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Genome-wide co-expression analysis is often used for annotating novel gene functions

from high-dimensional data. Here, we developed an R package with a Shiny visualization

app that creates immuno-networks from RNAseq data using a combination of Weighted

Gene Co-expression Network Analysis (WGCNA), xCell immune cell signatures,

and Bayesian Network Learning. Using a large publicly available RNAseq dataset

we generated a Gene Module-Immune Cell (GMIC) network that predicted causal

relationships between DEAH-box RNA helicase (DHX)15 and genes associated with

humoral immunity, suggesting that DHX15 may regulate B cell fate. Deletion of DHX15

in mouse B cells led to impaired lymphocyte development, reduced peripheral B cell

numbers, and dysregulated expression of genes linked to antibody-mediated immune

responses similar to the genes predicted by the GMIC network. Moreover, antigen

immunization of mice demonstrated that optimal primary IgG1 responses required

DHX15. Intrinsic expression of DHX15 was necessary for proliferation and survival of

activated of B cells. Altogether, these results support the use of co-expression networks

to elucidate fundamental biological processes.
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INTRODUCTION

The technological advances in the “Omics” field generating high-dimensional datasets requires
advanced mathematics and computational biology models (1). Analysis of these large “Omics”
datasets through machine learning methods provides an important source for discovering
biological processes. Such approaches are transforming the biological and medical sciences (2, 3).
Machine learning methods available to the broader scientific community could accelerate novel
biological insights. Here, we developed an R package with a Shiny visualization app that uses
a machine learning strategy to simplify the analysis of large datasets yielding novel insight into
immune function.

Two statistical tools commonly used for analysis of genome-wide expression data to predict
gene function and disease association through gene-modules are Weighted Gene Co-expression
Network Analysis (WGCNA) and Bayesian Network learning (4, 5). Both methods use sample to
sample variation to generate co-expression networks, however, Bayesian Network learning searches
for parent to child relationships from observational data by testing different possible combinations
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(5, 6). This can be used to infer causality at the cost of
greater computer power given the high dimensionality of
transcriptomics data. Functional predictions in co-expression
networks are based on a guilty by association principle, in which
genes with highly correlated expression patterns are likely to have
functional relationships in pathways.

One of the biological disciplines that have gained
extraordinary benefit from the Omics approach is the one
that studies the immune system under healthy and disease
conditions. Large high-dimensional studies of immune cells and
immune responses have profoundly increased our understanding
of the inner works of the immune system in normal and stressed
situations (7–12). Although, substantial information has been
harvested from these Omics studies there is consensus that the
possibilities for discovery within these datasets remain fruitful.

Here, we used an immune-modified pipeline from Agrahari
et al. (11) to predict causal relationships between co-expression
modules and immune cell signatures from bulk RNA expression
data. This workflow utilizes the power of WGCNA for
compressing high-dimensional expression data into module
eigengenes, which are merged with immune cell signature
scores. In this format, Bayesian Network learning and inference
can generate a Gene Module-Immune Cell (GMIC) network
on a standard desktop computer. The generated GMIC
network predicted a novel function for DHX15, a member of
the DExD/H-box RNA helicase family, in adaptive immune
responses. Further in vivo and in vitro work uncovered a role
for DHX15 in lymphocyte development and during humoral
immune responses.

MATERIALS AND METHODS

Gene-Module Immune Cell Network
RNAseq data from Diffuse Large B Cell Lymphoma patient
biopsies (n= 562) were obtained (provided as normalized FPKM
values in log2 scale) (12) and processed for analysis. To remove
genes of low frequency, transcripts with 0 values in more than
90% of the samples were excluded. The expression profile of a
subset of patients (n = 5) were excluded as outliers based on
sample clustering. A final matrix containing 21,565 transcripts
for 557 patients was analyzed using the WGCNA package in
the R statistical computing environment (13). A “signed hybrid”
network was generated using the “bicor” setting, soft threshold
power of five, and a minimum module size of 10. Modules with
distance heights lower than 0.25 were merged, which resulted in
69 modules. Names for modules were generated based on gene
ontology enrichment using the GOstats package in R (14). Cell
signature scores for patients were generated from the processed
expression matrix using xCell (15) with default settings.

