN) was added to

the cells when they reached ,75% confluency. Once cells were

Figure 1. ZEB1 mRNA expression increases concomitantly with
weight in WT female mice. Mice were fed regular chow ad libitum or
a diet restricted to 75% of the calories of the ad libitum group (calorie
restricted). (A) Body weights (g) were recorded as indicated for mice
that were fed ad libitum (gray line) or calorie restricted (black line).
n = 3–7 mice/group. (B) Corresponding ZEB1 mRNA expression in
parametrial fat was determined by quantitative SYBR real time PCR.
ZEB1 mRNA was expressed relative to b-actin mRNA, ad libitum (gray
bars), calorie restricted (black bars). n = 3–7 mice/group (C) Western
blot confirming that ZEB1 protein expression increases in response to
increased body weight in mice fed ad libitum. GAPDH was used as a
loading control. Individual lanes are labeled as months of age.
doi:10.1371/journal.pone.0008460.g001
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confluent, they were treated to differentiate with the same cocktail

as the 3T3-L1 cells.

Statistics
Data were analyzed using the statistics package GraphPad

Prism version 4 (San Diego, CA). Data are represented as means

+/2 standard error of the means (SEM). Unless otherwise noted,

Student’s t-test was used to compare two groups. Two-way analysis

of variance (ANOVA) was used when two independent variables

are involved (Figure 2). Analysis of covariance (ANCOVA) was

performed using the R version 2.7.2 statistics package for the

glucose tolerance tests (The R Project for Statistical Computing, a

free online statistics package). An asterisk is indicated in all figures

where statistical significance of p,0.05 was achieved.

Results

ZEB1 mRNA Expression Increases Concomitantly with
Weight in WT Female Mice

Based on genome-wide association studies that mapped a gene

linked to obesity in the region of chromosome 10 where TCF8 is

located (10p11.2) [9,11–13] and on the roles of its resultant

protein, ZEB1, in mesenchymal tissue differentiation [15–19], we

speculated that ZEB1 contributes to the transcriptional regulatory

cascades that modulate adipogenesis and/or lipogenesis. As a pilot

study to address this question, the expression of ZEB1 was initially

monitored in WT female mice. While cyclical fluctuations in

circulating estrogen and progesterone are often considered an

undesirable complication associated with using females, we

reasoned that this was unlikely to be a significant problem because

of the duration of our experiments (2–18 months) and that these

hormones might even prove beneficial. As TCF8 is induced about

10-fold by either estrogen or progesterone [24,26], we predicted

that more dramatic effects might be expected in female mice than

in the males, which should have much lower levels of ZEB1. This

issue is of particular importance for the subsequent experiments in

this paper, which use mice that still retain one allele of TCF8

because null mice are perinatal lethal [25]. Although haploinsuffi-

ciency of ZEB1 in humans and mice is sufficient to cause posterior

polymorphous corneal dystrophy [41–43], no other significant

phenotypes have been reported; so, it was not clear whether

metabolic consequences could be detected in the heterozygotes.

Thus, the prediction was that any effects of ZEB1 haploinsuffi-

ciency would be more apparent in females. Also, because the

C57BL/6 males gain weight very rapidly and are obese by 3

months of age, we reasoned that the effects of ZEB1 might be

obscured in them.