To infer causal relationships between modules and cell
signature scores, we used the bnlearn package in R (16). Briefly,
cell signature scores (centered and scaled) were merged with
module eigengenes and then discretized into three breaks using
Hartemink’s method (17). The Bayesian Network learning was
carried out using the boot.strength function (500 replicates) with
default tabu settings and bde score. Networks were averaged
using the averaged.network function with default settings.

Code Availability
We developed the GMIC generating code into an R package,
called GmicR, which can be download from Bioconductor
via doi: 10.18129/B9.bioc.GmicR.

Computer
GMIC network was performed on an iMac 4 GHz intel Core i7
processor with 32 GB of RAM. The total computer running time
was approximately 1.3 days for the complete immune-network.

Mice
Dhx15flox ES cell line in the C57Bl/6 background was obtained
from EUCOMM, and injection of pseudo-pregnant females
was performed by the Mouse Genetic Core at The Scripps
Research Institute (La Jolla, CA). Briefly, a construct containing
the Dhx15 exon2 sequence flanked by two flox sites was used
for the generation of the targeted knock-in in JM8A3.N1
ES cell line. Neomycin resistant ES clones were selected and
screened for locus-specific target insertion by PCR, and positive
ES clones were selected for in vivo injections. Neomycin
resistant gene was excised by crossing Dhx15flox mice to a
B6.FLPo expressing strain. Dhx15flox/flox mice were maintained
in house as either homozygous or crossed to Cd19cre and
Cd4Cre. The B6.129P2(C)-Cd19tm1(cre)Cgn/J (Cd19cre) mouse was
provided by Rickert et al. (18). B6.SJL-PtprcaPepcb/BoyJ (B6.SJL)
and B6.Cg-Tg(Pgk1-flpo)10Sykr/J (B6.FLPo) (19) mice were
purchased from Jackson Laboratory (BarHarbor,ME). Validation
of DHX15 knock-out is shown in Supplementary Figure 2. All
mice were backcrossed and housed in the Animal Facility at
Sanford Burnham Prebys Medical Discovery Institute (La Jolla,
CA), and experiments were conducted with the approval of the
Institute’s IACUC ethics committee.

DNA Extraction and PCR Genotyping
Extraction of DNA from mouse tails used the QuickExtract
DNA Extraction (Lucigen), following standard manufacture’s
procedure. Amplification of Dhx15 was carried out using a
Biorad C1000 thermal cycler with a programmed cycle of
3min for the initial denaturation at 95◦C, 35 cycles of 30 s at
95◦C for denaturation, 30 s at 61◦C for annealing, and 30 s at
72◦C for extension with the final extension at 72◦C for 3min.
PCR reactions used for Cd19cre and Cd4cre genotyping were,
respectively; 2min of initial denaturation at 94◦C; 35 cycles of
1min at 94◦C for denaturation, 1min at 62◦C for annealing, and
1.5min at 72◦C for extension; final extension at 72◦C for 5min;
CD4cre for 4min of initial denaturation at 94◦C; 35 cycles of 30 s
at 94◦C for denaturation, 45 s at 60◦C for annealing, and 45 s at
72◦C for extension with final extension at 72◦C for 5min. The list
of primers is provided in Supplementary Table 2.

Immunization and IgG1 ELISA
Mice were immunized with chicken gamma globulin conjugated
with the hapten 4-hydroxy-3-nitrophenylacetyl (NP-CGG,
Biosearch Technologies), 100µg/ml in saline was mixed at
1:1(v/v) ratio with the adjuvant Imject R© Alum (Thermo
Scientific), and mice immunized by intraperitoneal injection.
Mice were sedated with isoflurane prior to retro-orbital blood

Frontiers in Immunology | www.frontiersin.org 2 December 2019 | Volume 10 | Article 2903

https://doi.org/10.18129/B9.bioc.GmicR
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Detanico et al. DHX15 Modulation of B Cell Responses

collection. Specific antibodies (Ab) against NP were determined
by ELISA, using NP18-BSA (Biosearch Technologies) and
SBA Clonotyping System-C57BL/6-HRP (SouthernBiotech) as
previously described (20). NP Specific Abs to the NP hapten
were determined by 2–3-fold serial dilution of serum samples,
and relative anti-NP Ab units were calculated using a standard
serum pool from mice immunized with NP-CGG.

RNA Extraction, cDNA Synthesis, and
RT-qPCR
RNA was extracted using RNeasy Mini kit (QIAGEN) and
quantified using the ThermoFisher Nanodrop One. cDNA was

synthesized using the iScript
TM

cDNA Synthesis Kit (BioRad) and
RT-qPCR used the iTaqTM Universal SYBR Green One-Step Kit
(primers listed in Supplementary Table 2).

NanoString
NanoString nCounter R© Mouse Immunology Panel assay
was carried following manufacturer’s instructions. Data was
analyzed using the DESeq2 (21) package for R (Wald’s Test),
with apeglm log-fold change shrinkage https://doi.org/10.1093/
bioinformatics/bty895 and the following hypothesis model:
(Raw NanoString data) ∼ Genotype ∗ Stimulation. P adjusted
values (pAdj) were calculated using the Benjamini & Hochberg
method. Differentially expressed genes with pAdj < 0.1 were
considered significant.

Flow Cytometry and Cell Culture
Animals were humanely euthanized by CO2 inhalation following
IACUC approved standard procedures. Organs were harvested
and single cell suspensions generated using a 70µm cell strainer
(Corning). Cell suspensions were pre-treated with ACK red
blood cell lysis buffer. Immunophenotyping was performed in
the presence of PBS supplemented with 2% FCS and 0.05%
azide on ice. Analytical cytometry was performed in the Sanford
Burnham Prebys Medical Discovery Institute Flow Cytometry
Core. B cells were purified with EasySep B cell enrichment
kit (STEMCELL Technologies), and stimulation assays were
performed as indicated in the figure legends using mouse BAFF
(25 ng/ml), anti-CD40 (5µg/ml), and anti-IgM (10µg/ml).
Supplementary Table 2 provides a list of the reagents used.

Statistics
P values were calculated using the multiple linear regression
function on R studio. Graphs were generated using GraphPad
Prism version 8.0.0 (San Diego, CA).

RESULTS

Co-expression Analysis and Gene-Module
Immune Cell Network
The current advances in computational biology and machine
learning have opened the possibilities to retroactively investigate
and re-purpose public large datasets to generate hypotheses
based on novel gene-gene co-expression relationships. Here,
we incorporated an immune cell signature algorithm to the
co-expression workflow from Agrahari et al. (11) to develop

an open access Shiny visualization app for the analysis and
the generation of GMIC networks from expression datasets.
As a proof of concept, we generated a GMIC network
from a publicly available large RNA expression dataset from
lymphoma patient biopsies. We chose this dataset because it
was readily accessible, had a high sample count (n = 557),
and contains heterogeneous molecular signatures. Although,
B cells are the predominant cell type from these biopsies,
we used xCell to enumerate other detectable immune cell
signatures. In this immune-network, genes with similar co-
expression patterns were segregated into 70 gene-modules (69
functional modules plus module 0) (Supplementary Figure 1A).
By including immune-cell signature scores and emphasizing
biological function, rather than predicting markers of disease, we
were able to infer causality between immune cell signatures and
eigengenes (Figure 1A). This workflow was used to investigate
immune-pathways and to uncover new gene-gene relationships
from a published RNAseq dataset (12), as shown in Figure 1B

(see Supplementary Figure 1A and Supplementary Table 1 for
a complete list of genes and modules). An open access version
of the GMIC generating package is available for download
at doi: 10.18129/B9.bioc.GmicR.