To determine whether ZEB1 levels vary with adiposity, ZEB1

mRNA expression was measured in the parametrial fat of WT

female mice fed a RCD (regular chow diet) ad libitum or a calorie-

restricted diet (75% of the calories consumed by the ad libitum

group) from 2.5 to 18.3 months of age (Figure 1). The only

difference in the diets was a reduction in the amount of

carbohydrate in the restricted diet. As expected, the body weights

of the ad libitum group almost doubled by 10 months of age, then

plateaued for the duration of the experiment (Figure 1A). In

contrast, the calorie-restricted mice exhibited no significant

change in body weight. Real time PCR (qPCR) was done on

parametrial tissues harvested from mice at 3.5, 6.3, 9.3, 13.8, and

18.3 months of age to measure ZEB1 and b-actin mRNA levels

Figure 2. Female mice missing one TCF8 allele gain weight more readily. Mice were weaned to (A) a diet high in fat (60%) or (B) regular
chow diet, and body weights (g) of female TCF8 +/2 (black line) or WT (gray line) mice were recorded weekly as indicated. n = 8–34 mice per group,
with the number of mice decreasing due to sacrifices at 2 and 3 months. (A) Significance calculated by Student’s t-test between age-matched groups,
using the Bonferroni post-test correction set at p,0.005. (B) Significance calculated by Student t-test between age-matched groups. All mice from
12–18 weeks have p,0.05. However, when corrected for Bonferroni’s post-test at p = 0.003 only those from 14–16 weeks are significant. Significance
is denoted by *. (C) An example of the genotyping that was done to identify TCF8+/2 and WT mice. The band at ,500 bp is from the b-galactosidase
gene, which was inserted in one of the TCF8 alleles. The band at ,200 bp represents TCF8. (D) ZEB1 protein levels in parametrial adipose tissue of WT
(n = 3) and TCF8+/2 (n = 4) female mice at 3 months of age. GAPDH was used as a loading control.
doi:10.1371/journal.pone.0008460.g002
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(Figure 1B). ZEB1 expression was the same with both dietary

regimens at 3.5 months of age, but it increased dramatically with

body weight in the ad libitum group and was significantly higher

than those mice fed a calorie restricted diet by 9.3 months of age,

although the trend was there by 6.3 months of age (Figure 1B).

The same results were observed when the data were also corrected

for body weight (data not shown). Similarly, ZEB1 protein levels

also increased with body weight (Figure 1C), showing concordance

between ZEB1 mRNA and protein expression and suggesting that

ZEB1 regulates target genes in adipose tissue. Thus, an increase in

the total body mass correlated with an increase in ZEB1 mRNA

expression in parametrial fat, implying that ZEB1 has a specific

role in adipose tissue.

Female Mice Missing One TCF8 Allele Gain Excess Weight
More Rapidly on a High-Fat Diet Than Do WT Controls

To directly determine whether ZEB1 affects adipose accumu-

lation, female mice lacking one TCF8 allele (TCF8+/2) as

determined by PCR (Figure 2C) and western immunoblot analysis

(Figure 2D) were placed on a high fat diet (HFD, 60% of the

calories from fat) or a RCD at weaning (21 days of age). TCF8+/-

mice fed a HFD had significantly increased body mass by

1.3 months of age (Figure 2A). This increase in weight was

maintained until 2.3 months of age, when the rate of weight gain

started to decrease, and there was no difference in body weight

between age-matched groups for the remainder of the experiment.

We suspect that this is because sufficient fat mass has accumulated

by 3 months to overcome any modulatory effects of ZEB1 (see

Figure 3). These data indicate that ZEB1, directly or indirectly,

reduces the early increase in body mass, during the time when the

mice would be considered adolescent, when on a high fat diet.

On normal chow, the mice take longer to accumulate sufficient

body weight to be able to detect significant differences between the

genotypes (Figure 2B), and, as expected, they do not gain as much

total weight as those on a HFD (the y-axes differ between Figure 2A

and 2B). TCF8+/2 mice maintained the same weight as WT

controls on regular chow until 3.5 months of age, after which the

ZEB1 heterozygous mice became significantly heavier. This trend

continued until the termination of the study at 4.5 months of age.

Note that the effects of ZEB1 haploinsufficiency with either diet

occurred during a limited period or weight gain, when total body

weights were increasing from about 20 to 27 grams and was thus not

related to age of the animals as much as to actual body weight. The

mechanistic reason for this restricted interval when ZEB1

haploinsufficiency had a measurable consequence is unknown.

However, it is likely that once the mice on the high fat diet reach

about 27 grams that both genotypes had sufficient fat to overcome

the modulatory effects of ZEB1. Similarly, for mice fed a regular

diet, too little fat was present below weights of ,20 grams for ZEB1

to have a modulatory effect. Nonetheless, these experiments indicate

that there is a substantial interval where total body mass was higher

in the ZEB1 heterozygotes than in age-matched WT controls.