We focused our analysis on modules linked to antigen
presentation, with particular emphasis on the MHC class
II pathway module (MHCII-48). Antigen presentation of
exogenous antigens via MHC II is one of the pillars of the
adaptive immune response, and this pathway is essential for both
healthy and diseased immune responses (22). TheGMIC network
predicted that transferrin transport (TfT-40) and spliceosomal
complex disassembly (SpCDis-39) had a strong relationship
with the MHC-II module. Moreover, TfT-40 module could
indirectly influence the B cell signature in the samples, through
its relationship with cellular detoxification module 15 (Detx-
15) (Figure 1B and Supplementary Figure 1). Among the genes
in TfT-40, DHX15 stood out as a candidate because of its
rank of influence on MHCII-48, TfT-40, and Detx-15 modules
(highest kTotal with the second highest between-centrality score,
Figure 1C and Supplementary Figure 1B) as well as its known
function as an innate immune sensor (23–25).

Lymphopenia in Conditional Dhx15
Deficient Mice
The significant influence of DHX15 on module TfT-40, as
well as the direct-relationship of TfT-40 and Detx-15, and
consequently the B cell signature in our analysis, suggested
a novel and consequential role for DHX15 in modulating
humoral immune responses. Understanding the role of DHX15
in primary human B cells faced technical challenges including
limited cell numbers due to donor availability and difficulty to
manipulate genetically without use of an activating stimulus.
The high degree of similarity between human and mouse
DHX15 RNA sequences (>92%), prompted the development of
a mouse strain in which DHX15-deficiency can be restricted
to the B cell lineage (Supplementary Figure 2). Ablation of
Dhx15flox/flox driven by the Cd19 promoter resulted in mice
with decreased splenic mass and cellularity (Figures 2A,B). The
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FIGURE 1 | Analysis pipeline and immune-networks. RNAseq data from 557 subjects originally described by Schmitz et al. (12) was used in our co-expression

workflow to create the modular immune-network. (A) Schematic illustration of the analysis pipeline used to generate the immune-networks. Cell signatures were

(Continued)
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FIGURE 1 | added using xCell signature-based method, and co-expression genes were first determined using WGCNA. Eigengenes were determined using principal

component analysis of the modular genes. Bayesian Network learning was applied to eigengenes to create the full immune-network and modules with cell signature.

An open access version of the GMIC generating package is available from doi: 10.18129/B9.bioc.GmicR. (B) Simplified modular network from

Supplementary Figure 1A, focused on MHCII class II presentation (MHCII-48), and module TfT-40. (C) Representation of the most influential genes for the TfT-40

module. The total number of edges were minimized by using a 0.04 threshold. Sizes of nodes and labels represent betweenness centrality calculated by Cytoscape

from the depicted directed network, and it is proportional to the gene influence. DHX15 is highlighted in a bold italic font. For an expanded version see

Supplementary Figure 1B.

FIGURE 2 | B cell lymphopenia in DHX15 B cell conditional KO mice. (A) Spleen weight in mg from experimental (filled symbols) and negative littermates (opened

symbols). (B) Immunophenotyping of the spleen. Cell numbers were defined by the percentages of CD45+Singlets+Live gate+ (Total cells). Additional leukocyte gates

were defined as followed: T cells (CD3+B220−CD19−), B cells (B220+CD19+CD3−), DCs (CD11c+CD19−CD3−F4/80−), pDCs (DCgate+CD11cintB220+), and

macrophages (F4/80+CD19−CD3−CD11c−). (C) Spleen B cell populations were defined according to Supplementary Figure 3A. (D,E) Bone marrow

immunophenotyping. B cell development fractions were determined using Supplementary Figure 3B gating strategy. Percentages and total numbers were relative

to the Live gate+ Singlets+ FSC-A/SSC-A gate. Total bone marrow cell numbers were relative to two fibulas per mouse. Each symbol represents an individual animal,

from the combined results of 3–4 experiments. Animals were 8–14 weeks of age, and from both sexes. Statistical analysis was performed with R studio using the

multiple linear regression function and the following equation: rank(Variable Y)∼Genotype + Sex + Replicate. Only P values smaller than 0.05 were reported.

Dhx15flox/floxCd19cre mice showed no differences in all major
leukocyte cell types, except for an approximate 4-fold reduction
in the total numbers of B220+CD19+ B cells (Figure 2B).
Curiously, B cell lymphopenia was not restricted to a particular B
cell subtype (Figure 2C), suggesting that B cell development was
impaired in Dhx15flox/floxCd19cre mice. To test this hypothesis,

we analyzed bone marrow cells from Dhx15flox/floxCd19cre and
littermate control mice. Indeed, defects in B cell development
occurred as early as the pre-B cell stage in Dhx15flox/flox Cd19cre

mice (Figures 2D,E).
DHX15 is broadly expressed in hematopoietic cells

(Immunological Genome Project database (26), http://www.
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immgen.org/), and some members of the DExD/H-box RNA
helicase family are known to be essential for RNA metabolism
(27–29), suggesting that DHX15 function in hematopoiesis
extends beyond the B lymphocyte lineage. To determine if
the role of DHX15 in hematopoiesis is restricted to the B cell
compartment, we crossed the Dhx15flox/flox mice to a Cd4-Cre
expressing strain, specifically ablating DHX15 expression in T
cells. In this Cre-recombinase expressing model, conditional
deletion occurs in the thymus at the double-positive stage
during thymocyte development, and both mature CD4 and
CD8 single-positive cells are equally affected (30).Deletion of
Dhx15 in T cells resulted in an approximately 4-fold reduction
in the total numbers of CD3+ splenic T cells (Figure 3A),
indicating a function for DHX15 during T cell development. In
confirmation, both CD4+ and CD8+ single positive thymocytes
were reduced in Dhx15flox/floxCd4cre mice when compared to
control mice (Figures 3B,C). Together these results demonstrate
a requirement for DHX15 in T and B cell development.

DHX15 Modulates the Expression of
Several Genes Linked to Antibody
Responses
The relationships predicted by our computational analysis
between Detx-15 and B cells, Detx-15 and TfT-40 (DHX15
module), and TfT-40 and MHCII-48, suggested that DHX15
may function outside lymphopoiesis, in particular during Ab
immune responses. To investigate the role of DHX15 during
immune responses, we used NanoString to analyze gene
expression in splenic B cells from Dhx15flox/flox Cd19cre mice
andDhx15flox/flox littermate controls (Figure 4). RNA expression
analysis revealed that several genes are differentially expressed
between control and experimental groups, under unstimulated

conditions or following co-activation of the antigen receptor
and BAFFR or CD40. Approximately 18% of the genes tested
on the NanoString Immunology array panel showed differential
expression (98 genes of 560 genes measured on the array)
(Figure 4A), and among these genes, some were independent
of Dhx15 deficiency, and likely due to differences in the Cd19
locus between the experimental and control groups used in
this assay (Supplementary Figures 4A–D). To circumvent this
caveat, we focused on orthologous genes that were part of the
modules that had a direct link with DHX15 (MHCII-48, TfT-
40, and Detx-15). As predicted by the GMIC network data
(Figure 1 and Supplementary Figure 1), a high frequency of the
mouse orthologous genes tested from MHCII-48 (∼56%), TfT-
40 (∼33%), and Detx-15 (∼18%) modules were differentially
expressed in DHX15-null B cells. The combined frequency of
modular-genes differentially expressed in DHX15 null B cells
were enriched approximately 2-fold relative to all differentially
expressed genes (8 out of 23 vs. 98 out of 560 measured)
(Figure 4B).