Increased Body Weight in TCF8+/2 Female Mice Is Due
to an Increase in Adipose Mass

To ascertain whether the increase in body weight exhibited by the

TCF8+/2 mice can be ascribed to increased adipose mass or to

other contributors such as lean muscle mass, Echo MRI was used to

measure total fat mass, lean mass, free water, and total body fluids on

mice fed either the HFD or RCD (Figure 3). There was no difference

in free water between TCF8+/2 mice and WT controls at any age

on either diet. Interestingly, on a HFD, TCF8+/2 mice exhibited

increased total fat mass by 2 months of age, which was maintained at

3 months (Figure 3A, left panel). By 5 months, both groups had a

high fat mass, and no difference was observed with genotype.

However, an increase in lean mass was also observed in TCF8+/2

mice at 2 months of age, suggesting that these young mice are

heavier overall and that both lean mass and fat mass contributed to

the difference in total body fluids and overall body weight at this

early age. These mice were not significantly longer that the WT mice

as determined by measurement from nose to tail (data not shown).

To determine whether the increase in body weight at 2 months is

primarily a result of increased adipose tissue or increased lean mass,

the ratio of fat mass to lean mass was calculated (Figure 3B, lowest

left panel). Although there was a trend for a higher total fat to lean

mass ratio in the mice fed a high fat diet at 2 months, only 4 mice

were available for that time point and statistical significance was not

achieved. In contrast, the increased body weights of the heterozy-

gous mice at 3 months can be ascribed entirely to increased fat mass.

These data as a whole indicate that the increase in body weight was

due primarily to an increase in fat mass, not just to an overall

increase in the size of the mice or lean muscle mass.

Whole body composition by Echo MRI was also done on

TCF8+/2 and WT female mice fed regular chow (Figure 3A,

right panel). In agreement with the body weight data (Figure 2B),

TCF8+/2 mice had no difference in adipose mass at 2 months of

age (Figure 3A, right panel). However, at both 3 and 5 months of

age the TCF8+/2 mice had increased total body fat compared to

WT mice. Similarly, the ratio of fat mass to lean mass also

increased in TCF8+/2 mice at 3 and 5 months of age (Figure 3B,

lowest right panel). Taken together, these data suggest that ZEB-1

specifically reduces adipose mass in female mice regardless of the

diet consumed.

TCF8+/2 Mice Do Not Store the Increased Fat Mass
Preferentially in the Parametrial Fat Pads

Differential gene expression occurs in the various adipose depots

[44], and ZEB1 expression is higher in visceral fat than in

subcutaneous fat [21]. ZEB1 is also highly expressed in the human

uterus [26,27] and is estrogen-responsive in multiple tissues

[24,26,27,31]. For these reasons, we hypothesized that ZEB1

may have a greater impact on the parametrial (gonadal) fat pads

than on the other adipose depots. Parametrial fat pads were

harvested monthly (2–6 months of age) from TCF8+/2 female

mice and WT controls fed either a HFD or RCD (Figure 4). No

significant differences were observed with regard to genotype or

diet except at 3 months, where the TCF8+/2 mice fed regular

chow had significantly higher parametrial fat pad weights

compared to WT controls. However, these data in toto suggest

that ZEB1 does not act locally in gonadal depots to affect fat

deposition but instead exerts its effects more globally.

Increased Body Fat in TCF8+/2 Mice Is Not Due to
Increased Food Consumption

One explanation for the increased adipose tissue accumulation

by the TCF8+/2 mice on both the high and low fat diets is that

they might consume more calories. To assess this, the weight of

regular chow consumed by 2.5 month old TCF8+/2 and WT

female mice over a period of three light and dark cycles was

measured (Figure 5A). No significant differences in food intake

were observed in any of the three repetitions. The body weights of

2.5-month-old mice fed regular chow are not statistically different

between the genotypes (Figure 2B and data not shown), so

metabolic changes as a result of increased body weight do not

compromise this assessment. These data indicate that ZEB1 has

no impact on caloric consumption.