Optimal Primary Antibody Responses
Require DHX15 Expression in B Cells
Gene set enrichment analysis of the differently expressed genes
in DHX15-deficient B cells identified GO pathways known
to directly or indirectly play a role in T cell-dependent Ab
responses (31–37), by modulating antigen presentation and
lymphocyte receptor signaling (Figure 4C). To investigate the
requirements for DHX15 during T cell-dependent Ab-responses,
we immunized DHX15 B cell deficient mice with 4-hydroxy-
3-nitrophenylacetyl (NP) coupled to chicken gamma globulin
(NP-CGG). DHX15 deficiency in B cells significantly impaired
the early IgG1 anti-NP response in mice (Figure 5A). However,

FIGURE 3 | T cell deficiency and impaired thymocyte development in Dhx15flox/flox Cd4-Cre mice. (A) Total cell counts (total CD45+ cells) and T cell subtypes from

Dhx15flox/flox Cd4-Cre+(filled symbols) and Dhx15flox/flox negative littermate (opened symbols). Cell gates were defined as in Figure 2. Treg cells were defined by the

CD4+ T cell scheme gate followed by segregation using the Foxp3 stain. (B,C) Immunophenotyping of the thymus. Cell numbers were calculated using a

CD45+Singlets+Live gate+. Each symbol represents an individual animal, from the combined results of 2 experiments. Animals were 8–14 weeks of age, and from

both sexes. Statistical analysis was performed with R studio using the multiple linear regression function and the following equation: rank(Variable Y)∼Genotype + Sex

+ Replicate. Only P values smaller than 0.05 were shown.
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FIGURE 4 | Differential gene expression in DHX15 deficient B cells. NanoString analysis of negative selected purified B cells from the spleens of Dhx15flox/flox Cd19cre

and Dhx15flox/flox mice. Cultured B cells were stimulated or not with anti-IgM ± BAFF for 22 h, followed by RNA extraction. NanoString data was normalized using

(Continued)
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FIGURE 4 | DESeq2. (A) A total of 98 genes were significantly differentially expressed (pAdj < 0.1) between DHX15-null B cells and controls. Significant genes were

matched to the human WGCNA gene modules as described in Supplementary Table 1, and differentially expressed genes belonging to module 0 were excluded

from the heatmap (total of 17 genes). Expression levels represent DESeq2-normalized values, scaled by row. Color-coding on the left represents individual WGCNA

gene modules as annotated on the right and defined in Figure 1 and Supplementary Figure 1. *Represent the differentially expressed genes that belong to modules

MHCII-48, TfT-40, and Detx-15. (B) Doughnut graphs represent the total number of genes measured by NanoString that belong to MHCII-48, TfT-40, and Detx-15.

(C) Gene set enrichment analysis of differentially expressed genes, using the GO gene set (biological processes) from the Molecular Signatures Database. Top 4

pathways are shown, which were identified from genes differentially expressed in DHX15-null B cells.

no difference in the specific IgG1 anti-NP memory response
was observed (day 42) after a second immunization (Figure 5A).
Interestingly, DHX15 deficiency enhanced the IgM response
(Figure 5A), indicating that differences in the anti-NP IgG1
response was not merely a consequence of a lower frequency of
NP-specific B cell clones in Dhx15flox/floxCd19cre mice.

DHX15 Is Required for in vitro B Cell
Responses
Tyrosine-Based Activation Motif-Bearing Adapter Protein
(TYROBP; Detx-15) and Transferrin Receptor (TFRC; MHCII-
48) were previously shown to be essential for B lymphocyte
proliferation in vivo and in vitro. For example, lymphocyte
deficiency in iron transport due to a polymorphism in the
human TFRC gene, is linked to a severe immunodeficiency
phenotype with a low proliferative response in vitro to mitogen
stimulation (35). On the other hand, TYROBP, also known as
DAP12, negatively regulates B cell proliferation, and TYROBP
deficiency in B cells increases lymphocyte proliferation in
vitro (34). Analysis of DHX15-null B cells showed enhanced
TYROBP expression but decreased TFRC levels (Figure 4A and
Supplementary Figure 4), supporting the model that DHX15
directly modulates B cell fate upon BCR stimulation. A similar
correlation expression pattern for DHX15 was observed for the
human lymphoma dataset as well as for a smaller lymphocyte
dataset from healthy donors (Supplementary Figures 4E,F and
Supplementary Table 3).