ZEB1 Opposes Fat Accumulation
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Increased Adiposity of Female TCF8+/2 Mice Is Not Due
to Decreased Physical Activity

As the TCF8+/2 mice do not consume more calories, another

explanation for their enhanced adiposity is that they might be

more sedentary. Evidence in Drosophila suggests that total loss of

the ZEB1 ortholog causes impaired development of neuromus-

cular junctions [45,46]. This raises the possibility that the

TCF8+/2 mice may have minor muscle or motor neuron

developmental deficiencies, which could restrict their mobility

and thus reduce caloric expenditure. In addition, female mice

primarily alter energy expenditure rather than energy intake to

regulate body weight [33], so physical activity was extensively

Figure 3. Female TCF8+/2 mice fed a high-fat or regular chow diet have increased adipose mass early in fat acquisition. Echo MRI
analysis of (A) whole body composition at 2, 3, and 5 months of age and (B) the fat/lean mass ratio of TCF8+/2 (black bars) or WT (gray bars) of mice
fed a high fat diet (left panel) or regular chow diet (right panel). Note the difference in the y-axes for (B). n = 4–8 mice per group. Only 4 mice were
available for the 2 month-old group on the high fat diet.
doi:10.1371/journal.pone.0008460.g003
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characterized. Three-month-old TCF8+/2 and WT mice fed

regular chow were monitored in an activity chamber for 24 hrs

(Figures 5B–E). Laser breaks recorded movement both horizon-

tally and vertically. Activity was quantified for the actual

ambulatory distance (Figure 5B) and for the duration or time

spent performing an activity (Figure 5D). The velocity at which

ambulation took place was estimated by calculating m/sec

(Figure 5C). No differences were observed in any type of activity

or overall time spent being active (Figure 5E, p = 0.3395). Thus,

these data imply that significant metabolic differences must exist

between the two genotypes that contribute to differences in fat

accumulation.

Figure 4. The mass of parametrial fat pads does not differ with genotype. The mass of parametrial fat pads for TCF8+/2 (black bars) and WT
controls (gray bars) ages 2–6 months for mice fed (A) a high fat diet or (B) regular chow was determined by weighing. Note differences in the y-axes.
Data are represented as a ratio of parametrial fat weight to total body weight. n = 5–12.
doi:10.1371/journal.pone.0008460.g004

Figure 5. Increased fat accumulation is not the result of increased food consumption or decreased physical activity. (A) Food intake
was measured for 72 hours in 2.5-month-old TCF8+/2 and WT mice fed regular chow. n = 10 mice per group. (B) The total distance the mice moved.
(C) The estimated velocity at which the mice moved. (D) The duration of each activity or time spent resting. (E) Total duration the mice spent
performing any activity. TCF8+/2 mice are depicted by black bars and WT controls by gray bars. n = 15–17 mice per group for B–E. No significance
differences were found for time spent on any activity, resting, total activity, estimated velocity, or number of times an activity was performed.
doi:10.1371/journal.pone.0008460.g005

ZEB1 Opposes Fat Accumulation

PLoS ONE | www.plosone.org 7 December 2009 | Volume 4 | Issue 12 | e8460



TCF8+/2 Mice Have a Window of Impaired Glucose
Uptake

Obesity has many metabolic consequences. To investigate

whether weight differences due to the loss of one copy of TCF8 are

sufficient to disrupt metabolic homeostasis, glucose tolerance tests

were performed on TCF8+/2 and WT controls fed either a HFD

or RCD (Figure 6). Mice were injected with a bolus of glucose that

ranged from 0.5–3 mg/kg depending upon their body weight. At

2 and 3 months of age (Figures 6A and B, respectively), TCF8+/2

mice fed a HFD did not process glucose as well as WT controls.

Analysis of co-variance (ANCOVA) using body fat as a covariate

revealed that the TCF8+/2 genotype contributed to the difference

at 3 months of age, not just the fat mass. However, ANCOVA

could not determine whether genotype contributed to the

statistical difference at 2 months of age. As expected, there was

no difference in glucose utilization at 5 months of age (Figure 6C),

presumably because both groups had excess fat mass by that time

(Figure 3). On a RCD, there was no difference in glucose uptake

between TCF8+/2 mice and WT controls at either 3 or 5 months

of age (Figures 6D and E). While there is significantly more

adipose tissue in the heterozygous mice (Figure 3), the actual mass

appears to not be enough to confer decreased glucose uptake.

These data demonstrate, as anticipated, that glucose processing is

impaired in overweight mice. Of more interest, ZEB1 haploinsuf-

ficiency independently reduces glucose uptake during part of the

time when the mice are gaining excessive weight while on a HFD.

ZEB1 Expression Increases During Adipogenesis
ZEB1 is involved in the development of several tissues,

opposing the differentiation of some mesenchymal tissues

[15,17,47–50] and promoting the differentiation of others

including T-cells [25] and smooth muscle cells [48,51,52]. To

explore the role, if any, that ZEB1 has in adipose tissue

development, endogenous ZEB1 mRNA levels were measured

throughout differentiation of NIH3T3-L1 pre-adipocytes into

mature adipocytes. The cells were induced to differentiate as

described in Methods, and ZEB1 mRNA expression was

measured using qPCR on the indicated days relative to treatment

Figure 6. Female TCF8+/2 mice exhibit impaired glucose uptake early in fat acquisition. Mice were fed a high fat diet (A–C) or regular
chow (D, E) until they were 2, 3, or 5 months of age. Blood glucose was measured at the indicated times following injection of glucose at 2 mg/kg (A,
B, E), 0.5 mg/kg (C), or 3 mg/kg (D). Area under the curve (AUC) was calculated and graphed as histograms. When Student’s t-test was used to
analyze the AUC, the TCF8+/2 mice were significantly different from WT in their ability to manage blood glucose levels as indicated by the asterisks.
ANCOVA was performed for A and B with body fat as a co-variate for the differences in glucose tolerance between genotype to assess whether
genotype contributed independently of fat mass. For A: genotype p = 0.006, body fat p = not significant, for B: genotype: p = not significant, body fat
p = not significant. TCF8 +/2 (black line) or WT (gray line), n = 5–8 mice per group.
doi:10.1371/journal.pone.0008460.g006
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with differentiation cocktail (Figure 7A). ZEB1 expression shows

about a 4-fold increase in ZEB1 mRNA levels when the cells go

from proliferating (Days -4 and -3) to confluency (Day 0). By Day

2, ZEB1 mRNA levels return to that observed in pre-adipocytes

and then increase to maximal levels (about 5-fold) by four days

after treatment. The changing ZEB1 mRNA levels suggest that it

may have a role in the early and late stages of adipocyte

development. This is in agreement with our observations in mice

where ZEB1 increases in response to increased adipose accumu-

lation (Figure 1). PPARc and cyclin D mRNAs were also

measured to serve as positive controls for adipocyte development

(Figures 7B and C). The expression of both mRNAs was consistent

with proper adipocyte differentiation.

Because 3T3-L1 cells are already at the pre-adipocyte stage,

they can not be used to assess whether ZEB1 affects commitment

to the adipocyte lineage. To determine whether ZEB1 expression

is altered prior to commitment to the adipocyte lineage, the

C3H10T1/2 pluripotent mesenchymal cell line was used. The

cells were treated with BMP-4 at Day -4 to commit them to the

pre-adipocyte lineage [40,53]. Once they were pre-adipocytes and

reached confluency, they were triggered at Day 0 to differentiate

into adipocytes with the same differentiation cocktail as was used

for the 3T3-L1 cells. Endogenous ZEB1 mRNA expression was

measured throughout commitment and differentiation at the

indicated time points (Figure 7D and E). A similar trend was

observed with the C3H10T1/2 cells as was seen with the 3T3-L1

Figure 7. ZEB1 expression changes similarly in two models of adipogenesis in cell culture. 3T3-L1 cells (left panels) were differentiated
from pre-adipocytes into mature adipocytes. Cells reached confluency at Day -2 and were treated with a differentiation cocktail on Day 0. RNA was
harvested in triplicate on the days indicated, and mRNA expression were measured by qPCR for ZEB1 (A), PPARc (B), and Cyclin D1 (C). C3H10T1/2
pluripotent mesenchymal stem cells (right panels) were committed to the pre-adipocyte lineage by treatment with BMP-4 at Day -4, when they were
75% confluent. Cells reached confluency at Day -2 and were treated with differentiation cocktail on Day 0. RNA was harvested in triplicate at the days
indicated and subjected to qPCR for ZEB1 (D) and PPARc (E). All mRNA levels were normalized to ribosomal protein 36B4. These experiments are
representative of differentiations done 5 and 6 times, respectively.
doi:10.1371/journal.pone.0008460.g007
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cells. ZEB1 mRNA levels did not change upon commitment of the

cells to the adipocyte lineage (Day -3), but it did increase at

confluency (Day 0), decrease with the initiation of differentiation

(Day 1), and then increase with lipid accumulation (Day 4).