Given the previous results, we hypothesized that the decrease
in the primary IgG1 response in Dhx15flox/floxCd19cre mice,
occurs at least in part, as a consequence of suboptimal
proliferation, or survival, or both. To determine the potential role
of DHX15 in B cell proliferation and survival, independent of
antigen presentation, we used a competitive fitness assay for B
cells. As shown in Figure 5B, DHX15-null B cells decreased in
relative proliferation and survival upon activation of the B cell
antigen receptor (F(ab′)2 goat anti-mouse IgM) or inclusion of
costimulating cytokines (BAFF or anti-CD40). Moreover, mRNA
expression of PIM2 and AMIGO2, two genes previously linked to
BAFF dependent B cell proliferation and survival (38), decreased
in DHX15-null B cells when compared to controls (∼1.6-fold
for AMIGO2, and ∼1.5-fold for PIM2). Combined, the data
corroborates our in silico strategy identifying novel immune-
associated functions for DHX15.

DISCUSSION

The use of co-expression tools in the investigation of
high-dimensional data provides an important resource for

understanding fundamental biological mechanisms. Here, we
use an immune centric workflow analysis for large expression
data that sequentially combines two co-expression analysis
methods with xCell signature algorithm and GOstats to generate
a GMIC network. This in silicomodel predicted a novel function
for DHX15 during B cell-dependent immune responses by
influencing modules containing MHC class II-associated genes,
TYROBP and TFRC. In vivo and in vitro experiments with
DHX15-deficient B cells confirmed several predictions of the
GMIC model as well as demonstrated a function for DHX15 in
lymphopoiesis and during primary Ab responses.

The GmicR pipeline condenses high-dimension Omics data
into a format that allows for Bayesian Network learning and
inference using a standard desktop computer. The compression
of variables permits increased number of samples, thereby
enhancing detection of relationships (11). With gene ontology
enrichment, modules can be assigned biological functions, which
then provide a rich platform for generating hypotheses. However,
there are several limitations to our pipeline. First, to reduce the
high-dimensionality of large data, Bayesian Network learning is
carried out with module eigengenes. The benefit of the modular
eigengenes is the reduction in the number of variables, while
maintaining the observation count. For the lymphoma data
analyzed in this study (n = 557), 21,565 genes were compressed
into 69 eigengenes (69 functional modules plus a module 0).
As a result, causality is not at the gene level, explaining why
gene-modules containing some known B cell lineage factors
were not observed directly influencing the B cell signature.
However, since module functions are influenced within the
module connections, it is reasonable to explore causality with
experiments investigating genes with high influence on modules.
This is the strategy we used to select DHX15 for study. Our
pipeline uses WGCNA for module detection. Genes that are
not assigned to a module, due to sample noise and parameter
stringency, are grouped into module 0 and are left out of
the analysis. According to one study, this subtraction of genes
allows the use of noisy datasets, although leading to a loss
of module information (4). Parameters for module detection
do not change the relationships between individual genes, but
they may influence some relationships in the global GMIC
network. A similar outcome was observed when we performed
our GmicR pipeline on a smaller dataset from healthy donors.
Additionally, networks constructed using different datasets may
also yield some differences in GMIC relationships. Ultimately,
experimental validation of the predictions must be established.
Finally, our workflow requires a large number of observations
for learning. Bayesian Network learning works by generating
multiple bootstrap replicates from random sampling in order
to test the strength between nodes, hence the use of datasets
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FIGURE 5 | Reduced primary antibody responses in Dhx15flox/flox Cd19cre mice. (A) IgG1 and IgM anti-NP18BSA Abs in sera of mice immunized with NP-CGG in

alum. Arrows indicated the immunization days. X-axis represent the time points when sera were collected. Arbitrary units (A.U.) were defined using pooled serum from

animals that were immunized with NP-CGG. The graph represents the mean ± SEM from two independent experiments. Filled symbol represents the mean A.U. of