PPARc was measured (Figure 7E) and cells were stained for oil red

O (data not shown) to confirm a high level of differentiation. These

data suggest that ZEB1 either does not regulate commitment to

the adipocyte lineage or that sufficient ZEB1 is already present in

the mesenchymal precursor cells.

Discussion

Based on genome wide association studies that link obesity to

the region on chromosome 10 that encompasses the TCF8 gene

[9,11–13] and on the ability of ZEB1 to impact the differentiation

of other mesenchymal cell lineages [15–19], we hypothesized that

ZEB1 opposes obesity. Using TCF8+/2 mice, we demonstrate

herein that ZEB1 haploinsufficiency elicited excessive adipose

tissue accumulation in female mice early in fat acquisition

(Figures 2 and 3). This increased adiposity occurred on both

regular chow and high fat diets, although significant differences in

body weight were delayed by one month on the regular diet. These

data suggest that ZEB1 is an important modulator of adipose

tissue mass, not just under circumstances of high caloric pressure

but also with a normal diet. However, there is one important

caveat to this interpretation. Knockout of TCF8 was accomplished

by insertion of a 3.8 Kb DNA fragment containing the b-

galactosidase gene into the first exon. Thus, this insertion into the

TCF8 locus could be causing the effects on adipose accumulation.

While this cannot be ruled out, the observations that endogenous

ZEB1 expression increases in the adipose tissue of WT mice with

increased fat mass (Figure 1B) and that ZEB1 fluctuates similarly

in two WT cell lines during adipogenesis (Figure 7) argues against

an off-target effect of this insertion.

In order to begin to delineate the potential mechanisms by

which ZEB1 represses obesity, food intake and activity were

measured. No differences were observed in food consumption

between TCF8+/2 and WT mice or in the total amount or

duration of physical activity (Figure 5), which indicates that ZEB1

is affecting something other than energy intake or expenditure.

This raises the question of whether ZEB1 is acting directly in

adipose tissue and/or in other tissues. Certainly most of the genes

associated with monogenetic or syndromic obesity described thus

far are expressed in the brain [54]. However, the large increase in

ZEB1 expression in parametrial fat pads that occurs as the mice

gain weight (Figure 1B) implies at least some role for ZEB1 in

adipose tissue. Furthermore, the parallel fluctuations in ZEB1

expression observed during adipogenesis in two cell lines (Figure 7)

suggest that ZEB1 is acting, at least in part, locally within the

adipocyte.

The effects of ZEB1 haploinsufficiency were restricted, at least

in this experimental paradigm, to a period of a few weeks that

correspond to when the mice are initially gaining fat and are about

20 – 27 g in size. When the mice are smaller, ZEB1

haploinsufficiency does not affect adiposity, perhaps because they

are growing rapidly and little fat is accumulating. When the mice

have matured and have gained almost 4 g of fat tissue, then

significant differences in fat mass exist between the TCF8+/2 and

WT mice (Figures 2A and B). The fact that ZEB1 expression

increases dramatically in adipose tissue with fat accumulation

(Figure 1B) complicates these experiments as there were no

differences in ZEB1 levels between the genotypes at 4 or 5 months

of age (data not shown). This latter point raises a paradox that

exists with these data, the observation that ZEB1 mRNA increases

in mice as they gain adipose mass, yet ZEB1 haploinsufficiency

leads to increased fat accumulation (Figure 3). High expression of

ZEB1 has also been reported in stem cells stimulated to

differentiate into adipocytes in vitro [2] and in obese women

compared to those of normal weight [21]. Thus, ZEB1 opposes fat

accumulation yet is highly expressed in fat. One plausible

explanation is that ZEB1 increases in order to repress additional

fat accumulation. It is also possible that ZEB1 has multiple roles in

modulating adipogenesis and adiposity. Many of these questions

will need to be resolved using adipose tissue-specific TCF8

knockouts.

Another unexpected result is the increase in lean mass as well as

fat mass in TCF8+/2 mice at 2 months of age on a HFD. This did

not occur on the RCD at either 2 or 3 months of age or on the

HFD at 3 months of age. While this could be an experimental

anomaly, this seems unlikely as the mice were all from the same

breeder parents, were age-matched, and were housed in the same

room. One possibility relates to the observations that ZEB1

opposes skeletal muscle differentiation in Drosophila [55] and in cell

culture [16]. Diminished amounts of ZEB1 could lead to increased

muscle differentiation and thus lean mass in a context where the

mice are rapidly gaining in body mass, i.e., a HFD. However, the

TCF8 null mouse does not exhibit enhanced muscle mass [15].

Instead, its overall size is diminished with no obvious histological

differences in the muscle system or in the expression of key

myogenic genes. In contrast, heterozygous mice appear morpho-

logically normal [15]. Thus, the increase in lean muscle mass in

our mice likely relates in some way to the rapid increase in body

weight and fat mass when they are on a HFD.

Insufficient data are available to assess whether diminished

ZEB1 mass or function affects adiposity in humans. Two studies

demonstrated that one form of posterior polymorphous corneal

dystrophy (PPCD) is caused by heterozygous mutations in TCF8

[41,42]. Of the 9 patients in those studies who have mutations in

TCF8, none were reported to be obese or overweight. Thus, it is

possible that ZEB1 haploinsufficiency has no affect on fat

accumulation in humans. Alternatively, as these mutations are

mostly in Exon 7 (of 9), some functions of ZEB1 may be retained.

Certainly the four N-terminal zinc fingers should be intact and

able to bind DNA in all of these patients. In addition, as all these

patients have visual problems and most have other abnormalities,

it is possible that poor health contributes to their lean phenotype.

Additional studies will obviously be required to determine whether

ZEB1 affects adiposity in humans.

Another unanswered question is whether ZEB1 deficiency

contributes to fat accumulation in males as well as females.

Because ZEB1 is induced by estrogen [24,26,27,31] and because

estrogen influences a number of metabolic events that affect

adiposity and glucose homeostasis [32,33], we decided to use

female mice for these initial studies. Even though these mice are

cycling through the estrous cycle and thus have fluctuating

estrogen and progesterone levels, we predicted that ZEB1 levels

would be higher in females than in males because these sex steroid

hormones induce TCF8 in females [24,26,56]. However, it is

possible that significant effects of ZEB1 haploinsufficiency on some

parameters were overlooked in our study because of the relatively

small numbers of mice used per treatment group and because their

estrous cycles were not synchronized. Furthermore, because

progesterone and testosterone may oppose estrogen’s effects

[57], more dramatic consequences of genotype may have been

seen in ovariectomized animals treated with estrogen. The fact

that significant effects of ZEB1 haploinsufficiency on fat

accumulation (Figure 3) and glucose uptake (Figure 6) were

observed under these conditions attests to the importance of ZEB1
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in modulating energy homeostasis. Nonetheless, we anticipate that

ZEB1 mediates at least some of the effects of estrogen in

attenuating fat accumulation. Thus, even in these reproductively

intact mice, estrogen is unable to signal properly because of

reduced ZEB1 levels. Experiments are in progress with male mice

and with anti-estrogen treated female mice to assess whether ZEB1

mediates estrogen’s effects on fat metabolism, whether it acts

independently of estrogen, or both.

Even though ZEB1 insufficiency contributes to fat accumulation

only during the time when fat mass is modest, this is a critically

important time. Considerable evidence indicates that once fat is

accrued in humans, especially in adolescents, it is difficult to

reverse that and most individuals remain overweight or obese for

life [58,59]. Thus, the observation that ZEB1 modulates adiposity

during this early period of fat accumulation may have important

implications for preventative measures. This is particularly true for

females as adipose tissue-specific estrogen receptor agonists could

be developed to locally modulate ZEB1 levels.

Transcriptional cascades regulate the differentiation of mesen-

chymal stem cells into mature adipocytes [38,60]. While the major

players have already been identified, modulators such as ZEB1 are

still being elucidated. As most genetic causes of obesity are

polygenic [6], a complete understanding of the proteins involved

will be necessary to determine when a cell commits to the

adipocyte lineage, when it differentiates into an adipocyte, and

how lipids are stored within adipocytes. The data herein

demonstrate for the first time that a diminished amount of the

ZEB1 transcription factor can lead to increased adiposity during

early weight gain, at least in females. They also substantiate

previously published genetic association studies implicating the

TCF8 locus as one of the loci on chromosome 10 linked to

childhood obesity [9,11–13]. The goal now is to determine how

ZEB1 fits into the transcriptional pathways that modulate fat

metabolism.
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