IgG1 or IgM anti-NP Abs from Dhx15flox/flox Cd19cre (n = 12). Opened symbol represents the mean A.U. for Dhx15flox/flox mice (n = 15). (B) Competitive fitness was

determined by using a mixed co-cultured system of CD45.2+ and CD45.1+ splenocytes (CD45.2+ Dhx15flox/flox Cd19cre or CD45.2+ Dhx15flox/flox with CD45.1+

wild-type cells). Relative Fitness was calculated after 72 h of in vitro stimulation with the indicated treatments by the following equation: [72 h Treatment Ratio

(%B220+CD45.2+/%B220+CD45.1+)]:[0 h Ratio(%B220+CD45.2+/%B220+CD45.1+)]. Data represents the summary of two combined experiments. Each symbol

represents an individual mouse. (C) Relative expression of PIM2 and AMIGO2 by RT-qPCR after 24 h stimulation with anti-IgM plus BAFF on purified B cells. Data

represents the summary of three independent experiments, with n = 2 per experiment, except for the Cd19cre animals (one experiment). Expression was normalized

using ACTIN, RPL1a, and L32 genes. Fold-changes (FC) were calculated by dividing each data point by the mean normalized expression of the stimulated

Dhx15flox/flox group in each experiment. Each symbol represents an individual mouse. Animals were 8–14 weeks of age, and from both sexes. Statistical analysis was

performed with R studio using multiple linear regression function and the following equations: (A) rank(A.U.)∼Genotype*Bleed Day + Sex. (B,C) rank(Variable

Y)∼Genotype + Sex + Replicate. Only P values smaller than 0.05 were reported.

with limited sample size may yield networks with minimum
connections. In this situation, it may be best to pool datasets
to increase the number of observations, which will enhance the
detection of gene-gene relationships.

The generated GMIC network led us to DHX15, a protein
belonging to the DExD/H-box RNA helicase superfamily known
for having roles in RNA biology and in the intracellular
recognition of viral nucleic acids (23–25). Our immune-network
model predicted a novel function for DHX15. The human
RNAseq dataset subjected to the co-expression pipeline inferred
a close relationship of DHX15 with TFRC, TYROBP and
MHCII-associated genes, and in vitro studies with mouse B
cells supported this computational approach. Genes such as
TFRC, that positively regulate antibody responses (31, 35, 39),
showed reduced expression in DHX15-null B cells. It is possible
that reduced expression of this key gene might be due to
inefficient RNA biogenesis in DHX15-deficient B cells. However,
this does not directly explain the increased expression levels
of TYROBP observed in DHX15 deficient B cells. TYROBP
is thought to be a negative regulator of B cell activation
via recruitment of SHP1 phosphatase to the B cell receptor
synapse (34). Expression data from DHX15 deficient B cells
showed elevated TYROBP suggesting an indirect modulation
of transcriptional processes by DHX15. Interestingly, Inesta-
Vaquera et al. (40) recently reported that DHX15 forms a
complex with CMRT1, an interferon-stimulated gene (ISG95)
encoding a O-2 ribose methyltransferase involved in mRNA
capping. The helicase function of DHX15 is activated by CMTRI,
whereas DHX15 reciprocally reduces the enzymatic activity of
CMTR1 O-2 methyltransferase activity. Disruption CMTR1-
DHX15 complex affects selective sets of mRNAs involved in key
metabolic functions and cell proliferation, and to a first degree

phenocopy the cell proliferation and survival features we observe
in DHX15-deficient mice. Thus, DHX15 may play a key role in
innate immune recognition.

Overall, the experiments presented here support the use of
co-expression networks to identify novel immune gene functions
from expression Omics data.
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